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Curvature, diameter and Bettî numbers

MlCHAEL GrOMOV

We give an upper bound for the Betti numbers of a compact Riemannian
manifold in terms of its diameter and the lower bound of the sectional curvatures.
This estimate in particular shows that most manifolds admit no metrics of
non-negative sectional curvature.

§0. Introduction

0.1. Sectional curvature

Let V dénote a compact (without boundary) connected Riemannian manifold
of dimension n. We dénote by K the sectional curvature of V and we set
inf K infT K(t) where t runs over ail tangent 2-planes in V. One calls V a
manifold of non-négative curvature H inf K^O. This condition has the following
géométrie meaning.

An n-dimensional Riemannian manifold has non-negative curvature iff for
each point veV there is a positive number e and a map f of the n-dimensional
Euclidean e-ball B into V with the following two properties:

(a) / sends B diffeomorphicly onto the e-ball in V with the center v.
(b) The map f is distance non-increasing, that is for any two points x and y in B

one has.

dist(/(x),/(y))^dist(x,y),

where the first "dis*" dénotes the Riemannian distance in V and the second one is
the Euclidean distance in B c Rn.

Such a map / when it exists, is unique and it coïncides with the so called
exponential map (see [2], [4], [17]). In particular, / sends the center of B to v.

Observe, that the more gênerai condition inf K^ k, k^(~°°, +00), can be also

interpreted geometrically. One should only use an e-ball in the space of constant
curvature fe instead of the Euclidean bail B. For fc>0 one takes the sphère of
radius fc"1/2 and for fc<0 one uses the hyperbolic space of curvature fe.

179



180 MICHAEL GROMOV

Examples. Most known manifolds of non-negative curvature hâve the group
theoretic origin. For instance, if V admits a smooth transitive action of a compact
Lie group, then there is a Riemannian metric on V of non-negative curvature (see

[4]). For each dimension ^3 there are infinitely many homotopy types of such
manifolds. Among other examples we mention only an exotic 7-sphere with a

metric of non-negative curvature (see [8]) and the connected sum of two copies of
the complex projective space (see [3]).

Counterexamples. The first topological obstruction for the existence of a

metric of non-negative curvature on a compact manifold V was found by Bochner
(see [1]).

Let V be a compact n-dimensional Riemannian manifold of non-negative
curvature. Then DimH1(V,R)^n and the equality takes place only if V is flat.

In fact, this theorem of Bochner remains true for a manifold V with non-
negative Ricci curvature. Furthermore, the universal covering of every manifold of
non-negative curvature metrically splits into the product of Rm and a compact
simply connected manifold Vn~m (see [4], [6]).

This theorem reduces the problem to the case when the fundamental group
tt1(V) is finite.

There is another gênerai obstruction for the existence of metrics of non-
negative curvature (see [18]) and, in fact, this obstruction already appears for the
manifolds with positive scalar curvature. Without going into détails we mention
only a few facts.

There are exotic 9-spheres that carry no metrics of positive scalar curvature (see

[16]). In particular they admit no metrics of non-negative sectional curvature.
The product of an arbitrary manifold by the sphère Sm, m ^2, admits a metric

of positive scalar curvature. Furthermore, connected sums of manifolds of positive
scalar curvature admit metrics with positive scalar curvature (see [13], [19]).

We shall see below that most of thèse manifolds admit no metrics with
non-negative sectional curvature.

Non compact manifolds. Every open manifold admits a noncomplete metric
with positive sectional curvature (see [9]). On the other hand, when such a V is

complète it must be homeomorphic to Rn (see [7]). When the curvature of a

complète manifold V is non-negative, then V is homeomorphic to a vector bundle

over a compact manifold of non-negative curvature (see [5]). This theorem brings
us back to the compact case.

0.2. Estimâtes for Betti numbers

Fix a field F and dénote by bx fc,(V; F) the dimension over F of the

homology group Ht(V;F).
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O.2.A. There exists a constant % ^(n), such that every compact connectée
n-dimensional Riemannian manifold V of non-negative sectional curvature
satisfies

COROLLARY. The connectée sums of sufficiently many copies of the products
of sphères Sp x Sn~p, 0 < p < n, or of the complex projective spaces, admit no metrics

of non-negative curvature.

Remarks. The rc-dimensional torus is, probably, topologically the largest
manifold of non-negative curvature, but our estimate for ^(n) is very far from
2n=IS&l(Tn)- Even for 6X(V,ZP) we can not get the expected estimate

Let us replace now the condition inf K^O by inf K^-k2, k 5*0, and dénote
by D the diameter of V.

0.2B. There exists a constant <€ ^(n) such that every compact connected manifold

V satisfies

Remarks
(a) When k 0 this theorem reduces to O.2.A.
(b) The minimal number of gênerators of the fundamental group tt^V) is also

bounded from above by <€1+ltD (see [10]).
(c) The connected sum of k copies of the product Sp x Sn"p can be equipped

with a metric such that 2fc + 2 S bx ^(1.01)1+kD.
(d) The theorem 0.2B can be, probably, generalized to the manifolds with

the Ricci curvature bounded from below, that is with inft (Rie (t, t) ^ - ô2, where t

runs over ail unité tangent vectors in V. But ail known results on estimating
topology of V by ÔD are tied up with the non torsion part of the fundamental
group. For example, one can show that b1(V;R)^n-l + c€8D (this generalizes
Bochner's theorem) but it is unknown whether this estimate holds for bi(V, Z2),
even when V has positive Ricci curvature. We shall discuss the TTj-related
estimâtes elsewhere (see also [11], [12]).

The proof of the theorem 0.2.A and 0.2.B is given in §l-§3. The curvature
assumption essentially appears in this proof only once, in §1 for an analysis of the
critical points of the Riemannian distance function as in [15]. This analysis is
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based on Toponogov's comparison theorem (see §1). Although the curvature
assumption is also présent for estimating the number of small balls needed for a

covering of a larger bail (compare to [20]), we could equally use for this purpose
the Ricci curvature instead of the sectional curvature.

Acknowledgements. I owe my gratitude to Karsten Grove for several important

critical remarks.

§1. Distance fonction

1.1. Critical points

Take a complète Riemannian manifold and a point x in V. Dénote by
distx:V-»R+ the distance function distx(y) dist(x, y), yeV. This function is

not smooth but one can develop a complète Morse theory for this kind of a

function. We shall need hère only a few simple facts.

A point y € V, y ^ x, is called critical for the function distx, or simply for x, if
for every non-zero tangent vector teTy(V) there is a minimizing géodésie

segment y between x and y, such that the angle between t and 7 at y is at most
ir/2. Recall, that a segment y between x and y is called minimizing if

length(y) dist(x, y).

If a point y0 g V is not critical for x, then there is a neighbourhood U of y0 and a

smooth vector field in U, that is f(y), y € U, such that for every point y € 17 the
angle between the vector f(y)€Ty(V) and an arbitrary minimizing segment
between x and y is an acute angle. It follows that the function distx is strictly
decreasing along each intégral curve of the field f(y). This leads to the following
fact that is a slight modification of a resuit of Grove-Shiohama [15].

ISOTOPY LEMMA. Take two concentric balls Bt and B2^Bt in V centered

at x € V and suppose that the closed annulus A between thèse balls, that is

A CI(B1\B2), contains no critical points of the function distx. Then there exists

an isotopy of V which sends Bx into B2 and which is fixed outside any given
neighbourhood of Bt.

Proof With the local fields f(y) above one constructs a field f on V
which has its support in a small neighborhood of A and such that the function
dis^ strictly decreases along the intégral curves of I. This field perforais the
required isotopy.
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1.2. Comparison theorems

Take three points x, yx and y2 in V and take some minimizing segments yx
and 72 joining x with yx and with y2 correspondingly. Dénote by a the angle
between 7! and y2 at x. Let lt dénote length (yx) dist (x, yx) and let l2 dénote
length (72) dist(x, y2).

Toponogov's theorem (see [4], [17]). If V is a complète manifold of non-
négative curvature then

dist (yi, y2) ^ V/? + Il-2ï1/2cosa.

Notice that for the Euclidean space Rn this inequality becomes an equality. We
shall later use Topagonov's inequality only in the following two cases.

1.2.A. Let lt^l2 and let a^<rr/2. Then

I.2.B. Let again h**l2 and suppose that a^g — tt/18. Then

dist(yi,

Toponogov's inequality generalizes to ail complète manifolds (see [4], [17]). In
particular one has.

I.2.C. If inf K*z -k2, k^O, and if the product Ixk is sufficiently small, for
example, if ^k^IO"10, then the inequalities 1.2.A and 1.2.B hold true.

1.3. An inequality for a critical point

Take three points x, y and z in V and suppose that y is a critical point for x.

Suppose further that dist (z, x) ^ 2 dist (x, y).
If V has non-négative curvature, then

dist (z, x)^dist (z, y)+| dist (x, y). (*)

Proof. Take a minimizing segment yx between z and y. According to the
définition of the critical point there is a minimizing segment 72 between x and y
such that the angle between yx and 72 at y is at most ir/2. The inequality
dist(z, x)^2dist(x, y) implies that length (71)^ length (72) and so we can apply
I.2.A.
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Notice, that by the remark 1.2.C the inequality (*) holds for a manifold V with
inf K>-k2 if K(dist(z,x))^l(T10.

1.4. An inequality for two critical points

Take a point xeV and two critical points yx and y2 for the distance function
distx. Take some minimizing segments yx and y2 joining x with yx and y2

correspondingly and dénote by a the angle between y1 and y2 at x.

If inf k ^ 0 and if h dist (x, y0 ^ 2l2 2 dist (x, y2), tften a > è

Proo/. If a^i then, by 1.2.B, we hâve

dist(y1? y2)^'i-!l2-

Now we use the inequality (*) above with yx in place of z and with y2 in place of
y. We get

lt dist (y1? x) «sdist (yl5 y2)+^2, h dist (x, y2).

It follows that l2 - 0, that is x y2, but this is not allowed by the définition of a

critical point.

1.5. Non compact manifolds

Let us start with an obvious fact.

I.5.A. Let tl9... ,tk be non zéro vectors in Rn, such that the angle between any
two of thèse vectors is at least g. Then the number k of thèse vectors does not exceed

a universal constant, constn<(100)n.

Consider now a complète n-dimensional manifold V of non-negative sectional

curvature and the distance function at a point x in V.

AU critical points of the function distx are contained in a compact bail around x.

Indeed, we could find otherwise some critical points yl9..., yk such that
k > (100)n and dist (x, yt) ^ 2 dist (x, y,) for ail 1 ^ i <j'^ k. Take some minimizing
segments yl9..., yk between x and yl9..., yk and dénote by tl9..., tk their
tangent vectors at x. According to 1.5.A some of thèse angles must be less than g,

but this contradicts to 1.4.

As a corollary we get a weak version of a theorem of Cheeger-Gromoll (see

[4], [5]).
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The manifold V has "finite topological type" that is V is homeomorphic to the

interior of a compact manifold with boundary.

Proof. Use the isotopy lemma in 1.1.

Our argument generalizes to a class of manifolds whose curvatures are "not
very négative at infinity." Since this is a digression we leave the proof of the

following theorem to the reader.
Take a point x in a complète manifold V and dénote by K.(R) the infinimum

of the sectional curvature of V outside the K-ball centered at x.

If R2K_(R) -> 0 as R -> °°, then the fonction distx : V-+R+ fias ifs ail critical
points contained in a compact bail. In particular V is homeomorphic to the interior

of a compact manifold V with boundary.
It will become clear later that the boundary Vo of V is rather spécial. It must

satisfy the inequality.

§2. Coverings by balls

2.1. Volumes of balls

Let V be a complète n-dimensional manifold, such that inf K^-k2. Dénote
by b(R) the volume of a radius R bail in the hyperbolic space with curvature
~k2. Take two concentric balls Bx and B2<:1B1 in V of radii Rx and jR2- The
volumes of thèse balls are related as follows.

Vol (B1)

Vol (B2)^b(R2)'

See [2] for the proof. Notice that (*) also holds for inft Ric(t, t)^ -((n-1)*)2
(see [2]). When V has non-negative curvature the inequality (*) says that

If the balls are not supposed to be concentric the inequality (*) takes the

following form

(R + 2d) (**}
b(R2)



186 MICHAEL GROMOV

where d dénotes the distance between the centers of Bt and B2. We shall use only
the following two crude corrollaries of (**).

2.1.A. If the halls Bx and B2 of the radii Rx and R2^RX hâve a non-empty
intersection then the inequality

/***)

holds in the following two cases

(a) Inf K>0,
(b) Inf (K)*z—k2 and the product kRx is sufficiently small, for example,

2.I.B. Let V be a compact manifold of diameter D and let Inf K —k2. Then
each e bail B in V satisfies the following inequality.

2.2. Minimal coverings

Take some sets {Bt}l=1> >N in V and dénote first by I the set of ail multiindices
(i1<i2<-• •<il), î l, ...,N. Dénote by 1+ the subset of I consisting of ail
multiindices (il9..., i*i), such that the intersection f][ Bh, / 1,..., l, is not
empty. The number of the éléments in I+ is called the index of the System {BJ.
Clearly, the index takes the values between N and 2N.

Take a bail B in V of radius JR and cover it by some e-balls, 0<e^R, as

follows. Take the maximal System of points xl in B such that the distance
between any two of them is greater than e/2. In this case the e-balls Rt around x,

cover B. We call such a System {BJ a minimal e-covering of B. We want to
estimate from above the index of such a covering in terms of the ratio e~xJR and

InfK
Hère and in future for a bail B of radius r we dénote by ÀB, À>0 the

concentric bail of radius Ar.

Let us return to our minimal e-covering {BJ, i 1,..., N. Observe that the
balls \B% are disjoint and they are ail contained in the bail 2B. Now we invoke
2.1.A and conclude.
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2.2.A. If Inf X^O, or more generally, if MK^-k2 and 2*dR^exp(-nn),
then the number N of the halls B, does not exceed const(n, e~1R)^(80e"1K)n.
Therefore the index of the covering does not exceed 2M, M (80s~1R)n.

This Lemma gives, in particular, a reasonable upper bound for the indices of
minimal covering of V for K^O, but in the gênerai case of inf K^—k2, K>0,
the following sharper estimate is needed.

2.2.B. Let V be as in 2.1.B and let {B,}, i 1,..., N, be a minimal e-covering
of V. Take a number À > 1 and let the product àck be suffkiently small, for
example, 4AeK<exp(-nn). Then the index of the concentric covering {ABJ does

not exceed

Proof. First, we conclude as above that N^80nDne~n exp(nKD). Now, if
some balls ÀBt intersect a fixed bail ÀB^, then the centers of thèse balls must be
contained in the bail 2ABlo and so, by 2.2.A, each bail is involved in no more than
2M intersections. Q.E.D.

2.3. Topological Lemma

Let V be an arbitrary complète Riemannian manifold of dimension n. Fix a

coefficient field F and define the content of a bail B in V as the rank of the
inclusion homomorphism

The number l plays no essential rôle hère, but ît is convenient for our further
constructions. Observe that the homology H^B ; F) may be not finitely gener-
ated but the content of B is finite just the same. Notice also that balls of
radii>diam V are equal to V and so

Take a bail B and cover the concentric bail |B by some open balls B,,
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i 1,..., N, ail of the same radius. Consider also the concentric coverings {AjB,},

j 0,l,...,n + l, A, 10*. Suppose that ail balls 5A,!*,, / 1, ...,n + l, i
1,..., N, are contained in B and let the contents of ail thèse balls be bounded by
a constant p, that is

Cont (SkjB^^p, j 0,..., n +1, i 1,..., N.

Dénote by J the index of the System {SAn+xB,}, i 1,..., N.
The content of B satisfies the following inequality

Proof. The ranks of the inclusion homomorphisms between ail non-empty
intersections of our balls,

n • • • n A,Blk) -> «*(Vi^ n • • • n AJ+1Blk),

are estimated in terms of contents by interpolating pairs of balls,

AA n • • • n A,Blk c= A^ c 5^,, c A,+1Bfl H • • • H AJ+1Blk.

Then Leray's spectral séquence applies. See Appendix for the détails.

2.4. Main covering lemmas

We return to the bail B of radius R as in 2.2 and we assume that inf K^O, or
more generally, that 2fcJR^exp(-nn), for -K2*sinf K.

2.4.A. Let for some number p >0, the content of each bail of radius r^0.011?
which intersects the bail \B is bounded from above by p. Then

Cont (B) ^ (n + l)pJ, for / 2M and M 8n 10n2+4n.

Remark. The numbers 0.01 and J play no rôle hère, but we shall need them
later on.

Proof. According to 2.2.A the bail \B can be covered by M balls Bx of radius
2 • 10"n~4lî and the topological lemma applies.

2.4.B. Let Vbe a compact manifold of diameter D and let inf K ** - k2. Let p
and e0 be positive numbers such that each e-ball, e ^ e0, fias content at most p, and
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such that e0K^exp(n"n). Then

n

Cont (V) £ bt(V; F)^(n + l)pJ, for J const Dneôn exp (ïikD),
o

where for const const (n) one can tafce 2M, M= 10n2+5n.

Proo/. Use a minimal e-covering of V for e 5 • 10~n~3e0 and apply 2.2.B
and 2.3.

§3. Proof of the theorems 0.2.A and 0.2B

3.1 Rank and Corank

A bail B of radius JR in a complète manifold V is called jQ-critical if there is a

point y g V such that it is critical for the center x of B and such that dist (x, y)
1OJR.

Now let V hâve non-negative curvature. Take an arbitrary set A and define its
corank, corank (A), as the maximal integer fc, such that there exist some ^-critical
balls Bl9..., Bk with the following two properties.

(1) The radii Rt of Bt satisfy the inequalities Rt ^3Kl+1, i 1,..., fc -1.
(2) The intersection Plï^i contains A.
There exists a positive integer fco^(100)n, n dim (V), such that for every set A

we hâve

corank (A) ^fc0.

Remark. This proposition bounds the number of "essential directions" in V
and the condition K ** 0 is crucial.

Proof. Let xl € V dénote the centers of the balls Biy i 1,..., k, and let y, be
the corresponding critical points for x, with dist (x,, yt) 10!*,. Take a point z in
A e Ç\\ Bx and join it by shortest segments 7, with each of the points y,.

If fc>(100)n, then there are two segments, yti and yl2, i2>h, such that the
angle between them at z is at most \ (see I.5.A.). Now we argue as in Section 1.4.
Set

h dist (z, yH) length (yH), l2 dist (z, yl2) length (7J,

rx dist (z, x,) ^ RH, r2 dist (z, xl2) ^ JRl2, / dist (yh, yj.
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The triangle inequality implies that

Since R^^ZR^, we conclude that lx>l2. Using 1.2.B, we get

Let d dénote the distance between x^ and ytl, d dist(xl2, yH). By the triangle
inequality we hâve

d h - r2 ^ 10Rtl -rx-r2^ SRlt ^ 24Rl2 ^20^ 2 dist U2, yl2),

and so we can apply the inequality (*) in 1.3 with ylx in place of z and with xl2 and

yl2 in place of x and y. We get d ^ l + 5 JRl2, and by the triangle inequality we hâve

(**)

The triangle inequality also implies that i2^10JRl2-rl2^9JRl2, and together with
(*) this yields l^l1-2£Rl2, but this contradicts to (**). Q.E.D.

Now, if we hâve a manifold V with inf K^-k2, we change the notion of the
corank by adding the condition 2jR1k^1(T10 and the inequality corank(A)^
fco^(100)n holds true. Now we set:

fc0 sup corank (A), and rank (A) fc0 - corank (A).
AcV

3.2. Inductive lemmas

Let Bbea bail in V of rank zéro. Then the content of this bail (see 3.2) is

equal to one. In fact, if we look at the distance function distx, where x is the
center of B, we shall see that it has no critical points in B; otherwise, for a

sufficiently small concentric bail eB, we would get a contradiction, corank (eJB)5*

corank (B) +1. The isotopy lemma (see 1.1) now shows that B is contractible and

so cont(B) 1.

Dénote by 38 (fe) the set of ail balls in V of rank ^k and let Pk dénote the

upper bound

sup cont(B).
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3.2.A. Let V be a complète n-dimensional manifold of non-negative curvature.
Then for each fc 0,1,2,..., the nwnber pk+1 satisfies the inequality pk+i^
(n +1)Jpk, where the constant J J(n) is the same as in 2.4.A.

Since fc«£fco^(100)n, this lemma shows that

and this implies theorem O.2.A. The proof of 3.2.A is given in the next section.
Notice that the lemma 3.2.A and its proof immediately extend to the gênerai

case of inf K^-k2<0 if one modifies the définition of the numbers pk by
replacing the set 38(fc) by the subset consisting of the balls of radius <e0 for
eo 2^~1 exp(-nn). In view of 2.4.B, this gênerai form of 3.2.A yields theorem
O.2.B.

3.3. Incompressible balls

Let V be a complète Riemannian manifold. A bail B in V of radius R >0 is

called compressible if there exists a bail B' in V of radius R'^R, such that Bf is

contained in B and such that there is an isotopy of V which is fixed outside B and
which sends the bail |B into \B\ It is clear that cont(B')^cont(B), and so we
conclude.

Each bail B contains an incompressible bail Bo such that cont(B0)^cont(B).
Now the inclusion B0<^B implies rank (B0)^rank (B), and lemma 3.2.A becomes

équivalent to the following more spécial lemma.

3.3.A Let Vbe as in 3.2.A, and let Bbe an incompressible radius R bail in V of
rank fc + 1, fc 0,1, Then

Proof. According to 2.4.A, we only hâve to show that each bail B, of radius
r <0.01R with the center at a point x in the bail |B, has rank at most fc. Look at
the distance function dist* and let us find an appropriate critical point of this
function. Take the concentric bail B' (R/2r)Ê of radius R/2. This bail is

contained in B but it contains the bail |B. Since by our hypothesis the bail B can not
be compressed to B\ we conclude, in view of the isotopy (see 1.1), that the
function dist* must hâve a critical point y such that
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Now, by the définition of rank, there are some ^-critical balls Bl9..., Bb
l ko — k, containing B and we take for Bl+1 the bail concentrée to B of radius

j$ dist (x, y). This bail contains B and its radius is at least ten times less than the
radius of the minimal of the balls Bl9..., Bx. So the conditions (1) and (2) in 3.1

are met and rank (B) <rank (B). Q.E.D.

Appendix: Leray spectral séquence

(1) Filtered and graded spaces. Recall, that a filtered vector space {FX},
i - 0,1,..., n 4-1, is defined as a decreasing séquence of subspaces

The associated graded space to a filtered space {FX} is the space

GrX=© Gr'X,
where

Gr'X FX/F+1X

A homomorphism / between two filtered spaces {FX} and {F1 Y} is, by définition, a

linear map / : X -» Y such that it sends each subspace FX to FY, i 0,..., n + 1.

Every such / gives rise to a graded homomorphism Gr/, that is a linear map
Gr X-» Gr Y which sends each Grl X to Grl Y. It is clear that

rank (Gr/)^ rank (/),

but the equality does not in gênerai hold.
Now, consider a séquence of filtered spaces {FX,}, i, j 0,1,..., n +1, and a

séquence of homorphisms

Dénote by /:{FX0}->{FXn+1} the composition, / /n°/n-1- • •%.

LEMMA. The rank of the homomorphism f satisfies the following inequality
n

rank (/) ^ S rank (Gr /j)
j-0
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Proof. A standard induction reduces the lemma to the case of n 1. Now, we
hâve the following commutative diagram where the horizontal Unes are exact

JGr°/o

FlX2-+X2-*Gr°X2.

It is clear that

rank (f, °/0) ^ rank (Gr° /0) + rank (F1/^

(2) Coverings and spectral séquences. Let us recall some relevant fact on
Leray's séquence (see [14]). For a set A in an n-dimensional manifold V we
dénote by H*(A) the total homology of A over a fixed coefficient field F,

Let Bl9..., BN be some open sets in V. Then the homology of the union
A Uî* &k carries a natural filtration {FlH*(A)}9 i 0,1,..., n +1. This is not
the filtration associated to the grading H*= ©S H- H w^ take some larger open
sets Bk=>Bk, then for their union A' the inclusion map H*(A) —? H*(A') is a

(filtered) homomorphism.
With the sets Bk above one associâtes Leray's spectral séquence that is a

séquence El9 E2,..., of vector spaces with the following properties.
(i) For each multiindex #x {ix,..., ii\el+ (see 2.2) we dénote by H$ the

homology of the intersection BhC\Bl2n • • 'C\Bh. Then the space Et is isomorphic

(ii) Each space El9 E2,..., has an additional structure of a complex, that is

there are difïerentials d1:E1-^ Eu d\ 0, d2 : E2 -> E2> d\ 0, Furthermore
each space El+1 is obtained as the homology group of (Ei9 dl).

Thèse structures are functional, that is the inclusions Bl-*B[ induce some
homomorphisms Ex -> E[ which commute with dl. The first homomorphism,
Ei-»!}'!, corresponds to the inclusion homomorphisms

H^n- • • HBQ, n (iu i,).
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In particular, the rank of the homomorphism Ex-^E^ is equal to the sum
Z^ei+rank (/jj. Since each space El+l is the homology of (E,, d,) the rank of each

homomorphism Ex -> E[ is bounded by the sum Y,» rank (/^).
(iii) For a sufficiently large i0 the differentials dl9 i>i0, vanish and so the

séquence E^ stabilizes. The stable terms are denoted by JE». This space £«> is

functorially isomorphic to the graded space associated to the filtered homology
{RH^iA)}. The word "functorially" means that the homomorphism £.->£&
corresponding to the inclusions Bk-+B'k is equal to the graded homomorphism
associated to the (filtered) inclusion homomorphism H%(A)—>H*(A').

(3) The following proposition generalizes the topological lemma of 2.3.

Let Blk c: V, fc 1,..., N, i 0,1,..., n +1, n dim (V), be some open sets

such that

Let A1 dénote the unions Uk=i B'k ^nd letf1^ dénotes the inclusion homomorphisms

h*(b\x n • • • hb\) -» h^bi:1 n - - ¦ nB<+1), (iu ...,il)

Then the rank of the inclusion homomorphism H*(A°) -* H^(An^1) is bounded

from above by the sum

£ ran
» =0, ,n

Proof. The properties of the spectral séquence imply that the rank of each

homomorphism Ei>—>EL+1 is bounded by

£ rank(fj,

and the lemma in (1) applies.
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