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Quasiconformal circles and Lipschitz classes

Raimo Nakki1 and Bruce Palka2

1. Introduction

A Jordan curve J in the extended complex plane C is termed a quasiconformal
circle if there exists a quasiconformal mapping of C onto itself which carries J
onto the unit circle in C. A purely géométrie characterization of the class of
quasiconformal circles was provided by Ahlfors in [1]. In order to formulate his
resuit in the manner most convenient for our purposes we associate to an

arbitrary Jordan curve J in C a number k(J) in the interval [0,1] as follows:

11X1-, n r—: n (1)

where the infimum is extended over the set of ordered quadruples z1? z2, z3, z4 of
finite points on J with the property that zx and z3 separate z2 and z4 on J. Ahlfors
proved that J is a quasiconformal circle if and only if k(/)>0. Conforming to the

usage in [2], [3] and [5], we refer to a Jordan curve J as a k-circle if k(J)>k>0.
The invariance of cross-ratios under Môbius transformations implies that the

image of a k-circle under a Môbius transformation is again a k-circle. It is not
ditBcult to verify that a 1-circle is either a euclidean circle or a straight line. An
arbitrary k-circle, on the other hand, can be quite an exotic curve. For example, a

k-circle in the finite plane C may fail to be rectifiable or even to contain a

rectifiable subarc, although it must be of 2-dimensional Lebesgue measure zéro.
For k in (0, 1] the canonical example of a k-circle is supplied by the Jordan curve

l
J {zeC: z 0, z oo, or |Arg z| arcsin k}.

Indeed, an elementary calculation reveals that k(J)= k for this curve.
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486 R NAKKI AND B PALKA

A complex-valued function / on a set A in C is said to belong to the class

Lipa(A), where 0<a<l, if there is a number M such that

for ail z and w in A. Suppose that D is a bounded Jordan domain in C and that /
is a K-quasiconformal mapping of D onto the open unit disk B in C. It has long
been known that / belongs to Lipa(A) for each compact subset A of D, with
a 1/K. In gênerai, however, / need not belong to Lipa(D) for any a. If, on the
other hand, dD is a quasiconformal circle, it is possible to extend f to a

quasiconformal mapping of C onto itself and this fact implies that / belongs to
Lipa(D) for some a in (0, 1/K]. How large can one expect this a to be? In this

paper we détermine the largest Hôlder exponent a valid for ail D in the class of
domains bounded by k-circles. We also consider the analogue of this problem for
K-quasiconformal mappings of B onto domains belonging to this class. We prove
the following theorems.

THEOREM 1. Let D be a bounded domain in C such that dD is a k-circle and
let f be a K-quasiconformal mapping of D onto B. Then f belongs to Lipa(D) for

a
2K(7T-arcsin k) ' l }

This Hôlder exponent is the best possible.

THEOREM 2. Let D be a bounded domain in C such that dD is a k-circle and
let f be a K-quasiconformal mapping of B onto D. Then f belongs to Lipp (B) for

2 arcsin2 k

7rK(7r-arcsin k) '

We are uncertain whether the Hôlder exponent /3 in Theorem 2 is the best

possible or whether it is subject to improvement. Theorem 1 has an interesting
corollary which is worth stating as a separate theorem. This resuit was obtained
independently by Lesley [7] using différent methods.

THEOREM 3. Let D be a bounded domain in C such that dD is a
quasiconformal circle and letfmap D conformally onto B. Then f belongs to Lipa(D) for
some a greater than 1/2.
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The proofs of Theorems 1 and 2 are présentée! in Sections 2 and 3, respec-
tively, of this paper.

The genesis of the présent paper is to be found in work of Warschawski [11,
12] concerning conformai mappings and boundary Hôlder continuity. (See also

[4], [7] and [13].) He established results reminiscent of Theorems 1 and 2 in the
conformai case for a class of domains included in, but less gênerai than, the class

of domains which are bounded by quasiconformal circles. For example,
Warschawski considered, exclusively, domains with rectiflable boundaries. The
techniques he utilized are quite différent from those which we employ.

A number of authors hâve studied k -circles and the properties of conformai
and quasiconformal mappings of domains bounded by such curves. In addition to
the séminal paper of Ahlfors referred to earlier, we would like to cite, in
particular, the work of Blevins [2, 3] and of Rickman [9]. We wish also to
acknowledge the help afïorded us by conversations with D. Blevins and with F.
W. Gehring.

2. Proof of Theorem 1

In matters regarding notation and terminology we will conform to the usage in
the book of Lehto and Virtanen [6], unless some explicit stipulation to the

contrary is made. We dénote by B the open unit disk in C and by S(r) the circle in
C of radius r>0 centered at the origin. The diameter of a set A in C will be

denoted diam A.
The following simple observation permits us to deal exclusively with the

conformai case in carrying out the proofs of Theorems 1 and 2.

LEMMA 1. Let D be a bounded simply connected domain in C. If some

conformai mapping of D onto B belongs to Lipa(D), then each K-quasiconformal
mapping of D onto B belongs to Lipa/K(D); if some conformai mapping of B onto D
belongs to Lipp(B), then each K-quasiconformal mapping of B onto D belongs to

Proof. We provide the détails of the proof for the first assertion. The latter
assertion can be treated in a similar manner. Suppose that / is a conformai

mapping of D onto B which belongs to Lipa(D) and let g be an arbitrary
K-quasiconformal mapping of D onto B. Then h g ° f1 is a K-quasiconformal
self-mapping of B and, as such, h belongs to Lip1/K(B). (See [6,8].) Conse-

quently, g h ° / belongs to Lipa/K(D).
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We record for use in the proof of Theorem 1 the following géométrie property
of k-circles. Its elementary vérification is included for the sake of completeness.

LEMMA 2. Let J be a k-circle in C. For any pair of points z and w on J the

arcs A and A' into which J is divided by z and w satisfy

2
min {diam A, diam A'}<— \z — w\. (4)

Proof. Fix a pair of points z and w on J and set r — \z — w|. Suppose that the

corresponding arcs A and A' contain points y and y', respectively, such that
\z - y| \z - y'| 5 > 0. From (1) we infer

|z-w||y-y'| _ r|y-y'
|z-y| |w-y'| + |z-y'| |y- w\ s|w-y

whence s<r/k. This implies that either A or A' is contained in the closed disk of
radius r/k centered at z and (4) follows.

Proof of Theorem 1. Let / be a conformai mapping of D onto B. We verify
that / belongs to Lipa (D), with

2(7r-arcsin k)

Theorem 1 then follows from Lemma 1. The mapping / admits an extension to a

homeomorphism of D onto B. We retain the notation / for the extended

mapping.
Write d di$t(f~1(0),dD). Consider a pair of points z and w on dD, dividing

dD into two arcs, of which A will dénote the one of minimal diameter. We
estimate the harmonie measures to ^(/^(O), A, D) and co'= <o(0, /(A), B).
First, using a resuit of Blevins [2], we obtain

4 f /diam A\al 4 /diam A\a
(o ^ — arctan n i ^ — i i

ix L\ d J 7T \ d

with a given by (5). In view of (4), we infer that

(6)



Quasiconformal circles and Lipschitz classes 489

On the other hand, it is apparent that

277

Since / is conformai in D, co <o'. Combining this fact with (6) and (7), we arrive
at the conclusion that

for ail z and w on dD, where M=8(2/dk)a. Theorem 10.1 in [10] allows us to
conclude that (8) is valid for ail z and w in D. Therefore / belongs to Lipa (D), as

asserted.

The following example demonstrates that the Hôlder exponent in Theorem 1

is the best possible.

EXAMPLE 1. Let ke(0, 1], let Ke[l,oo) and let a be given by (2). There
exist a bounded domain D in C such that dD is a k-circle and a K-quasiconformal
mapping of D onto B which does not belong to Lipa- (D) for any a' greater than

a.

Proof. Consider the domains

G {z g C: |Arg z\< 7r-arcsin k}

and

:|Argz|<!

The Môbius transformation $ which satisfies <£>(l) 0, 4>(0)=l and 0(-l) o°

maps Gx onto B. Moreover, D <\){G) is a bounded domain in C and, since dG is

a k-circle, dD is a k-circle as well. There exists a constant C such that

\\\\\ (9)

for ail z in some neighborhood of the origin. Let g and h designate the
homeomorphisms defined on Gx and G, respectively, by

g(z) z |z|(1/K)-\ h(z)
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for z^0, oo, while g(0) h(0) 0 and g(oo) ^(oo)=oo. The mapping /defined on
D by

f(z)=4> o g o h o (j)~l(z)

is a homeomorphism which maps D K-quasiconformally onto B. Obviously
/(1)= 1. It is a conséquence of (9) that, for z in D sufficiently close to 1,

C 2 \z - l\a < |/(z)- 1| < C2 |z - l|a.

This implies that / cannot belong to Lipa< (D) when a exceeds a.

3. Proof of Theorem 2

The proof of Theorem 2 is a good deal more complicated than that of
Theorem 1 and will require several preparatory results. In thèse results G will
dénote a domain whose boundary is a k-circle passing through 0 and °o. We use

the terminology cross-cut of G to indicate an open arc in G with two endpoints in
d G. For r>0 each component of GC\S(r) is a cross-cut of G. Furthermore, it
follows from elementary plane topology that G H S(r) has a component whose

endpoints separate 0 and o° on dG.

Our first resuit will be needed to establish a subséquent modulus estimate.

LEMMA 3. Let y be a rectifiable cross-cut of G whose endpoints separate 0

and oo on dG. Then

(10)

Proof. Replacing, if necessary, G by <j>(G) and y by <f>(y)> where </> is a

mapping either of the form <$){z) az or of the form <$>{z) az, we are free to
assume that y has endpoints zl l and z2 re10, where r> 1 and where 0< 0< tt.
Choose a cross-cut y* of the domain G* complementary to G so that y* has

endpoints 0 and °°. Let L designate the branch of the logarithm in the domain

C\y* which satisfies L(l) 0. Parametrizing the arc y by arc length with initial
point zu we find that

dZ
|L(22)- L(2,)| (log2 r + [Im L(z2)]2)1/2.
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If |Im L(z2)|^2 arcsin k, (10) is clearly valid. This is certainly the case for fc 1,

when G is simply an open half-plane in C. In what follows, therefore, we assume
that 0< k < 1 and that |Im L(z2)|<2 arcsin k. Since the complex number z2 has a

unique argument in the interval (—tt, tt], we conclude that Im L(z2) 0. Conse-

quently, 0 < 0 < 2 arcsin k and

Ml2+02)1/2. (11)

It follows from (1) that

(12)
w

whenever the points z and w separate 0 and °° on dG This fact, applied to the

endpoints of y, yields

|reie-l|>k(l + r).

To complète the proof of Lemma 3 it is sufficient to verify that for k in (0,1) the
function <P,

satisfies

<2>(r, 6) > 4 arcsin2 k, (13)

when (r 6) is constrained to lie in the set E described by the conditions:

r > 1, 0 < 6 < 2 arcsin k, |re10 - 1| > k(l + r).

Elementary considérations reveal that the minimum of <P on E is attained at some

point of the arc A,

Hère

0(r) arccos |-(l-i
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The minimum of <P on A can be computed, albeit with some effort, using
standard calculus techniques. We spare the reader the détails: the minimum of <£>

on A is 4 arcsin2 k and is attained when r 1 and 0 2 arcsin k. Consequently,
(13) holds and (10) follows from (11) and (13).

We remind the reader that the modulus M(F) of a family F of arcs in C is

defined by

M(F) inf [ p2 dm,

where m is 2-dimensional Lebesgue measure and where the infimum is taken over
the collection F(F) of Borel functions p: C-^[0, oo] such that

for each rectifiable arc y in F. If / is a conformai mapping, then

M[f(F)] M(F) (14)

for each family F of arcs in the domain of /.
In the next lemma the notation A(a, b) désignâtes the annulus {z eC: a < \z\ <

b}, where 0 < a < b < oo.

LEMMA 4. Let F be a family of cross-cuts of G which lie in A(a, b) and which
hâve endpoints separating 0 and °° on dG. Then

^rcsinfc b

2 arcsin k a

Proof. Define a Borel function p on C by

2|z| arcsin k

for z in GDA(a, b) and p(z) 0 otherwise. Lemma 3 implies that
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for each rectifiable 7 in F. We conclude that p belongs to F(F). Hence

M(D<f P2dm -—^rrf (f de)-, (16)
Jc 4 arcsin2 k )a \ )Er r

where Er {0e [0, 2tt]: re10 e G}.
Let G* dénote the domain complementary to G. For each r>0, G*C\S(r) has

a component y* whose endpoints separate 0 and ^ on dG* dG. The application
of Lemma 3 to y* shows that the length of y* is at least 2r arcsin k. We can thus
assert that

dO<27r-2 arcsin k
Je,

for each r>0. In conjunction with (16) this implies (15).

REMARK. Lemmas 3 and 4 make only weak use of the hypothesis that dG
is a k-circle. Indeed, it is condition (12) which is crucial for their proofs, to wit, that

\z-w\
2 + W

whenever z and w separate 0 and 00 on dG. This condition does not even imply
that dG is a quasiconformal circle, much less a k-circle. Examples suggest that, in
fact, the conclusion of Lemma 4 might be strengthened to

M(D<- L—log-, (17)2 arcsin k a

if full use were to be made of the assumption that âG is a k-circle. When
G {zeC: |Arg z\<arcsin k} and when F is the family of cross-cuts of G in
A(a, b) which join the components of dGC\A(a, b), the modulus estimate (17)
holds with equality. It can be argued on purely heuristic grounds that this
configuration is extremal in estimating M(F). At this juncture, however, we are
unable to fashion a rigorous proof for such an assertion.

The next resuit contains the heart of the proof of Theorem 2. In it, H dénotes
the open upper half-plane in C.

LEMMA 5. There exists a constant c>\ depending only on k such that, if g is
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a homeomorphism of H onto G which is conformai in H and which is normalized by
g(0) 0 and g(o°) œ, then

* (18)

for ail z in BC\H, where

7r(7r-arcsin k)

Proof. Theorem 1 in [1] implies that the fc-circle dG admits a K*-quasi-
conformal reflection, where X* dépends only on k. It then follows that g has a

K*-quasiconformal extension g* to C. For r>0 set

L(r) max|g*(z)|

and

J(r) min|g*Cz)|.
\z\ r

Because g*(°°) °°, we are assured that

L(r)^bl(r) (20)

for ail r>0, with b exp(7rK*). (See [6, p. 111].)
Now fix z in fî fl H, z# 0, and set r |z|. Consider the family F of cross-cuts

of H which lie in A(r, 1) and which join the components of dHDA(r, 1). A simple
calculation gives

M(D -log-. (21)
77 r

It is apparent that

g[HnA(r,l)]cA(/,L),

where l=l(r) and L L(1). The family g(F) consists of cross-cuts of G in
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GC\A(l L) whose endpoints separate 0 and °° on dG We apply Lemma 4 to g(F)
and conclude that

in k L 1 L
¦logT — log-, (22)

with j3 given by (19). Since g is conformai in H, we can invoke (14), together with
(21) and (22), and infer that

1 L
3 1l

In combination with (20) this implies

establishing (18) for z in BHH with c exp (2ttK*). By continuity, (18) is valid
throughout ÉDH.

Having completed ail préparations, we turn to the proof of Theorem 2.

Proof of Theorem 2. Let / be a conformai mapping of B onto D. We show that

/ belongs to Lip^(B), where j3 is given by (19). Theorem 2 then follows from
Lemma 1. It will be assumed that / has been extended to a homeomorphism of É
onto D, which we continue to dénote by /.

Write ô diamD. For points w and w' in B satisfying |w-w'|>l we can

apply (8) to f'1 and observe that

where a is given by (5) and where M is a constant which dépends only on k and
d dist(/(0),dD). It follows, for such w and w', that

(23)

We next fix a point z of dB and introduce auxiliary Môbius transformations
and <£2,

w~z
4>2O) T<\w + z w-f(-z)
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Then <f)1 maps B onto the open upper half-plane H with

l. (25)

Furthermore, c^j maps the closed semi-circle A={zw: vvedB, Rew^O} onto
BDdH and satisfies

-|w-w'|<|c/>1(w)-(/>1(w')N2|w-w'| (26)

for ail w and w' in A. A straightforward calculation using (23) reveals that

- | w - w'\ < |<£2(w) - <fc(w')| ^ SM(2/a) |w - w'|, (27)
o

whenever w and w' belong to /(A). The domain G (t>2(D) is bounded by a

k-circle which passes through 0 and °°. In view of (24) and (25), Lemma 5 can be

applied to the mapping g defined on H by

g(w)=<))2 o f o (^(w).

With the aid of (18), (25), (26) and (27) we obtain

/(w)|<6 \cf>2 o /(w)| 8 |g o ^(W)|

< c8 |g(l)| l^dv)^ =s 2cÔ3M(2/a) |z - w\p

for ail w in A, where c > 1 dépends only on k and where p is given by (19). For w
in dB\A we hâve |z-w|>l and, as a conséquence,

|/(z)-/(w)|<ô<ô|z-w|^<2cÔ3M(2/a) |z-w|p.

We hâve succeeded, therefore, in demonstrating that

flw^Milz-Hf (28)

for ail points z and w in dB, with A^ 2c63M(2/a). Invoking Theorem 10.1 in
[10], we can assert that (28) holds for ail z and w in B. This establishes that /
belongs to Lipp (B), as maintained. The proof of Theorem 2 is complète.

Examples indicate that the Hôlder exponent in Theorem 2 might be subject to
improvement. Indeed, should the modulus estimate (17) be established, an



Quasiconformal circles and Lipschitz classes 497

improvement in Theorem 2 would resuit, without change in the proof the
exponent j8 could be replacée! by the larger exponent j30,

(29)

The next example shows that no further improvement of the exponent in
Theorem 2 would then be possible

EXAMPLE 2 Let k g (0, 1), let Ke[l, «>) and let & be given by (29) There
exist a bounded domain D in C such that dD îs a fc-circle and a K-quasiconformal
mapping of B onto D which does not belong to Lip3 (B) for any /3' greater than

Proof The présent example îs a simple variation on the thème of Example 1

Rather than the domain G used there, we consider îts complementary domain
G*,

G* {zeC |Argz|<arcsin k},

along with the domain Gt,

Again we let </> be the Mobius transformation which satisfies

and cj)(— l) oo The domain D <f>(G*) îs contained in B and îs bounded by a

k-circle Homeomorphisms g and h are defined on C^ by

|(1/K) h(z)

for z^ 0, oo, while g(0) h(0) 0 and g(») h(c») oo The mapping / defined on

B by

is a homeomorphism which maps B K-quasiconformally onto D and which

satisfies /(1)= 1 It follows from (9) without difficulty that

for z in B sufficiently close to 1 From this we infer that / does not belong to
(B), if j3' is larger than j80
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