Om multiple points of smooth immersions.

Autor(en): Ronga, Felice
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 55 (1980)

PDF erstellt am: 22.07.2024
Persistenter Link: https://doi.org/10.5169/seals-42392

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On multiple points of smooth immersions

Felice Ronga

§1. Introduction

Let $f: V^{n} \rightarrow W^{n+r}$ be a smooth immersion, where V^{n} and W^{n+r} are smooth manifolds of dimension n and $n+r$ respectively; we denote by $V^{(k)}$ the k-fold product of $V, \quad \Delta_{\mathrm{V}}(k)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in V^{(k)} \mid \exists i \neq j \quad\right.$ with $\left.\quad x_{i}=x_{j}\right\}, \quad \delta_{\mathrm{w}}(k)=$ $\left\{(y, \ldots, y) \in W^{(k)}\right\}$. We shall say that f is regular if $f^{k}: V^{(k)} \rightarrow W^{(k)}$ is transversal to $\delta_{\mathrm{W}}(k)$ outside $\Delta_{\mathrm{V}}(k)$. This means that if $f\left(x_{1}\right)=\cdots=f\left(x_{k}\right)=y, x_{i} \neq x_{j}$, the vector spaces $\operatorname{Im}\left(d f_{x_{1}}\right), \ldots, \operatorname{Im}\left(d f_{x_{k}}\right)$ are in general position in $T W_{y}$.

The following theorem has been proved by Ralph J. Herbert in his thesis [3]:
1.1 THEOREM. Let $f: V^{n} \rightarrow W^{n+r}$ be a regular proper immersion and set $N_{k}=\left\{y \in W \mid \#\left(f^{-1}(y)\right)=k\right\}, M_{k}=f^{-1}\left(N_{k}\right)$. Then \bar{M}_{k} and \bar{N}_{k} carry fundamental classes over the integers modulo two; denoting by m_{k} and n_{k} their Poincaré duals in V and W respectively and by $e=e\left(N_{f}\right)$ the Euler class of the normal bundle N_{f} of f, we have:

$$
\begin{equation*}
m_{k}=f^{*}\left(n_{k-1}\right)-e \cdot m_{k-1} \tag{*}
\end{equation*}
$$

If r is even and V and W oriented, \bar{M}_{k} and \bar{N}_{k} carry fundamental classes over the integers, and the above formula is valid in integral cohomology.

The fundamental classes are meant as in [2], §2.2.
Remarks.
(i) If r is even and N_{f} only is oriented, we still have integral dual classes, for which $\left({ }^{*}\right)$ stays valid.
(ii) In proving (*) we will exhibit minimal desingularisations of \bar{M}_{k} and \bar{N}_{k} which provide fundamental classes in bordism theory (oriented bordism if r is even and N_{f} oriented, complex bordism if N_{f} has a stable complex structure,
unoriented bordism otherwise). In the corresponding cobordism theories $\left(^{*}\right)$ still holds
(iii) From $\left(^{*}\right.$) we deduce:

$$
m_{k}=\sum_{j=0, \ldots, k-1}(-1)^{j} e^{i} f^{*}\left(n_{k-1-i}\right)
$$

In particular if $W=\mathbf{R}^{n+r}, m_{k}=(-1)^{k-1} e^{k-1}$. This recovers the formula for triple points of immersed surfaces in \mathbf{R}^{3} given in [1].
(iv) When r is even and N_{f} oriented, the orientations we shall give for the dual classes to \bar{M}_{k} and \bar{N}_{k} are such that $f_{!}\left(m_{k}\right)=k \cdot n_{k}$, where $f_{!}: H^{*}(V) \rightarrow H^{*}(W)$ is the Gysin homomorphism associated to f. Defining $\varphi_{h}: H^{*}(V) \rightarrow H^{*}(V)$ by $\varphi_{h}(a)=f^{*} f_{!}(a)-h(e \cdot a)$, we deduce from $\left(^{*}\right)$:

$$
(k-1)!m_{k}=\varphi_{k-1} \cdot \varphi_{k-2} \cdots \cdots \varphi_{1}(1)
$$

Herbert's theorem corrects a formula given in [4]. The purpose of this note is to give a simple proof of $\left({ }^{*}\right)$. My contribution is the idea of proving $\left(^{*}\right)$ using Proposition 2.2 below, which is a generalization of a proposition of D. Quillen ([5], prop. 3.3).

Particular cases of $\left(^{*}\right)$ were known before Herbert's thesis. In [7], p. 131, H. Whitney shows that $m_{2}=f^{*} f_{!}(1)-\boldsymbol{e}$; Herbert's method for proving $\left({ }^{*}\right)$ appears to be a generalisation of Whitney's method, which also inspired our approach. By different methods, the case of triple points of surfaces in \mathbf{R}^{3} is treated in [1] and [6] deals with the number of triple points of an immersion $V^{4 n} \rightarrow \mathbf{R}^{6 n}$.

§2. Proofs

We adopt the following notations: a smooth map $\alpha: A \rightarrow X$ means a C^{∞} map between C^{∞} manifolds. TA denotes the tangent bundle of $A, N_{\alpha}=\alpha^{*}(T X)-T A$ the virtual normal bundle of α; if α is an immersion, N_{α} denotes the genuine normal bundle of α, namely $\alpha^{*}(T X) / d \alpha(T A)$, where $d \alpha: T A \rightarrow \alpha^{*} T X$ denotes the derivative of α.

Let $f: V^{n} \rightarrow W^{n+r}$ be a smooth regular proper immersion. We set:

$$
-N_{k}(f)=\left\{y \in W \mid \#\left(f^{-1}(y)\right)=k\right\}, \quad M_{k}(f)=f^{-1}\left(N_{k}\right)
$$

$-\hat{M}_{k}(f)=\left\{\left(x_{1}, \ldots, x_{k}\right) \in V^{(k)}-\Delta_{V}(k) \mid f\left(x_{i}\right)=f\left(x_{j}\right)\right\}$

The group of permutations of k objects S_{k} acts fixed-point free on $\hat{M}_{k}(f)$ in the obvious way.

$$
-\tilde{N}_{k}(f)=\hat{M}_{k} / S_{k}, \quad \tilde{M}_{k}(f)=\hat{M}_{k} / S_{k-1},
$$

where S_{k-1} acts on the last $k-1$ coordinates.
We write $\left[x_{1}, \ldots, x_{k}\right]$, resp. $\left(x_{1},\left[x_{2}, \ldots, x_{k}\right]\right)$ for the class of $\left(x_{1}, \ldots, x_{k}\right) \in \hat{M}_{k}$ in \tilde{N}_{k}, resp. \tilde{M}_{k}. We define $f_{k}: \tilde{M}_{k} \rightarrow V, f_{k}\left(x_{1},\left[x_{2}, \ldots, x_{k}\right]\right)=x_{1}$ and $g_{k}: \tilde{N}_{k} \rightarrow W$, $g_{k}\left(\left[x_{1}, \ldots, x_{k}\right]\right)=f\left(x_{1}\right)\left(=f\left(x_{2}\right)=\cdots=f\left(x_{k}\right)\right)$. We set $\tilde{M}_{k}^{0}=f_{k}^{-1}\left(M_{k}\right), \tilde{N}_{k}^{0}=g_{k}^{-1}\left(N_{k}\right)$. Recall that $N_{f}^{(k)}$ denotes the k-fold product of N_{f}.

2.1 LEMMA.

(i) f_{k} and g_{k} are proper immersions with normal bundles $N_{\mathrm{g}_{k}}=\left(N_{f}^{(k)} \mid \hat{M}_{k}\right) / S_{k}$ and $N_{f_{k}}=\left(0 \times N_{f}^{(k-1)} \mid \hat{M}_{k}\right) / S_{k-1}$.
(ii) \tilde{M}_{k}^{0} and \tilde{N}_{k}^{0} are open dense in \tilde{M}_{k} and \tilde{N}_{k} respectively, $f_{k} \mid \tilde{M}_{k}^{0}: \tilde{M}_{k}^{0} \rightarrow M_{k}$ and $g_{k} \mid \tilde{N}_{k}^{0}: \tilde{N}_{k}^{0} \rightarrow N_{k}$ are diffeomorphisms.
(iii) $f_{k}\left(\tilde{M}_{k}\right)=\bar{M}_{k}=\bigcup_{h \geqslant k} M_{h}, g_{k}\left(\tilde{N}_{k}\right)=\bar{N}_{k}=\bigcup_{h \geqslant k} N_{h}$.

Proof. Since $\hat{M}_{k}=\left(f^{k}\right)^{-1}\left(\delta_{\mathrm{w}}(k)\right)-\Delta_{\mathrm{V}}(k)$, we deduce from the transversality of f^{k} to $\delta_{W}(k)$ outside $\Delta_{V}(k)$ that $T\left(\hat{M}_{k}\right)_{\left(x_{1} \ldots, x_{k}\right)}=\left\{\left(v_{1}, \ldots, v_{k}\right) \in\right.$ $\left.\left.T(V)_{\left(x_{1}, \ldots, x_{k}\right)}^{(k)}\right) \mid d f_{x_{1}}\left(v_{i}\right)=d f_{x_{1}}\left(v_{j}\right)\right\}$. So, $v_{1}=0$ implies $v_{2}=\cdots=v_{k}=0$. Hence f_{k} and g_{k} are immersions; it is easily seen that their normal bundles are as stated.

Let us check that \hat{M}_{k} is closed in $V^{(k)}$: if not, there are sequences $\left\{x_{1}^{h}\right\}$, $\left\{x_{2}^{h}\right\} \subset V, f\left(x_{1}^{h}\right)=f\left(x_{2}^{h}\right), x_{1}^{h} \neq x_{2}^{h}$, with $\lim _{h \rightarrow \infty}\left(x_{1}^{h}\right)=\lim _{h \rightarrow \infty}\left(x_{2}^{h}\right)=x$. We write f in local coordinates as a map $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n+r}$; we can assume that $x_{1}^{h}-x_{2}^{h} /\left\|x_{1}^{h}-x_{2}^{h}\right\|$ tends to $v \in \mathbf{R}^{n},\|v\|=1$. But then $d f_{x}(v)=0$ and f is no longer an immersion. Hence \tilde{M}_{k} and \tilde{N}_{k} are closed in $V^{(k)} / S_{k-1}$ and $V^{(k)} / S_{k}$ respectively and since f is proper we deduce that f_{k} and g_{k} are proper. This proves (i). The assertions (ii) and (iii) follow from the fact that f_{k} and g_{k} are proper and, using the implicit function theorem, by writing f locally as a linear map.

We digress now to sub-cartesian diagrams; they generalize the notion of clean intersection of Quillen ([5], §3), which concerns the case when α and β below are embeddings.

DEFINITION. The diagram of smooth proper immersions:

is said to be sub-cartesian if:
(i) $f_{A} \times f_{B}: Z \rightarrow A \times B$ is an embedding onto $A \times{ }_{X} B=\{(a, b) \in$ $A \times B \mid \alpha(a)=\beta(b)\}$.
(ii) the following sequence is exact:

$$
0 \rightarrow T Z \xrightarrow{d\left(f_{A} \times f_{B}\right)} f_{A}^{*} T A \times f_{B}^{*} T B \xrightarrow{(d \alpha,-d \beta)} f_{A}^{*} \alpha^{*} T X
$$

where $\left(d \alpha,-d \beta\right.$) is meant to send $(v, w) \in\left(f_{A}^{*} T A \times f_{B}^{*} T B\right)_{z}$ to $d \alpha(v)-d \beta(w)$. The vector bundle $E=f_{A}^{*} \alpha^{*} T X / \operatorname{Im}\left(d\left(f_{A} \times f_{B}\right)\right)$ over Z is called the excess vector bundle.

Remarks.

(i) The above diagram is cartesian if and only if E is the zero bundle.
(ii) We have not assumed Z to have constant dimension, hence E won't have constant rank in general.
(iii) The above condition (ii) is equivalent to say that if for $a \in A$ and $b \in B$ we choose open neighbourhoods A^{\prime} and B^{\prime} respectively such that $\alpha \mid A^{\prime}$ and $\beta \mid B^{\prime}$ are embeddings, then $\alpha\left(A^{\prime}\right) \cap \beta\left(B^{\prime}\right)$ is a sub-manifold of X and $T\left(\alpha\left(A^{\prime}\right) \cap\right.$ $\left.\beta\left(B^{\prime}\right)\right)=T\left(\alpha\left(A^{\prime}\right)\right) \cap T\left(\beta\left(B^{\prime}\right)\right)$. This is to say that $\alpha\left(A^{\prime}\right)$ and $\beta\left(B^{\prime}\right)$ intersect cleanly in X in the terminology of [5].
2.2 PROPOSITION. For $c \in H^{*}(B)$ we have:

$$
\alpha^{*} \beta_{!}(c)=f_{A!}\left(e(E) \cdot f_{B}^{*}(c)\right)
$$

where e denotes the Euler class, β_{1} and f_{A} are the Gysin homomorphisms associated to those maps. The cohomology is taken over the integers whenever N_{B} and E are oriented, the integers modulo two otherwise. (The proposition and its proof remain valid in any generalized cohomology theory in which N_{β} and E have orientations.)

Proof. We replace Z by its image in $A \times B$, still denoted by Z. We provide $T X$ with a metric and identify E with the orthogonal to $\operatorname{Im}\left(d\left(f_{A} \times\left. f_{B}\right|_{Z}\right)\right)$ in $f_{A}^{*} \alpha^{*} T X$. Let $e: T X \rightarrow X$ be the exponential mapping associated to the metric; for $x \in X$ there is an open neighbourhood U_{x} of $0 \in T X_{x}$ such that $e_{x}=e \mid U_{x}$ is a diffeomorphism onto an open neighbourhood of x in X. Let Ω be a closed tubular neighbourhood of Z in $A \times B$; it is a manifold with boundary $\partial \Omega$. If Ω is small enough, for $(a, b) \in \Omega$ we have $b \in e_{\alpha(a)}\left(U_{\alpha(a)}\right)$. Let $v: Z \rightarrow E$ be a section transversal to the zero section and denote by \bar{E} and \bar{v} extensions of E and v to Ω, with
\bar{E} still a sub-bundle of $T X^{\prime}=p_{A}^{*} \alpha^{*}(T X) \mid \Omega$, where $p_{A}: \Omega \rightarrow A$ denotes the obvious projection. Define the section $w: \Omega \rightarrow T X^{\prime}$ by $w(a, b)=e_{\alpha(a)}^{-1}(\beta(b))$, and the section $\bar{w}: \Omega \rightarrow T X^{\prime}$ by $\bar{w}=w+\bar{v}$. If Ω is small enough, $w(a, b) \notin \bar{E}_{(a, b)}$ for $(a, b) \notin Z \quad$ and hence, setting $Z^{\prime \prime}=\{(a, b) \in \Omega \mid \bar{w}(a, b)=0\}$, we have $z^{\prime \prime}=$ $\{(a, b) \in Z \mid v(a, b)=0\}$.

It follows from the exact sequence (ii) of the definition of a sub-cartesian diagram that \bar{w} is transversal to the zero section in $T X^{\prime}$. Hence the map $F: \Omega \rightarrow X \times X, F(a, b)=\left(e_{\alpha(a)}(\bar{w}(a, b)), \beta(b)\right)$ is transversal to Δ_{X} and $F^{-1}\left(\Delta_{X}\right)=$ $Z^{\prime \prime}$ if v has been chosen near enough the zero section in E.

Let $\alpha^{\prime}: A \rightarrow X$ be near α such that $\alpha^{\prime} \times \beta: A \times B \rightarrow X \times X$ is transversal to Δ_{X} and set $Z^{\prime}=\left(\alpha^{\prime} \times \beta\right)^{-1}\left(\Delta_{X}\right)$. The following diagram is cartesian:

where f_{A}^{\prime} and f_{B}^{\prime} are the obvious projections; hence $\alpha^{*} \beta_{!}(c)=f_{A}^{\prime}!f_{B}^{\prime *}(c)$. If α^{\prime} is near enough to $\alpha, F^{\prime}=\left(\alpha^{\prime} \times \beta\right) \mid \Omega$ and F are homotopic through maps transversal to Δ_{X} and sending $\partial \Omega$ into $X \times X-\Delta_{\mathrm{X}}$. Hence there is an isotopy of Ω leaving $\partial \Omega$ fixed and sending Z^{\prime} onto $Z^{\prime \prime}$.

Consider the inclusions $i: Z \subset \Omega, i^{\prime}: Z^{\prime} \subset \Omega, i^{\prime \prime}: Z^{\prime \prime} \subset \Omega, j: Z^{\prime \prime} \subset Z$, the projection $p_{\mathrm{A}}: \Omega \rightarrow A$ and the associated Gysin homomorphisms $i_{!}: H^{*}(Z) \rightarrow$ $H^{*}(\Omega, \partial \Omega)$, similarly for $i_{!}^{\prime}$ and $i_{!}^{\prime \prime}$, and $p_{A!}: H^{*}(\Omega, \partial \Omega) \rightarrow H^{*}(A)$. Since Z^{\prime} and $Z^{\prime \prime}$ are isotopic in Ω rel. $\partial \Omega, i_{!}^{\prime} f_{B}^{\prime *}=i_{!}^{\prime \prime}\left(f_{B} j\right)^{*}$. Also, since $Z^{\prime \prime}$ is the set of zeroes of $v: Z \rightarrow E$ which is transversal to the zero section, $j_{!}(1)=e(E)$. Hence, using that $f_{\mathrm{A}}^{\prime}=p_{\mathrm{A}} i^{\prime}, \quad i^{\prime \prime}=i j, f_{\mathrm{A}}=p_{\mathrm{A}} i$ and $j_{!}\left(j^{*}(x)\right)=j_{!}(1) \cdot x: \alpha^{*} \beta_{!}(c)=\alpha^{\prime *} \beta_{!}(c)=f_{\mathrm{A}}^{\prime} f_{\mathrm{B}}^{\prime *}(c)=$ $p_{\mathrm{A}!} i_{!}^{\prime} f_{B}^{\prime *}(c)=p_{\mathrm{A}!} i_{!}^{\prime \prime} j^{*} f_{B}^{*}(c)=p_{\mathrm{A}!} i_{1} j_{!} j^{*} f_{B}^{*}(c)=\left(p_{\mathrm{A}} i\right)_{!}\left(j!(1) \cdot f_{B}^{*}(c)\right)=f_{A!}\left(e(E) \cdot f_{B}^{*}(c)\right)$.

Proof of 1.1. Consider the diagram:

where $p\left(x_{1},\left[x_{2}, \ldots, x_{k}\right]\right)=\left[x_{2}, \ldots, x_{k}\right], \quad p\left(x_{1},\left[x_{2}, \ldots, x_{k-1}\right]\right)=\left[x_{1}, \ldots, x_{k-1}\right]$. It
follows from the transversality of $f^{k}: V^{(k)}-\Delta_{\mathrm{V}}(k) \rightarrow W^{(k)}$ to $\delta_{\mathrm{W}}(k)$ that the above diagram is sub-cartesian, the excess bundle being zero on \tilde{M}_{k} and $f_{k-1}^{*}\left(N_{f}\right)$ on \tilde{M}_{k-1}. From 2.1 we deduce that $f_{k} *\left(\left[\tilde{M}_{k}\right]\right)$ and $g_{k^{*}}\left(\left[\tilde{N}_{k}\right]\right)$, where [] denotes the fundamental class, are fundamental classes for \bar{M}_{k} and \bar{N}_{k} respectively, for which $m_{k}=f_{k!}(1), n_{k}=g_{k!}(1)$. Applying 2.2 to the above diagram with $c=1$ we get:

$$
f^{*}\left(n_{k-1}\right)=f^{*}\left(g_{k-1!}(1)\right)=f_{k!}(1)+f_{k-1}\left(f_{k-1}^{*}\left(e\left(N_{f}\right)\right)\right)=m_{k}+e \cdot m_{k-1} .
$$

If r is even and N_{f} oriented, the induced orientation on $N_{f}^{(k)} \mid \hat{M}_{k}^{0}$ is invariant by the action of S_{k} and 2.1 (i) shows that $N_{f_{k} \cup f_{k-1}}$ and $N_{g_{k}}$, are oriented. The above calculations hold in integral cohomology. If W is not orientable, m_{k} and n_{k} can be interpreted as follows. Let θ_{W} denote the sheaf of orientations of W; then $f^{*}\left(\theta_{\mathrm{W}}\right)=\theta_{V}$ since N_{f} is oriented, and also $f_{k}^{*}\left(\theta_{V}\right)=\theta_{\bar{M}_{k}}, g_{k}^{*}\left(\theta_{\mathrm{W}}\right)=\theta_{\bar{N}_{k}}$. Letting [] denote the fundamental class with twisted coefficients, we have that $f_{k^{*}}\left(\left[M_{k}\right]\right)$ and $g_{k^{*}}\left(\left[N_{k}\right]\right)$ are fundamental classes for \bar{M}_{k} and \bar{N}_{k} respectively with twisted coefficients, whose Poincaré duals are $m_{k}=f_{k!}(1)$ and $n_{k}=g_{k!}(1)$.

In the terminology of [7], the above considerations amount roughly to say that the homological intersection of $f(V)$ and \bar{N}_{k-1} in W consists of the "far intersection" (that is \bar{M}_{k}) plus the "near intersection" (that is the set of zeroes of a section of the non-zero part of the excess bundle).

§3. Divisibility conditions

3.1 PROPOSITION. If the compact oriented manifold $V^{4 p r}$ immerses in $\mathbf{R}^{4 p r+2 r}, \bar{P}_{r}(V)^{\mathrm{p}}$ is divisible by $2 p+1$, where $\bar{P}_{r}(V)$ denotes the r-th Pontriagin class of the stable normal bundle of V.

Proof. Let $f: V^{4 \mathrm{pr}} \rightarrow \mathbf{R}^{4 \mathrm{pr}+2 r}$ be an immersion; after perturbing it slightly we can assume it to be regular. Then $M_{2 p+1}$ consists of isolated points whose number equals $m_{2 p+1}$ evaluated on [V]; since $e\left(N_{f}\right)^{2}=\bar{P}_{r}$, by $1.1 m_{2 p+1}=(-1)^{2 p+1} \cdot \bar{P}_{r}(V)$. If $x_{1}, \ldots, x_{2 p+1} \in V$ are distinct and $f\left(x_{1}\right)=\cdots=f\left(x_{2 p+1}\right)=y$, the orientation we have given to $N\left(f_{2 p+1}\right)$ shows that they are all counted with the same sign, say ε_{y}. Hence $(-1)^{2 p+1} \cdot \bar{P}_{r}(V)$ evaluated on $[V]$ equals $\left(\sum_{y \in N_{2 p+1}} \varepsilon_{y}\right) \cdot(2 p+1)$.

For example, if $V^{4 n}$ immerses in $\mathbf{R}^{4 n+2}, P_{1}^{n}$ is divisible by $2 n+1$. (The case $n=1$ was considered by J. H. White in [6]). If V^{12} immerses in $\mathbf{R}^{18}, \bar{P}_{3}=$ $P_{1}^{3}-2 P_{1} P_{2}+P_{3}$ is divisible by 3. If V^{16} immerses in $\mathbf{R}^{20},\left(P_{1}^{2}-P_{2}\right)^{2}$ is divisible by 5.

In fact 3.1 is probably a consequence of the integrality of the L-genus, taking inaccount that $\bar{P}_{i}=0$ for $i>r$.

BIBLIOGRAPHY

[1] Banchoff, T.; Triple points of projections of smoothly immersed surfaces. Proc. Amer. Math. Soc. 46 (1974), 402-406.
[2] Borel, A. et Haeflinger, A., La classe de cohomologie fondamentale d'un espace analytique. Bull. Soc. Math. de France 89 (1961), 461-513.
[3] Herbert, R. J., Multiple points of immersed manifolds. Thesis, University of Minnesota (1975?).
[4] Lashof, R. and Smale, S., Self-intersections of immersed manifolds. Journal of Math. and Mech. 8 (1959), 143-157.
[5] Quillen, D., Elementary proofs of some results of cobordism theory using Steenrod operations. Advances in Math. 7 (1971), 29-56.
[6] White, J. H., Twist invariants and the Pontriagin numbers of immersed manifolds. Proc. of Symp. in pure and applied math., Vol. XXVII, part 1 (1975), 429-437.
[7] Whitney, H., On the topology of differentiable manifolds. In Lectures in Topology (the University of Michigan Conference of 1940), Univ. of Michigan Press, 1941.

Received May 6, 1980

