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Smooth solutions of the heat and wave équations

By Stephen Smale

Section 1

The motivation for this work was to try to give proofs for the existence of C°°

solutions of the heat and wave équations on bounded domains by Fourier
methods. I wanted to show that the Fourier séries (Le., eigenfunction expansion)
of solutions would converge not just in L2, but smoothly to smooth solutions. In
contrast to more abstract methods, eigenfunction methods bring the existence

theory closer to the practice of physics, and also to ordinary difïerential équations
and numerical methods as well.

In fact I found that by the addition of an extra term generated by the
boundary of the domain, one could obtain this smooth convergence. For this
proof one needs no significant estimâtes beyond those needed for the elliptic
theory. And in gênerai, our proof below gives sharp results by simple conceptual
arguments.

The difficulty with Fourier expansions can be seen in the problem: (du/dt) —

(d2u/dx2) f satisfying u(0, je) v(x), 1*0,0)= u(f, l) 0. Hère the data
/:K+x[0, l]-+R and u:[0, 1]->jR are given, and u :R+x[0, l]-> R is to be
found. If /(t, Jc) Xnez+ an(0 snl n^x is a Fourier expansion which converges in
C2[0,1], then f"(t, 0) f(t, 1) 0. This is a spécial condition on /.

We state now our problem in gênerai for the heat équation. Let O be a closed
bounded set of Rn with smooth (Le., C°°) boundary dû and let K+ [0,oo). Let
L= -A, A the usual Laplacian, or more generally any self-adjoint real elliptic
(smooth) operator on C°°(f2) with no eigenvalue equal to 0 (see Section 2).
Suppose the following C°° data are given: /:JR+xi3—» JR, initial condition
m0 :0 -> R and Dirichlet boundary data g : K+ x n -> R with g(0, x) 0. We seek

I would hke to acknowledge partial support for this work from the NSF (No MCS77-17907), and
hospitahty from MIT, IHES (Pans) and the University of Geneva
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a solution, a C°° function u:R+xO-*R such that

— + Lu=f on K+xf2,
dt

w(0, x) mo(x), ail xg!1 and (1)

m(*, x) g(f, x) ail x€dH

We may incorporate the data into /. More precisely let v - u - u0 - g and
h /- (dg/df)-Lg-Lu0. The main problem becomes: Find C*v :R+xQ-> R
such that (dv/dt) + Lv h, v(0, x) 0, x e fi and v(t, x) 0, x € dû. Thus we may
take uo 0, g 0 in (1) and ask:

Given / : K+ x fî -* JR, C°°, when is there a

au
C°° function u : R+ x fî -* JR such that — + Lu f (2)

dt

on K+x/2, u(r, x) 0 if f 0 or xedffl

For the answer define a séquence of polynomials in 2 variables by:

Pk(L,T)=t(-lYLk-lT for fc 0,1,2,....
i O

Thus

P0=l, Pt L-T, P2 L2-LT+T2, etc.

Main theorem

A necessary and sufïicient condition for the solution of (2) is that
Pk(L, T)f]xl%n 0> a11 fc where T=(d/dt). Similarly, for the wave équation. A
NASC for the existence of a C°° function u : R x a -* K satisfying (d2u/dt2) + Lu

f on R x fî with u(0, x) (d/dt)u(0, x) 0 ail x and w(f, x) 0, ail x € d!7 is that

T)f t=0=0 and Fk(L,T)f t=0=0 for ail k 0,l,...

where T (d2/dt2). Hère f dénotes
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The condition of / m this theorem îs a kmd of compatibility condition which

can be translated to non-trivial initial data via the previously defined function h

While the necessity of the condition cornes out of the proof, one can test directly
for the necessity as follows Suppose u îs a solution, given / as m the first part of
the main theorem Then Pk(L, T)(L + T)u Pk(L, T)f so

(Lk+1±Tk+1)u Pk(L,T)f (3)

But by the boundary conditions, if xedO, then Tk+lu{t, x) 0 ail t Similarly if
t 0, Lk+1u(t,x) 0 ail x Thus if both f 0 and xedQ, the left hand side of (3)
vanishes and so does Pk(L, T)f The same argument works for the second part
notmg first that (T+L)uf f Thus only the sufficiency has to be proved

One can reasonably ask to what extent îs our main theorem a new resuit m

partial differential équations (apart from the methodology introduced hère)9 I
hâve not seen ît exphcitly in the hterature and the mathematicians m partial
differential équations Fve talked to were unaware of ît However, ît overlaps and
îs close to, e g the work of Solonnikov in [5] and Rauch-Massey [9] On the
other hand Solonnikov doesn't discuss the wave équation and has a différent
generahzation of the classic heat équation so that his compatibility conditions
don't corne out so neatly, they are only given by a récurrence relation

Rauch-Massey treat only the hyperbohc case, first order hyperbohc Systems

exphcitly, and again thèse conditions are given by a récurrence relation Also they
suppose t ^ 0 m contrast to our treatment (in the hyperbohc case) where RxO
has no corners They state that their methods can be apphed to hyperbohc
équations of higher order than one

In texts where heat and wave équations on bounded domains are treated, e g
Fnedman [2], [3], Lions [8], Trêves [10], the results presented are not so sharp
and the proofs seem more comphcated Trêves does use eigenfunction expansions,
but only to obtain weaker solutions

Also some of the PDE hterature îs not very clear as to what are natural initial
value problems for the heat and wave équation on bounded domains For
example, m the well-known paper of Lax and Milgram [7], p 182, ît îs stated "if
the initial function Uo îs sufficiently differentiable, u(t) approaches u0 as t tends to
zéro not only in the L2 sensé but pomtwise " But later, p 184, " if u0 is

sufficiently smooth, î e belongs to the domain of Am " The domain of Am is
basically one of our H* And u0 can be even O> and not in H*

Section 2 is devoted to the elhptic theory and section 3 gives the proof of the
main theorem Extensions and generahzations of the main theorem are discussed
in section 4



4 STEPHEN SMALE

Finally I wish to acknowledge brief but useful discussions with Vie Guillemin,
Dick Palais and Bob Seeley among others.

Section 2

Our methods dépend heavily on the Sobolev spaces HS(O) Hs, s

0,1, 2,... With f2<= Rn as in section 1, recall that Hs consists of ail real valued
functions on O with (generalized) derivatives up through order s in L2(Q). A
complète norm on Hs is given by

Mlr f

where a is a multi-index, a (a^ an), at is a non-negative integer, £a, |a|,
and Dau (d^/dx^ (dan/dxn). The norm is induced by a inner product and

H° coincides with L2{Û),
The Sobolev imbedding theorem asserts that Hs+k c Cs(f2) if k > n/2 (where

n dim û) and the inclusion is continuous for ail s ^ 0. Hère CS(Q) is the Banach

space of Cs functions on îî, natural norm. See e.g. [3] or [10] for this and other
background on Sobolev spaces. The Rellich theorem states that the inclusion
Hs -*Hs~l is compact.

Let Hj be the closure of C^ in H1 where C£ is the subset of C°{O) of
functions which are zéro on dQ.

Let J: Hm -? H1 be the natural inclusion and HmHHl J~l(Hl). Since Hj is

a closed linear subspace of H1, and J a continuous linear map, HmC\Hl is a

closed linear subspace of Hm. This space Hm H Hj is the set of ail functions in Hm
which are essentially zéro on dfï. It is a natural space for the Dirichlet boundary
conditions for second order elliptic operators that we will consider, with m

independent of the order of the operator or the dimension of il.
Thèse elliptic operators are linear maps L : C°°(/2) —> C°°(f2) of the form

(Lu)(x)= Z aa(x)Dau(x)

where a is a multi-index, k is the order and aa : Cl —> R are C°° functions (ail
functions are real valued hère). We will assume k 2, for our notation. Our
standing hypothèses on L are

L is elliptic. (1)
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For each xeO the polynomial £H=k aa(x)Çaï0 ail £eJRn, if Ç^O, where
fa - tai £an
Ç — Çl ' • • Sn •

L is self-adjoint. (2)

Le., (Lu, u) (u, Lu) for ail u,veC£ where (u,v) dénotes the L2 inner
product.

L:C%-* C°°(Q) is injective. (no "eigenvaiue" is zéro) (3)

Condition (3) just make things go more simply. If L satisfies (1) and (2) it can
be "translated" to satisfy (3).

As we remarked above, we use second order notation for L throughout. This
cornes into the boundary conditions in particular. But the proofs go over im-
mediately to arbitrary order. Thus we suppose L is second order and so

(Lu)(x)= I a,,(x)-^-+ £ bk(x)— + c(x)u(x)
i«i,/*sn aXlôXJ k==1 axk

where (ai;(x)) is a négative definite matrix for each x, négative definite rather than
positive definite by our convention.

The map L : Q -> C°(O) extends naturally to L : Hm H Hj -+ Hm~2.

Fundamental theorem of elliptic theory

For each m 2, 3,... L : Hm flHj-^ Hm 2 is an isomorphism. That is, L has a
bounded linear (2-sided) inverse G : Hm2 -» Hm H Hj.

This could be considered as a regularity theorem, including boundary regular-
ity. For a proof see e.g. [3].

The maps, L, G and inclusions J described above make sensé with various
domains; sometimes will use them without specifying this domain if the context
makes it clear.

A second theorem from the elliptic theory is that providing L with eigenfunc-
tions.

Eigenfunction theorem

Suppose given an elliptic self-adjoint opération L : C^°-> C°° as above. Then
there exist a non-decreasing séquence of real numbers \u À2,... called eigenvalues,
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with À, —> oo as i —> <», and a séquence of éléments fa o/ C^ cai/ed eigenfunctions so

that Lfa À,^. Furthermore the fa constitute a Hilbert basis for L2{O) H°.

We sketch how the proof of the eigenfunction theorem follows from the
Fundamental theorem. Consider

Then Go GJ is compact using Rellich and self-adjoint relative to a Hilbert
structure on H2 H Hj induced from that on H° via L. Apply the spectral theorem
for compact self-adjoint operators (the simplest spectral theorem, see e.g. [6]) to
Go to obtain reai jul,, fa e H2 n Ho with Go^ jul,^. Take kt 1/jll, indexed so that
the À, are non-decreasing, and fa A,^. The ifo are a Hilbert basis for H2 H Hj
and Lif/t Ài^, fa a basis for H°. Finally, the repeated use of the Fundamental
theorem applied to Lfa À,<k implies that fa e Hm H Hq every m and thus faeO°
by the Sobolev theorem.

Define H£, m 0,1,... as the closure of the subspace of Hm spanned by the

eigenfunctions fa. For example it follows from the above that Hj H°, Hi Hq,
H% H2 fl H£ and that H% c Hm H Ho for m ^ 1. But H* is a proper subspace of
H3HHq since Hl is a proper subspace of H1 and L:H3nHl-+ H1 is an

isomorphism. In fact Hj L~1(Hj). Since in gênerai H£ is not ail of Hm (IHj,
the simple expansion by eigenfunctions is not sufficient to give smooth solutions
for the heat and wave équation.

It follows from the eigenfunction theorem that (the restriction) L : H%-> H%~2
is an isomorphism with inverse G:H%~2-> H%, m ^=2. Actually one may define
HJj? without the use of eigenfunctions by

Hlm+2 Gm(Hl) Lm(Hl), Hlm+1 Gm(Hi), m ^ 0.

Consider the composition

[G0:HmnH0-»HmnH0,
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PROPOSITION. The image of Go is contained in H% for s ^ [m -1/2], the

largest integer in (m - 1/2). This is false for s<[m- 1/2].

The proposition is a kind of spectral theorem for the operator Go : Hm D Hl0 —>

HmHHi. It implies for example if m>2, there is no Hilbert structure on
Hm fl Ho so that Go is self-adjoint. On the other hand modulo H*, Go is

nilpotent, and on Jf*, Go has the spectral theory defîned by Go<£, (1/Àl)0l.
The proof of the proposition can perhaps best be seen by studying the

following diagram for m even (m odd goes similarly):

H6

U

Hère F-T^n^) with L:H6nHl} >H4

H4nH/} is of form G0=GJ=L~lJ. So im(G0)c: H
H6PiH0 is given by GQ=GJGJ G2J2 and
tinue in the same way to finish the proof.

etc. Now G0:
Similarly G0:

c im(G2H|) or Con¬

Section 3

The goal of this section is to prove the main theorem of section 1. We do that
first for the case that the data can be expanded in a Fourier séries. More precisely:

PROPOSITION. Suppose t -> wt, t ^0 is a C°° curve in H% and v e H%. Let l
satisfy m-2/^2, />0. Then there is a unique C1 curve t-^>vt in H%21 such that
J\(àvt/dt) + Lvt Jjwt with v0 Jv.

Hère ^-.HZ'21-* H%-2(1+1) and J:H%-»H%
may relax the C°° condition on t —» wt as the proof shows.

H%-21 are ail inclusion maps. One
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COROLLARY. Under the same hypothèses, there exists a unique Cl curve
t -* vt in H$2Î such that v0 Jv and (I+G0T)vt Jwt.

Hère I : H*21 -> H%~21 is the identity and T=d/dt. For the corollary simply
apply G to the équation of the proposition.

The main part of the proposition is contained in the following lemma.

LEMMA 1 (of Fourier type). Under the hypothèses of the proposition, there is

a unique C1 curve vt in H%~2 such that uo /1i) and

Jt — vt + Lvt Jt wt, (1)
dt

where J^.HZ-^H*2 is the inclusion.

Postponing momentarily the proof of the lemma, we see how the proposition
is a conséquence via a simple induction. Say vt is a Ck curve in H%~2k satisfying
(1), J1 the appropriate inclusion. Apply Jo:H%~2k —? H%~2k~2 to both sides to
obtain that vt is ck+l in H$2k2.

For the proof of the Lemma, first examine just what convergence in H%

means. Say m 2k (we only use thèse results for m even; and for m odd, the

proofs are similar). Then since Lk :H%^> H%. is an isomorphism, £7=i ci<k

converges in H% if and only if ^.À^, converges in H% L2 or equivalently

Now expand the data of the lemma in a Fourier séries, Le., we may write
£ Zr=i ^«k and wt =Zr=i 0,(0^1 in H£. Hence the cx are constants and the at(t)
are real valued functions of t. In fact, at(t) is C°° since it is the projection of a C°°

function. For ut £r=i &i(0<fo> the équation of the lemma is

or for each i,

The unique solution is (see practically any book on ordinary difïerential équations)

at(s)eK
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We claim that the curve ut defined above in terms of the bt(t) converges in H£
and satisfies the properties in the lemma.

Since for each f^O, e~A'^l except for a finite number of i, and £<:,<£,

converges in H£, it follows that £ cte~K^% also converges in H% for each t. The

continuity in t of this sum is an easy check which we leave to the reader.
Next we show that £di(0<£« converges to a continuous function of t in H%

where m 2fc and

dM= f a,(s)eA-(s-t) ds.

First estimate by Cauchy's inequality,

Thus

K^l/2 \,»l/2

where

K= max |Lkw,|io

Thus X d,(f)<b converges in H^ and so does wt =X fc,(0<^r The continuity in f
is proved similarly. The rest of the proof of lemma 1 follows from the définition of
bt(t) obtaining ut C1 in t in H£~2.

Now consider the gênerai problem of section 1. Thus C0O/:K+x(Q —» R is
given and the problem is to find C°°u :R+xQ -» R satisfying zéro boundary
conditions such that

/ on jR+xf2 (2)

where T d/dt. Let /,(*) =/(f,x); then it is easily seen that the map R+ -> Hk
given by t-+ft is a C°° curve in Hk any k. Let J:Hk+2HHi-^Hk be the
inclusion and consider the following version of (2).

ut a curve in Hk+2HHj, uo 0. *

(3)
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Let m k + 2 and apply G : Hk -? Hm H Hl to both sides of (3) to obtain

(I+TG0)ut gt, uteHmnHl0, uo 0 (4)

where the datum gt Gft is now a curve in Hm H Hq.
This form suggests trying to invert I+TG0 or to look at:

)2 +(-l)s(G0T)s]gt + vt (5a)

(1 + TG0)vt (- G0T)s+1gt w, (5b)

For s large enough wt e H* by the proposition of section 1. We may apply the
above Corollary to solve (5b) for ut, and with an appropriate boundary condition
at t 0, put this in (5a) to obtain our desired solution ut.

Motivated by the above, we proceed more formally.
Set m 2k 41,1 some positive integer. The data / define a curve t-*ft in

Hm~2. Let gt Gft be the corresponding curve in HmnHl,C° in t. Define

yt [I-(G0T)+ - • • +(-G0T)k~2]gf, which is a C°° curve in HmC\H10 for 0^t<

LEMMA 2.

Proof. Dénote by Cq(f) the condition of the theorem Pq(L, T)f\t==oe Q,
q 0,1,...,. We will show that if Cq(f) for q ^ k - 2, then J^-o (- TG0)lgt |f,0 e

H^. Let J:H] -+ HJ~2 be the inclusion for various / and suppose ft is the curve in
Hm~2 defined by the inclusion C°°-^Hm~2. Define Rq =1UO (~ TJ)lLq~lft |t=0

and note jRq (-TJ)qft l^o + ^-Rq-i- This latter could be used as an inductive
définition of Rq starting with R_! 0. Rq lies a priori in Hm~2(q+1), but Cq(f)
implies that Rq lies in Hm~2(q+1)nHj. Now suppose Cq(f) is true for q^k-2.
Then JRk_2 € H2 H Hj Hj, so GklRk.2eH^. By the inductive définition of Rq

above, the L used in the définition of Rk-2 hâve domain some HsDHq so

GL identity. Thus Gk-lRk^2 Zk0-2(-TGo)lgt\t==oeH%.
The curve wt (-G0T)k~1gt lies in H% by the proposition of section 2. Let

J:HmnHl and J:H%-+H% dénote the inclusion. Apply the Corollary of the

proposition in this section to obtain vt in H% of class Cl in f such that
(1+ G0T)t;f Jwf, i;0 — Jjo- Now define wt in Hk Ci Hq by wt Jyt 4- uf ; so uf is C'
in r, Mo /7o + ^o 0 and (I+G0T)wt Jgt in HkDHl.

If différent i, say /x, /2) above are chosen, the corresponding u defined by the
above process agrée in Hk HHl where k 2l, 1 min (lu l2) using the uniqueness
in the Corollary. Thus we obtain a ut, which lies in each Hk HHj. Thus by the
Sobolev theorem, ut is C°° and we hâve proved the first half of the main theorem.
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For the second part, the above proof, with a couple of modifications which we

state, is applicable.
The first modification is in lemma 1 and its conséquences. One obtains a

différent ordinary diflferential équation, namely

with 6,(0) ^ b[(0) dt

where ut £ fr,(0<fc> is to be found and £ c,<k Wo> I d,<k "o> Z a.(04>, =/r are
prescribed. This difïerential équation has as its unique solution, if À, > 0

inrVA, ff sin(f-2K/A,~^+ o,(s)— /v ', all t.
VA, Jo VAi

The finite number of équations with À,<0 are handled as easily. Now one
proceeds as before, with similar estimâtes to get convergence of £ b,(0<^« uv

The other modification relates to Lemma 2; but hère just apply that construction

of / and /' as well.

Section 4

This section is a séries of remarks on extensions and relations to other
problems of the above.

Section 3 of this paper could be considered as a theory of séparation of
variables for boundary value problems in PDE. It works well for problems which
are the product of understood problems. Thus the évolution problems above are
the product of space and time problems. We give more examples to illustrate this
point.

Consider Au f on the rectangle £l Clax(lh where fia=f0, a], 13b=[0, b].
Given C°°/:f2->JR, find a C°° solution u:ll-»K such that w 0 on dÙ. Write
(t,x)enaxQb and Au (d2u/dt2) + (d2u/dx2)=Tu-Lu and proceed as before to
obtain NASC on / for the existence of a solution u. The Fourier lemma and
proposition at the beginning of section 3 must be replaced by a simple spectral
analysis of T (similar to that of L).

A second example is the wave équation on the same domain, (T+L)u f on
•Q with Dirichlet boundary conditions u 0 on dQ(\). This problem has been
considered By Fritz John [4], V. Arnold [1] and others. Now the above analysis
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applies. Besides the compatibility condition on /, one needs m gênerai that the
ratio a/b be not rational (or not even close to rational?).

Finally we list some ways in which the main theorem might be extended.
(A) If condition (3) on the elliptic operator is dropped, i.e., some eigenvalues

are allowed to be zéro, the methods extend easily to yield similar results.
(B) If L is not self-adjoint, one could no doubt replace the Fourier lemma of

section 3 by a différent existence proof, the rest being the same as before.
(C) The extension to complex coefficients or Systems should not require

substantial changes.
(D) The operator T in the theorem of section 1 could be replaced by any

ordinary linear differential operator with leading coefficient 1. Then the results
would hâve to be modifîed at the boundary condition t 0. Schrôdinger's équation

on bounded spatial domains thus can be included.
(E) fl could be a compact mamfold with boundary
(F) Perhaps one could obtain C solutions to Navier-Stokes on compact

Q<^Rn, dil smooth, for small time via eigenfunction expansions this way.
(G) In the main theorem of section 1, L is time independent. I am not sure

how the extension of this resuit to the case of time dépendent L should go.
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