The equivariant Dehn's lemma and loop theorem.

Autor(en): Meeks III, W.H. / Yau, Shing-Tung
Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 56 (1981)

PDF erstellt am: 22.07.2024
Persistenter Link: https://doi.org/10.5169/seals-43242

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

The equivariant Dehn's lemma and loop theorem

William H. Meeks iif and Shing-Tung Yau

Introduction

In [4] the authors observed that the topological methods in the theory of three-dimensional manifolds can be modified to settle some old problems in the classical theory of minimal surfaces in euclidean space (see also [1], [12]). In [4] and [5] we found that we could use the theory of minimal surfaces to extend the theorems of Papakriakopoulous, Whitehead and Shapiro, Stalling and Epstein on the Dehn's lemma, loop theorem and sphere theorem. The key point to our approach to these topological theorems is the following: Given a certain family of maps of the disk or sphere into our three-dimensional manifold M, we minimize the area of the maps (with respect to the pulled back metric) in this family and prove the existence of the minimal map. Then by using the area minimizing property of the map and the tower construction in topology, we prove that any area minimizing map in the family is an embedding. In this way, we realize the solutions to the above topological theorems by minimal surfaces. In [4] and [5] we used the above area minimizing solutions to prove equivariant versions of the loop and the sphere theorem, and we applied these new theorems to the classification of compact group actions on \mathbf{R}^{3} in [11].

In this paper we generalize some of the theorems in [4] and [5] to compact planar domains by proving the existence of embedded planar domains of least area of a given genus and by proving a certain disjointness property for planar domains of least area. We then use this disjointness property to prove the equivariant Dehn's lemma for planar domains.

On the other hand, we use a different variation approach to get a geodesic version of the loop theorem. More precisely, we prove the following: suppose that the induced map $i_{*}: \pi_{1}(\partial M) \rightarrow \pi_{1}(M)$ of the inclusion of the boundary has nontrivial kernel K. Then for any metric on ∂M, any nontrivial geodesic of least length in K is embedded and any two such geodesics are equal or disjoint. This geodesic loop theorem coupled with the above equivariant Dehn's lemma yields a new version of the equivariant loop theorem in [5]. As the placement of curves on a surface is easier to understand this new equivariant loop theorem is easier to
apply to study group actions. Applications of this theorem to classification of group actions on \mathbf{R}^{3} will appear in [11].

Throughout this paper we will be working with compact three-dimensional Riemannian manifolds M with convex boundary. For simplicity we sometimes refer to such an M as a convex manifold.

1. Dehn's lemma for planar domains

THEOREM 1 (Dehn's lemma for planar domains of a given genus). Let $\Gamma=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$ be a collection of disjoint unoriented Jordan curves on the boundary of a three-dimensional orientable convex manifold M. Suppose that these Jordan curves bound a continuous mapping g from a smooth compact planar domain (possibly disconnected). Let F_{k} be the family of all piecewise smooth maps mapping from a compact planar domain with k components into M whose boundary consists of curves in Γ. Let A_{k} be the infimum of the areas of the maps in F_{k}. If A_{k} is strictly less than A_{k+1}, then there exists a branched minimal immersion which has least area among maps in F_{k}. Furthermore, any branched minimal immersion of least area in F_{k} is an embedding.

Proof. The existence of a map $f: \Omega \rightarrow M$ of planar domain with k components and least area follows from the inequality $A_{k}<A_{k+1}$, from Morrey [7] and from Theorem 1 in [4]. From the approximation technique in the proof of Theorem 5 in [4], we may assume that the map f is a simplicial immersion with respect to some triangulations of Ω and M.

Since $f: \Omega \rightarrow M$ is a map of least area for a given genus, f restricted to each component Ω^{\prime} of Ω is a map of least area from a planar domain with boundary curves $f\left(\partial \Omega^{\prime}\right)$. By Theorem 5 in [4], $f \mid \Omega^{\prime}$ is an embedding. Suppose that there are two distinct components Ω_{1}, Ω_{2} of Ω such that $f\left(\Omega_{1}\right)$ and $f\left(\Omega_{2}\right)$ intersect. In this case it is shown in [4] that there are Jordan curves $\gamma_{1}: S^{1} \rightarrow \Omega_{1}$ and $\gamma_{2}: S^{1} \rightarrow \Omega_{2}$ such that $f\left(\gamma_{1}(t)\right)=f\left(\gamma_{2}(t)\right)$. The standard cutting and gluing argument (see the end of the Proof of Theorem 5 in [4]) along the image curve $f\left(\gamma_{1}\right)=f\left(\gamma_{2}\right)$ produces a map of a planar surface with the same Euler characteristic as Ω and with the same area as f. However, the area of the new map can be decreased along the folding curve $f\left(\gamma_{1}\right)$. Since the Euler characteristic of a planar domain with n boundary curves determines the genus and the number of components, the existence of the new map contradicts the least area property for f. This contradiction proves Theorem 1.

In [4] the authors also proved a disjointness property for least area disks when Γ in the above theorem consists of one curve γ. In that paper we prove that any two geometrically distinct least area disks intersect only along their boundary. This
disjointness property for least area disks is useful in proving equivariant group action theorems. For this reason we would like to generalize the disjointness property to the case of planar domains given in the above theorem. However, in the following example two Jordan curves in parallel planes in \mathbf{R}^{2} are given which bound two distinct embedded annuli of least area that intersect their interiors.

EXAMPLE. Let δ_{-1000} be a circle of radius 10 in the $x y$ plane centered at the point $(0,-1000,0)$ and let δ_{1000} be a circle of radius 10 in the $x y$ plane centered at the point $(0,1000,0)$. Let γ_{1} be the connected sum of δ_{-1000} and δ_{1000} along part of the interval I joining $(0,-1000,0)$ to $(0,1000,0)$ in such a way that γ_{1} is the union of parts of $\delta_{-1000}, \delta_{1000}$, and the intervals $I+(-1,0,0)$ and $I+(1,0,0)$. Let $\gamma_{2}=\gamma_{1}+(0,0,1)$ be the curve on the plane of distance one from the $x y$ plane. A least area annulus $f: \Omega \rightarrow \mathbf{R}^{3}$ connecting γ_{1} and γ_{2} appears as in Figure 1. Let $R: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be rotation by 180 degrees around the z-axis. Then the least area annuli $f(\Omega)$ and $R \circ f(\Omega)$ intersect in their interiors. (A rigorous proof of the existence of Ω produced in this example can be found by using the bridge theorem in [6].)

Figure 1.

In spite of this example, the disjointness property holds when the following assumptions on Γ hold.

THEOREM 2. Let $\Gamma=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$ be a collection of disjoint unoriented Jordan curves on the boundary of a compact three-dimensional orientable convex manifold M. Suppose that γ_{1} is homotopically nontrivial when n equals two or that Γ generates a rank $(n-1)$ subgroup of the first homology group of M. If there exists a continuous map g of a compact planar domain into M with boundary Γ, then
(1) there exists a branched minimal immersion of a compact planar domain which bounds Γ and has (finite) least area among all such maps.
(2) Every such map is an embedding of a connected planar domain.
(3) Any two such least area maps intersect only along their boundary Γ or else they differ by a conformal reparametrization.

Proof. Part (1) is just the statement of Theorem 5 in [4]. Part (2) follows because the condition that the curves in Γ represent $n-1$ independent homology classes implies the connectedness of the surface. The proof of part (3) is based on the proof of Theorem 6 in [4]. The nontrivial approximation procedure in Theorem 6 in [4] reduces part (3) to the special case that the two least area maps $f: \Omega_{1} \rightarrow M$ and $g: \Omega_{2} \rightarrow M$ are simplicial with respect to some fixed triangulations of Ω_{1}, Ω_{2} and M.

Suppose now that $X=f_{1}\left(\Omega_{1}\right) \cap f_{2}\left(\Omega_{2}\right)$ is not equal to the union of Γ. In [4] it is shown that X is a finite one-dimensional subcomplex of M with every vertex in X meeting at least two edges in X and the intersection of $f\left(\Omega_{1}\right)$ and $f\left(\Omega_{2}\right)$ is traverse except possibly at the vertices. A simple induction argument (see Lemma 10 in [4]) proves that X contains a closed Jordan curve α which is not contained in the union of Γ or for some i and $k>0$ there is a unique Jordan $\operatorname{arc} \sigma:[0,1] \rightarrow X$ with $\sigma([0,1]) \cap \Gamma=\{\sigma(0), \sigma(1)\}$ and $\sigma(0) \in \gamma_{i}$ and $\sigma(1) \in \gamma_{i+k}$.

Suppose that σ exists. By the classification of compact planar surfaces, there would be a smooth Jordan curve τ in the interior of Ω_{1} such that $\tau \cap X=\tau \cap \sigma$ is one point which is not vertex and the intersection of τ and σ on Ω_{1} is transverse at this point. As τ intersects Ω_{2} transversely in one point, [$\left.\tau\right] \cap\left[\Omega_{2}\right]$ is nonzero where \cap denotes the intersection pairing on homology in M with Z_{2}-coefficients. However, as Ω_{1} is a compact planar domain, τ is homologous with Z_{2}-coefficients to some sum of boundary curves of Ω_{1}. As the boundary curves of Ω_{1} and Ω_{2} are the same, some boundary curve γ_{i} of Ω_{2} must intersect Ω_{2} nontrivially in homology. However, M is orientable and therefore we can push γ_{i} off Ω_{2} to create a curve γ_{i}^{\prime} which is disjoint from Ω_{2}. This curve is homologous to γ_{i} but
does not intersect Ω_{2}. This contradicts the intersection equation on homology and therefore σ can not exist. Hence there must be a Jordan curve α in X which is not contained in Γ.

Let $\alpha_{1}: S^{1} \rightarrow \Omega_{1}$ and $\alpha_{2}: S^{1} \rightarrow \Omega_{2}$ be the Jordan curves with $f\left(\alpha_{1}(t)\right)=g\left(\alpha_{2}(t)\right)$ and $f\left(\alpha_{1}\right)=\alpha$. Suppose for the moment that α_{1} and α_{2} are contained in the interior of Ω_{1} and Ω_{2}. The curve α_{i} disconnects Ω_{i} into two planar domains Ω_{i}^{\prime}, $\Omega_{i}^{\prime \prime}$ where Ω_{i}^{\prime} is the planar domain containing the Jordan curve γ_{1}.

Now consider the surface Σ obtained by gluing $f\left(\Omega_{1}^{\prime \prime}\right)$ and $f\left(\Omega_{2}^{\prime \prime}\right)$ along α. If Σ has a nonempty boundary, then for some i different from 1 , an oriented boundary curve γ_{j} of Σ is homologous in Σ to a collection of curves in $\left\{ \pm \gamma_{2}, \pm \gamma_{3}, \ldots\right.$, $\left.\pm \hat{\gamma}_{j}, \ldots, \pm \gamma_{n}\right\}$ where for the moment the curves Γ are oriented in an arbitrary manner. Therefore the curves $\Gamma-\left\{\gamma_{1}, \gamma_{i}\right\}$ generate a subgroup of $H_{1}(M, Z)$ with the same rank as Γ which is $n-1$. For $n \geq 3$, this contradicts our assumptions. If $n=2$, then X is a disk and so γ_{2} is homotopically trivial. This also contradicts our assumptions and so Σ must have no boundary.

As Σ has no boundary, the surfaces $f\left(\Omega_{1}^{\prime}\right)$ and $f\left(\Omega_{2}^{\prime}\right)$ have the same boundary curves. The usual cutting and gluing argument shows that f or g does not have least area and hence part (3) is valid if the Jordan curve α_{1} lies in the interior of Ω_{1}. Actually the only reason that we chose the case " α_{1} lies in the interior of Ω_{1} " was to make visualization of the intersection easier. The same argument still produces a contradiction when part of α intersects the union of the curves in Γ. This proves part (3) and completes the proof of the theorem.

Remark. Theorem 2 can be proved by assuming appropriate conditions about areas of planar domains which bound some subcollection of curves in Γ rather than topological conditions. For example, suppose that $\Gamma=\left\{\gamma_{1}, \gamma_{2}\right\}$ and that either γ_{1} or γ_{2} does not bound a disk with area less than twice the area of some annular region joining them. Then the planar domain of least area joining γ_{1} and γ_{2} will be an embedded annulus and any two such annular surfaces intersect only along their boundary curves. Note that this area condition fails for the example described before Theorem 2.

2. Embedding of the partially free boundary value problem

Another type of embedding theorem that can be proved using the topological tower construction is the partially free boundary value problem considered in Courant's book [2]. In its simplest topological form the partially free boundary value problem can be stated as follows. Let M be a compact three-dimensional Riemannian manifold and γ_{1} be a Jordan curve on a boundary component ∂_{1} of M which is freely homotopic to a closed curve γ_{2} on another component ∂_{2} of the
boundary of M. Let F be the family of all maps from the annulus Ω to M which maps one boundary curve of Ω homeomorphically onto γ_{1} and the other boundary curve of Ω into ∂_{2}. Then we say that a minimal immersion $f: \Omega \rightarrow M$ is a solution to the partially free boundary value problem for γ_{1} and ∂_{2} if $f \in F$ and f has least area in F.

THEOREM 3. Suppose M is a compact orientable Riemannian threedimensional manifold with convex boundary, γ_{1} is a Jordan curve on a component ∂_{1} of the boundary of M and γ_{1} is freely homotopic to a curve on a different component ∂_{2} of the boundary. Then
(1) There exists a solution $f: \Omega \rightarrow M$ to the partially free boundary value problem for γ_{1} and ∂_{2} if the infimum of areas of maps in F is strictly less than the area of any map of a disk with boundary γ_{1}. Furthermore f is continuous in Ω and smooth in the interior of Ω.
(2) Any such solution f is one-to-one and everywhere orthogonal to ∂_{2}.

Proof. The existence of a solution to the partially free boundary value problem can be proved using the methods in the proof of the free boundary value problem in [5].

After conformal reparametrization we may assume that Ω is a circular domain where the inner circle is the unit circle S^{1} and $f\left(S^{1}\right)=\gamma_{1}$. From the approximation arguments in [4] and [5] we may assume that the map f is simplicial with respect to some triangulations of Ω and M. Therefore the image surface $f(\Omega)$ has a regular neighborhood N_{1} in M. After restricting the range space of f to N_{1}, there is a new map $f_{1}: \Omega \rightarrow N_{1}$. Let H be the subgroup of $H_{1}\left(N_{1}, Z_{2}\right)$ generated by $f_{1}\left(S^{1}\right)$. If H is not all of $H_{1}\left(N_{1}, Z_{2}\right)$, then there exists a surjective homomorphism $\rho: H_{1}\left(N_{1}, Z_{2}\right) \rightarrow Z_{2}$ with $\rho\left(\left[f_{1}\left(S^{1}\right)\right]\right)=0$. This homomorphism induces a surjective

homomorphism $\bar{\rho}: \pi_{1}\left(N_{1}\right) \rightarrow Z_{2}$. Since the kernel of $\bar{\rho}$ has index two in $\pi_{1}\left(N_{1}\right)$, there is a 2 -sheeted covering space $\tilde{P}_{1}: \tilde{N}_{1} \rightarrow N_{1}$ associated to this subgroup. Since the map $f: \Omega \rightarrow N_{1}$ satisfies $f_{1^{*}}\left(\pi_{1}(\Omega)\right) \subset \tilde{P}_{1^{*}}\left(\pi_{1}\left(\tilde{N}_{1}\right)\right)=\operatorname{ker}(\bar{\rho})$, the lifting theorem for covering spaces implies that f_{1} lifts to a map $\tilde{f}_{1}: \Omega \rightarrow \tilde{N}_{1}$. After restricting the range of \tilde{f}_{1} to a regular neighborhood N_{2} of $\tilde{f}_{2}(\Omega)$, we get a new map $f_{2}: \Omega \rightarrow N_{2}$.

Repeating this construction k-times yields the tower below. As was discussed in [4] or [5], this construction terminates with a map $f_{k}: \Omega \rightarrow N_{k}$ with $f_{k}\left(S^{1}\right)$ generating $H_{1}\left(N_{k}, Z_{2}\right)$. Here P_{i} is the restriction of \tilde{P}_{i} to N_{i+1} and each N_{i} is a Riemannian manifold with the pulled back Riemannian metric.

ASSERTION 1. $f_{k}: \Omega \rightarrow N_{k}$ is one-to-one.
Proof. As $H_{1}\left(N_{k}, Z_{2}\right)$ is generated by $f_{k}\left(S^{1}\right), H_{1}\left(N_{k}, Z_{2}\right)$ is equal to the trivial group or the group Z_{2}. If $H_{1}\left(N_{k}, Z_{2}\right)$ is the trivial group, it is straightforward to check that the boundary of N_{k} consists entirely of spheres (see [4] for a proof). In this case $\gamma=f_{k}\left(S^{1}\right)$ lies on some sphere S in the boundary of N_{k}.

In [4] and [5] it is shown that there exists, after subdivision, a simplicial retraction $R: N_{k} \rightarrow f_{k}(\Omega)$ such that (1) $R \mid\left(\partial N_{k}-f_{k}(\partial \Omega)\right)$ is locally one-to-one, and (2) $R \mid \partial N_{k}$ covers each 2 -simplex of $f_{x}(\Omega)$ exactly two times.

The Jordan curve γ disconnects the sphere S into two disks D_{1} and D_{2}. Computing areas, we have

$$
\operatorname{Area}\left(R \mid D_{1}\right)+\operatorname{Area}\left(R \mid D_{2}\right)=\operatorname{Area}(R \mid S) \leq \operatorname{Area}\left(R \mid \partial N_{k}\right) \leq 2 \operatorname{Area}\left(f_{k}\right)
$$

Hence either the area of $R \mid D_{1}$ or $R \mid D_{2}$ is not greater than Area $\left(f_{k}\right)=$ Area $\left(f_{1}\right)$. Therefore we may assume that the area of, say, $g=P_{1} \circ P_{2} \circ \cdots \circ P_{k-1} \circ R \mid D_{1}$ is not greater than the area of f. Furthermore, the area of g can be decreased along a folding curve which is a self-intersection curve of $f_{k}(\Omega)$ in the case $f_{k}(D)$ is not embedded (see Theorem 4 in [4] for a rigorous proof of this fact). This contradicts the original assumption that f is a solution to the partially free boundary value problem.

Thus we may assume that $H_{1}\left(N_{k}, Z_{2}\right)$ is Z_{2}. In this case it is easy to show that $f_{k}(\partial \Omega)$ is contained in a torus component T of the boundary of N_{k} (see the proof of Theorem 5 in [4]). Furthermore, as $H_{1}\left(N_{k}, Z_{2}\right)$ is generated by $f\left(S_{1}\right)$, the boundary curves of $f_{k}(\Omega)$ are disjoint and are nontrivial homology classes on ∂N_{k}. From the simple topology of curves on a torus we may conclude that $f_{k}(\partial \Omega)$ disconnect T into a collection of closed planar domains, two of which are annular regions A_{1} and A_{2} where the boundary of the annular region A_{i} consists of $f_{k}\left(S^{1}\right)$ and part of the other boundary curve of $f_{k}(\Omega)$.

Let $R: N_{k} \rightarrow f_{k}(\Omega)$ be the retraction discussed above. Then, as before, Area $\left(R \mid A_{1}\right)+\operatorname{Area}\left(R \mid A_{2}\right) \leq \operatorname{Area}\left(f_{k}\right)$, and so we may assume that

Area $\left(R \mid A_{1}\right)$ is strictly less than Area $\left(f_{k}\right)$. However, the boundary curves of $\mathrm{g}=\left(\boldsymbol{P}_{1} \circ P_{2} \circ \cdots \mathrm{P}_{\mathrm{k}-1} \circ R\right) \mid A_{1}$ consists of γ_{1} and a curve on the boundary component ∂_{2}. As Area $(g)<$ Area (f), we arrive at a contradiction which shows the map f_{k} is one-to-one and proves Assertion 1.

ASSERTION 2. f_{k-1} is one-to-one.
Proof. If f_{k-1} is not one-to-one, then the map f_{k-1} has singular points which are double points. As f_{k-1} is everywhere orthogonal to the boundary of N_{k-1}, the maximum principle or Lemma 5 in [4] implies that the image of the boundary component of Ω different from S^{1} is not completely contained in the singular set $S\left(f_{k-1}\right)$. The arguments in [4] show that there exists a Jordan curve $\alpha_{1}: S^{1} \rightarrow \Omega$ or a Jordan $\operatorname{arc} \alpha_{1}:[0,1] \rightarrow \Omega$ with $\alpha(0), \alpha(1) \in \partial \Omega$ which bounds with some part of $\partial \Omega$ a closed connected domain Ω_{1} in Ω with $\Omega_{1} \cap S\left(f_{k-1}\right)=\alpha_{1}$. Let α_{2} be the double curve corresponding to α_{1}. By our choice of α_{1}, the Jordan curve α_{2} will bound, with some parts of $\partial \Omega$, a closed subdomain Ω_{2} of Ω whose interior is disjoint from Ω_{1}.

A cutting and gluing argument shows that we can interchange the region Ω_{1} and Ω_{2} to get a new continuous piecewise smooth map $\mathrm{g}: \Omega \rightarrow f_{k-1}(\Omega)$ with the same area as $f_{k-1}(\Omega)$ and such that $G=P_{1} \circ P_{2} \circ \cdots \circ P_{k-2} \circ \mathrm{~g}$ is a candidate for a solution to the partially free boundary value problem. However, the area of G can be decreased along the folding curve α_{1} which contradicts the least area property for f. This contradiction proves the assertion which in turn implies part (2) of the theorem.

Remarks. The previous theorem can be generalized in a number of interesting ways. For example, one can replace γ_{1} by a collection $\Gamma_{1}=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\}$ of pairwise disjoint Jordan curves and γ_{2} by $\Gamma_{2}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ a collection of curves which lies on distinct boundary components of ∂M different from the boundary components containing the Jordan curves in Γ_{1}. In this case we assume that there is a map of a planar domain into M whose boundary curves are $\Gamma_{1} \cup \Gamma_{2}$. One can then pose a partially free boundary value problem and if there is a least area solution to this problem, one can prove that the solution is embedded. The proof of this fact can be shown using the techniques of proof given in Theorem 3 and in Theorem 5 of [4].

It is important to note that the existence of embedded solutions to other free boundary value problems can also be shown. For example, suppose we replace the condition that γ_{1} and γ_{2} lie on distinct components of the boundary of M, by the condition that γ_{2} lies in the complement of some compact piece P of the boundary surface containing γ_{1}. Then if a solution to this free boundary value problem exists and the boundary of the map is disjoint from ∂P, then the solution
is an embedding. Such free boundary value problems occur naturally for, say, certain convex subsets of euclidean three space.

The solution to the free boundary value problem in [5] can be generalized to annular or even planar domains. For example, suppose that γ_{1} is a loop on a boundary component ∂_{1} of a convex M, which is homotopically nontrivial in M. Suppose γ_{1} is homotopic to a loop γ_{2} on a different boundary component ∂_{2} of M. Then there exists an immersion $f: \Omega \rightarrow M$ of an annulus of least area with one boundary curve on ∂_{1} and the other boundary curve on ∂_{2} and so that the induced map on fundamental groups is nontrivial. Furthermore, f is as regular as the metric of M and any such f is one-to-one.

3. The equivariant Dehn's lemma

In [5] we proved the equivariant loop theorem by using the disjointness property of least area disks. The disjointness property in Theorem 2 for least area planar domains can also be used to prove the following equivariant theorem.

THEOREM 4 (Equivariant Dehn's lemma for planar domains). Suppose $\Gamma=$ $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$ is a collection of smooth disjoint unoriented Jordan curves on the boundary of an orientable three-dimensional manifold M. Suppose either the curves in Γ generate a rank $(n-1)$ subgroup of the first homology group of M or n equals to two and the curve γ_{1} is homotopically nontrivial in M. Suppose also that the collection Γ is the image of the boundary of a map of a compact planar domain into M. If G is a compact subgroup of $\mathrm{Diff}^{+}(M)$ which acts freely on the union of Γ, then Γ is the boundary of an embedded compact planar domain in M which is invariant under those elements of G that leave some γ_{i} in Γ invariant.

Proof. As G is compact, we may assume that G acts on M as a group of isometries. Furthermore, it is elementary to construct an invariant metric on M with convex boundary by averaging the metric on ∂M and taking the product metric in a neighborhood of ∂M. We may also assume that M is compact by restricting the manifold to a regular neighborhood of the G orbits of the image of the map of the compact planar domain given in the hypothesis.

By Theorem 1, there exists a smooth embedded connected compact planar domain Ω of least area in M with boundary curves in Γ. By Theorem 2, any two such least area planar domains are either disjoint in the interior of M or equal.

Suppose now that $g: M \rightarrow M$ is an element of G which leaves invariant the Jordan curve γ_{i} and suppose $g(\Omega) \neq \Omega$. As g leaves γ_{i} invariant and has no fixed points on γ_{i}, g acts on a regular neighborhood of γ_{i} as a rotation. As $g(\Omega) \neq \Omega$ and $g(\Omega)$ is another planar domain of least area, $g(\Omega)$ is disjoint from Ω in the
interior of M. This implies that $g(\Omega)$ lies locally on one side of Ω. By convexity (see for example [4] or [6]), the surfaces Ω and $g(\Omega)$ are immersed and transverse to the boundary of M.

Let $J\left(\gamma_{i}^{\prime}(t)\right)$ denote the vector obtained by rotating the tangent vector $\gamma_{i}^{\prime}(t)$ clockwise by 90 degrees in the tangent space of $T_{\gamma_{1}(t)} \partial M$ with respect to the induced orientation. Define $\alpha_{\Omega}\left(\gamma_{i}(t)\right)$ and $\alpha_{g(\Omega)}\left(\gamma_{i}(t)\right)$ as the oriented angle between the vector $J\left(\gamma_{i}^{\prime}(t)\right)$ and the tangent planes of the corresponding surfaces. After integrating along γ_{i}, we have

$$
\theta_{\Omega}=\int_{0}^{1} \alpha_{\Omega}(\gamma(t)) d t \quad \text { and } \quad \theta_{g(\Omega)}=\int_{0}^{1} \alpha_{g(\Omega)}(\gamma(t)) d t .
$$

As g acts as rotation on the regular neighborhood of $\gamma_{i}, \alpha_{\Omega}(g(\gamma(t)))=\alpha_{g(\Omega)}(\gamma(t))$ and hence $\theta_{\Omega}=\theta_{g(\Omega)}$. On the other hand, as Ω lies locally on one side of $g(\Omega)$, either $\alpha_{\Omega}\left(\gamma_{i}(t)\right) \leq \alpha_{g(\Omega)}\left(\gamma_{i}(t)\right)$ for all t or else $\alpha_{\Omega}\left(\gamma_{i}(t)\right) \geq \alpha_{g(\Omega)}\left(\gamma_{i}(t)\right)$ for all t. As the integrals are the same, $\alpha_{\Omega}\left(\gamma_{i}(t)\right)=\gamma_{g(\Omega)}\left(\gamma_{i}(t)\right)$. This shows that $g(\Omega)$ and Ω are everywhere tangential to each other along γ_{1}. Therefore, the maximum principle (or Lemma 5 in [4]) implies that Ω and $g(\Omega)$ intersect in an open set. Hence the disjointness property of Ω implies that $\Omega=g(\Omega)$. This completes the proof of the theorem.

THEOREM 5 (Equivariant Dehn's lemma for disks). Suppose $\Gamma=$ $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ is a collection of disjoint Jordan curves on the boundary of an orientable three-dimensional manifold M. Suppose each γ_{i} is homotopically trivial in M. If G is a compact group acting on M as a group of orientation preserving diffeomorphism which acts freely on the union of Γ, then there exists a collection of embedded invariant disks $\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ which are pairwise disjoint with $\partial D_{i}=$ γ_{i} and whose union is invariant under G.

Proof. After picking an invariant metric, G acts as a group of isometries. As in the previous lemma, we can assume that this metric is convex and M is compact. Let D_{1} be a disk of least area with boundary curve γ_{1} and let $G \cdot D_{1}$ denote the union of the least area disks which are images of D_{1} under G. By the argument given in the previous theorem, D_{1} is the only disk in $G \cdot D_{1}$ whose boundary curve is γ_{1}. This implies that each of the curves in $G \cdot \gamma_{1}$ bound a unique disk in $G \cdot D_{1}$.

If $G \cdot \gamma_{1}$ is not all of Γ, then let D_{2} be a disk of least area with a boundary curve in $\Gamma \backslash\left(G \cdot \gamma_{1}\right)$ and $G \cdot D_{2}$ be the union of the orbits of D_{2} under the action of G. As before, these are embedded and disjoint. As the disks in $G_{1} \cdot D_{1}$ and $G \cdot D_{2}$ can only intersect in their interiors and as they have least area, they do not intersect. This last fact is proved in [4] where we show that if two embedded
minimal disks intersect only in their interiors, then there is a closed Jordan curve in their intersection which bounds two least area disks. Then by a cutting and gluing argument we can decrease the area of one of the $G\left(D_{i}\right)$ which is impossible.

If $G \cdot \gamma_{1} \cup G \cdot \gamma_{2}$ does not exhaust the curves in Γ, then we can find a new least area disk D_{3} with boundary curve in $\Gamma-\left(G \cdot \gamma_{1} \cup G \cdot \gamma_{2}\right)$. Let $G \cdot D_{3}$ be the orbits of D_{3}. Continuing this process eventually, we can produce the required disks $G \cdot D_{1}, G \cdot D_{2}, \ldots, G \cdot D_{k}$.

COROLLARY. Suppose $\tau: M \rightarrow M$ is an orientation preserving diffeomorphism of a three-dimensional manifold M which is an isometry with respect to some metric on M. If τ leaves invariant a Jordan curve γ on the boundary of M which is homotopically trivial in M, then τ has a fixed point on M.

Proof. Let G be the closure in $\operatorname{Diff}^{+}(M)$ of the cyclic subgroup generated by τ. As γ lies on the boundary of an orientable three-dimensional manifold, G restricts to an effective action on γ. Here G is either a finite cyclic group or S^{1}. By the previous theorem there is either a fixed point of τ on γ or else there is a disk in M which is invariant under τ. If τ has no fixed points on γ, then the Brower fixed point theorem implies that τ has a fixed point on the invariant disk. This proves the corollary.

4. The equivariant loop theorem

In this section we are going to prove the equivariant loop theorem by first proving a disjointness property of a certain generating set of closed geodesics on the boundary of the three-dimensional manifold and then applying the equivariant Dehn's lemma of Section 3. We begin with the following

DEFINITION. Let M be an n-dimensional compact Riemannian manifold and let H be a normal subgroup of $\pi_{1}(M)$. Then a collection $\Gamma=$ $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \ldots\right\}$ of closed geodesics is said to be a short generating set for H if for each n, γ_{n} represents a closed curve in H of least length in the complement of the normal subgroup of H generated by the free homotopy classes $\Gamma=$ $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-1}\right\}$.

LEMMA 1. Suppose γ_{1} and γ_{2} are embedded distinct closed geodesics on a boundary surface $\boldsymbol{\Sigma}$ of a three-dimensional Riemannian manifold M. If γ_{1} and γ_{2} intersect nontrivially and are homotopically trivial in M, then one of these geodesics, say γ_{2}, can be expressed as the product of two closed nongeodesic curves in $\gamma_{1} \cup \gamma_{2}$,
each with length less than or equal to length of γ_{2}, and these nongeodesic curves are homotopically trivial in M.

Proof. Since an embedded geodesic is determined by its tangent vector at a single point and the exponential map is a local diffeomorphism, it is easily seen that γ_{1} and γ_{2} intersect transversally in a finite number of points. Hence we may consider γ_{1} and γ_{2} as simplicial curves on Σ with respect to some triangulation of M. By Dehn's lemma there exist embedded piecewise linear disks D_{1} and D_{2} with boundary curves γ_{1} and γ_{2} respectively, which are in general position.

Since D_{1} and D_{2} are in general position, they intersect in a compact onedimensional manifold with boundary. Let I be an interval component in $D_{1} \cap D_{2}$. The interval I disconnects D_{1} into two closed subdisks D_{11} and D_{12} and disconnects D_{2} into two closed subdisks D_{21} and D_{22}. Let $\alpha_{i j}=D_{i j} \cap \Sigma$ and suppose that α_{11} is the shortest such arc. Then the length of the boundary of each of the disks $\tilde{D}_{1}=D_{11} \cup_{I} D_{21}$ and $\tilde{D}_{2}=D_{11} \cup_{I} D_{22}$ is less than or equal to the length of γ_{2}. Here U_{I} means that we paste the disks along their common boundary arc I. On the other hand, γ_{2} can be expressed as a product of $\partial \tilde{D}_{1} \cdot \partial \tilde{D}_{2}=\left(\alpha_{21} \alpha_{11}\right) \cdot\left(\alpha_{11}^{-1} \alpha_{22}\right)$. Since $\partial \tilde{D}_{1}$ and $\partial \tilde{D}_{2}$ are not geodesics, $\partial \tilde{D}_{1}$ and $\partial \tilde{D}_{2}$ are the required closed curves. This completes the proof of the lemma.

THEOREM 6. Suppose M is a compact orientable three-dimensional Riemannian manifold with a boundary component Σ. Let $K=\operatorname{Ker}\left(i_{*}\right)$ be the kernel of the map $i_{*}: \pi_{1}(\Sigma) \rightarrow \pi_{1}(M)$ induced by inclusion. Then with respect to any fixed metric on Σ, there exists a finite short generating set $\Gamma=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$ for K. For any such generating set the geodesics in Γ are embedded. Furthermore, any two geodesics in the union of any two short generating sets are either equal or disjoint.

Proof. We first show that there is a minimal generating set $\Gamma=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$ for K consisting of embedded geodesics. Since there are only a finite number of free homotopy classes on a compact surface having length less than a given constant, we can choose a short generating set for K by sequentially picking the next free homotopy class of least length. To be precise, suppose by induction $\Gamma_{n-1}=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-1}\right\}$ have been chosen. If Γ_{n-1} is not a short generating set, then we let γ_{n} be a closed geodesic of least length in the complement of the normal subgroup of K generated by Γ_{n-1}. We will now show that γ_{n} is embedded.

Since $\gamma_{n}: S^{1} \rightarrow M$ is a closed geodesic, it is determined by its tangent vector at a point and its multiplicity which is the number of times it transverses the same path. As a geodesic of multiplicity one is always in general position with respect to itself, we may assume that $\gamma_{n}\left(S^{1}\right)$ is a simplicial curve with respect to some triangulation of M. Hence $\gamma_{n}: S^{1} \rightarrow M$ is also simplicial with respect to the pulled back triangulation on S^{1}.

Let $f: D \rightarrow M$ be a branched simplicial immersion such that $f \mid \partial D=\gamma_{n}$. Then after restricting to a regular neighborhood N_{1} of $f(D)$ in M, there is a new map $f_{1}: D \rightarrow N_{1}$. As in the proof of Dehn's lemma (see [4] or [1]), we can construct a tower where we may assume that the boundary of N_{k} consists entirely of spheres and each of the manifolds N_{i} are Riemannian with respect to the pulled back metric. Here $\tilde{P}_{i-1}: \tilde{N}_{i-1} \rightarrow N_{i-1}$ is the universal covering space of N_{i-1} and N_{i} is a regular neighborhood of the image of some lift \tilde{f}_{i-1} to this universal covering space.

ASSERTION 1. The lift f_{k} has an embedded boundary curve.
Proof. Since $C=f_{k}(\partial D)$ lies on a sphere, every Jordan curve in the 1 -complex C is homotopically trivial in N_{k-1}. As the fundamental group of C is generated as a $\pi_{1}(C, p)$ module by Jordan curves, there is a Jordan curve γ^{\prime} in C such that $\gamma^{\prime}=P_{0} \circ P_{1} \circ \cdots \circ P_{k-1}(\gamma)$ does not lie in the normal subgroup of K generated by Γ_{n-1}. If C is not a Jordan curve, then the length of γ_{n} is not minimal. This shows that C is a Jordan curve. Since C has less length than any nontrivial multiple of C and C is homotopically trivial, the lift $f_{k} \mid \partial D$ must be an embedding.

ASSERTION 2. γ_{n} is embedded.
Proof. If γ_{n} is not embedded, then there exists a smallest $m>0$ such that $f_{m} \mid \partial D$ is not embedded. By the previous assertion $f_{m+1} \mid \partial D$ exists and is one-to-one. Let $\tilde{f}_{m}=i \circ f_{m+1}$ be the composition of f_{m+1} with the inclusion map into the total space of the universal covering space $\tilde{P}_{m}: \tilde{N}_{m} \rightarrow N_{m}$. By definition of $\tilde{f}_{m}, \tilde{f}_{m}$ is a lift of the map f_{m} to its universal covering space. Since f_{m} is not one-to-one, two points on $\tilde{f}_{m}(\partial D)$ must be identified under a nontrivial covering transformation $\tau: \tilde{N}_{m} \rightarrow \tilde{N}_{m}$.

First, suppose $\tau\left(\tilde{f}_{m}(\partial D)\right) \neq \tilde{f}_{m}(\partial D)$. Then with respect to the pulled back metric on N_{m}, Lemma 1 implies that one of these geodesics, say $\tilde{f}_{m}(\partial D)$, can be expressed as a product of two closed nongeodesic curves α_{1}, α_{2} with length $\left(\alpha_{i}\right) \leq$ length $\left(f_{m}(\partial D)\right)=$ length $\left(\gamma_{n}\right)$. Hence either $P_{0} \circ \cdots \circ \dot{P}_{m-1} \circ \tilde{P}_{m}\left(\alpha_{1}\right)$ or $P_{0} \circ \cdots \circ$ $\boldsymbol{P}_{m-1} \circ \tilde{\boldsymbol{P}}_{m}\left(\alpha_{2}\right)$ does not lie in the normal subgroup of K generated by $\Gamma_{n-1}=$ $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-1}\right\}$ and has length less than the length of γ_{n}. This contradicts the least length property of γ_{n} and shows that γ_{n} is embedded in the case $\tau\left(f_{m}(\partial D)\right) \neq f_{m}(\partial D)$.

If $\tau\left(\tilde{f}_{m}(\partial D)\right)=\tilde{f}_{m}(\partial D)$, then by the Corollary to Theorem $5, \tau$ has a fixed point in \tilde{N}_{m} which implies that τ is the identity map contrary to our hypothesis about τ. This shows that this case can not occur and that γ_{n} is embedded. This ends the proof of Assertion 2.

By induction we can continue this process to find a short generating set Γ for K consisting of embedded geodesics. The argument given above also implies that any short generating set consists of embedded geodesics.

Let $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{n}, \ldots\right\}$ be a possibly infinite short generating set for K. We will now show that the embedded geodesics in Γ are disjoint and the number of elements in Γ are bounded by $3 g$ where g is the genus of Σ. Suppose γ_{i} and γ_{i+k} are geodesics in Γ which intersect each other and where $k>0$. Lemma 1 shows that the free homotopy class of one of these geodesics can be expressed as the sum of two homotopy classes of less length. This immediately contradicts the least length property for these geodesics and thereby proves the geodesics in Γ are disjoint. This argument also proves the last statement in the theorem.

If M^{2} is a compact orientable surface of genus g and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{3 g+1}\right\}$ is a collection of $3 \mathrm{~g}+1$ disjoint Jordan curves on the surface, then the classification theorem for compact surfaces can be used to show that two of these Jordan curves are isotopic. Hence there are at most $3 \mathrm{~g}+1$ elements in a short generating set for K where g is the genus of Σ. This last observation completes the proof of the theorem.

THEOREM 7 (Equivariant loop theorem). Suppose G is a finite group which acts on a compact orientable three-dimensional manifold M with boundary as a group of orientation preserving diffeomorphisms. Then there exists a collection $\Delta=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ of embedded pairwise disjoint disks in M which satisfy
(1) $D_{i} \cap \partial M=\partial D_{i}$.
(2) The normal subgroup generated by $\Gamma=\left\{\partial D_{1}, \partial D_{2}, \ldots, \partial D_{n}\right\}$ is the kernel K of the inclusion map of the fundamental group of each component Σ of the boundary of M into M.
(3) The union of Δ is G invariant.

Proof. If we produce a collection of disjoint Jordan curves $\Gamma=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$ on ∂M such that the normal subgroup of $\pi_{1}(\partial M)$ generated by Γ is K and G acts freely on the union of Γ, then the theorem will follow from Theorem 5 . To prove the existence of such a Γ, we first consider a short generating set $\Gamma^{\prime}=$ $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$ given by Theorem 6. If G acts freely on the union of Γ^{\prime}, then Γ^{\prime} is the required collection of Jordan curves. If G has a fixed point on Γ^{\prime}, then we carry out the following procedure.

Let N_{i} be a regular neighborhood of the curve γ_{i} on ∂M that is small enough so that the collection of these neighborhoods is invariant under G and these neighborhoods are pairwise disjoint. Clearly, N_{i} is diffeomorphic to $S^{1} \times[0,1]$. Let Γ be the collection of all the boundary circles of these regular neighborhoods. As G acts as a group of orientation preserving transformations of the boundary of M, and N_{i} is an annulus, any element $g \in G$ which has a fixed point on ∂N_{i} must be equal to the identity on N_{i} and hence the identity on M. Therefore G acts freely on the union of Γ. By the previous discussion this completes the proof of the theorem.

REFERENCES

[1] Almgren, F. J. Jr. and Simon, L., Existence of embedded solutions to Plateau's problem, Ann. Scuola Norm. Sup. Pisa 6 (1979), 447-495.
[2] Courant, R., Dirichlet's principle, conformal mappings and minimal surfaces, Interscience, New York, 1950.
[3] Meeks, W. H. III, Lectures on Plateau's Problem, IMPA, Rio de Janeiro, Brazil, 1978.
[4] Meeks, W. H. III, and Yau, S. T., The classical Plateau problem and the topology of three dimensional manifolds, to appear in Arch. Rational Mech. Anal.
[5] --, Topology of three dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. 112 (1980), 441-485.
[6] -, The existence of embedded minimal sufaces and the problem of uniqueness, to appear in Math. Zeit.
[7] Morrey, C. B., Multiple Integrals in the calculus of variations, Springer-Verlag, Berlin, 1966.
[8] Papakyriakopoulous, C. D., On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
[9] Shapiro, A. and Whitehead, J. H. C., A proof and extension of Dehn's lemma, Bull. Amer. Math. Soc. 64 (1958), 174-178.
[10] Srallings, J. R., Group theory and three-dimensional manifolds, Yale University Press, New Haven, 1971.
[11] The proof of the Smith Conjecture, Proc. of Conference at Columbia University, New York, 1979, in preparation.
[12] Tomi, F. and Tromba, A. J., Extreme curves bound embedded minimal surfaces of the type of the disk, Math. Z. 158 (1978), 137-145.

Institute for Advanced Study
Princeton, N.Y. 08540 U.S.A.

Received July 18, 1979/March 12, 1981

