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The equivariant Dehn's lemma and loop theorem

William H. Meeks m and Shing-Tung Yau

Introduction

In [4] the authors observed that the topological methods in the theory of
three-dimensional manifolds can be modified to settle some old problems in the
classical theory of minimal surfaces in euclidean space (see also [1], [12]). In [4]
and [5] we found that we could use the theory of minimal surfaces to extend the
theorems of Papakriakopoulous, Whitehead and Shapiro, Stalling and Epstein on
the Dehn's lemma, loop theorem and sphère theorem. The key point to our
approach to thèse topological theorems is the following: Given a certain family of

maps of the disk or sphère into our three-dimensional manifold M, we minimize
the area of the maps (with respect to the pulled back metric) in this family and

prove the existence of the minimal map. Then by using the area minimizing
property of the map and the tower construction in topology, we prove that any
area minimizing map in the family is an embedding. In this way, we realize the
solutions to the above topological theorems by minimal surfaces. In [4] and [5] we
used the above area minimizing solutions to prove equivariant versions of the

loop and the sphère theorem, and we applied thèse new theorems to the
classification of compact group actions on R3 in [11].

In this paper we generalize some of the theorems in [4] and [5] to compact
planar domains by proving the existence of embedded planar domains of least

area of a given genus and by proving a certain disjointness property for planar
domains of least area. We then use this disjointness property to prove the

equivariant Dehn's lemma for planar domains.
On the other hand, we use a différent variation approach to get a géodésie

version of the loop theorem. More precisely, we prove the following: suppose that
the induced map i# : rr^dM) -* 7tx{M) of the inclusion of the boundary has

nontrivial kernel K. Then for any metric on dM, any nontrivial géodésie of least

length in K is embedded and any two such geodesics are equal or disjoint. This
géodésie loop theorem coupled with the above equivariant Dehn's lemma yields a

new version of the equivariant loop theorem in [5], As the placement of curves on
a surface is easier to understand this new equivariant loop theorem is easier to
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226 WILUAM H MEEKS III AND SHING-TUNG YAU

apply to study group actions. Applications of this theorem to classification of group
actions on R3 will appear in [11].

Throughout this paper we will be working with compact three-dimensional
Riemannian manifolds M with convex boundary. For simplicity we sometimes
refer to such an M as a convex manifold.

1. Dehn's lemma for planar domains

THEOREM 1 (Dehn's lemma for planar domains of a given genus). Let
^ {7i> 72> • • • > Jn) be a collection of disjoint unoriented Jordan curves on the

boundary of a three-dimensional orientable convex manifold M. Suppose that thèse

Jordan curves bound a continuous mapping g from a smooth compact planar
domain (possibly disconnected). Let Fk be the family of ail piecewise smooth maps
mapping from a compact planar domain with k components into M whose boundary
consists of curves in F. Let Ak be the infimum of the areas of the maps in Fk. If Ak is

strictly less thon Afc+1, then there exists a branched minimal immersion which has

least area among maps in Fk. Furthermore, any branched minimal immersion of
least area in Fk is an embedding.

Proof The existence of a map / : il —» M of planar domain with fc components
and least area follows from the inequality Ak<Ak+u from Morrey [7] and from
Theorem 1 in [4]. From the approximation technique in the proof of Theorem 5

in [4], we may assume that the map / is a simplicial immersion with respect to
some triangulations of il and M.

Since / : il —» M is a map of least area for a given genus, / restricted to each

component il' of il is a map of least area from a planar domain with boundary
curves f(d(2f). By Theorem 5 in [4], /1 il' is an embedding. Suppose that there are
two distinct components ill9 il2 of il such that f(ilt) and f(il2) intersect. In this
case it is shown in [4] that there are Jordan curves yt : S1 -» Ûl and y2 : S1 -» Ù2

such that f(ji(t)) f(y2(t)). The standard cutting and gluing argument (see the
end of the Proof of Theorem 5 in [4]) along the image curve f(7i) /(72)
produces a map of a planar surface with the same Euler characteristic as il and

with the same area as /. However, the area of the new map can be decreased

along the folding curve /(yi). Since the Euler characteristic of a planar domain
with n boundary curves détermines the genus and the number of components, the
existence of the new map contradicts the least area property for /. This contradiction

proves Theorem 1.

In [4] the authors also proved a disjointness property for least area disks when F
in the above theorem consists of one curve 7. In that paper we prove that any two
geometrically distinct least area disks intersect only along their boundary. This
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disjointness property for least area disks is useful in proving equivariant group
action theorems. For this reason we would like to generalize the disjointness

property to the case of planar domains given in the above theorem. However, in
the following example two Jordan curves in parallel planes in R2 are given which
bound two distinct embedded annuli of least area that intersect their interiors.

EXAMPLE. Let ô_loOo be a circle of radius 10 in the xy plane centered at the

point (0, -1000, 0) and let ô1000 be a circle of radius 10 in the xy plane centered
at the point (0,1000, 0). Let yx be the connected sum of ô_loOo anc* ^îooo a^ong

part of the interval I joining (0, -1000, 0) to (0,1000, 0) in such a way that yx is

the union of parts of 8_l000, £iooo> and the intervais I + (—1, 0, 0) and I + (l, 0,0).
Let 72 Yi +(0, 0,1) be the curve on the plane of distance one from the xy plane.
A least area annulus f:O -»R3 Connecting yY and y2 appears as in Figure 1. Let
i?:R3—»R3 be rotation by 180 degrees around the z-axis. Then the least area
annuli f(O) and R°f(O) intersect in their interiors. (A rigorous proof of the
existence of Û produced in this example can be found by using the bridge
theorem in [6].)

Figure 1.
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In spite of this example, the disjointness property holds when the following
assumptions on F hold.

THEOREM 2. Let F {yl9 y2,..., 7n} be a collection of disjoint unoriented
Jordan curves on the boundary of a compact three-dimensional orientable convex
manifold M. Suppose that yx is homotopically nontrivial when n equals two or that
F générâtes a rank (n -1) subgroup of the first homology group of M. If there exists

a continuous map g of a compact planar domain into M with boundary F, then

(1) there exists a branched minimal immersion of a compact planar domain
which bounds F and has (finite) least area among ail such maps.

(2) Every such map is an embedding of a connected planar domain.
(3) Any two such least area maps intersect only along their boundary F or else

they differ by a conformai reparametrization.

Proof Part (1) is just the statement of Theorem 5 in [4]. Part (2) follows
because the condition that the curves in F represent n -1 independent homology
classes implies the connectedness of the surface. The proof of part (3) is based on
the proof of Theorem 6 in [4]. The nontrivial approximation procédure in
Theorem 6 in [4] reduces part (3) to the spécial case that the two least area maps

f :{11-+ M and g : il2 —* M are simplicial with respect to some fixed triangulations
of al9 iï2 and M.

Suppose now that X /1(jQ1) n/2(/22) is not equal to the union of F. In [4] it is

shown that X is a finite one-dimensional subcomplex of M with every vertex in X
meeting at least two edges in X and the intersection of /(/2i) and f{il2) is traverse

except possibly at the vertices. A simple induction argument (see Lemma 10 in
[4]) proves that X contains a closed Jordan curve a which is not contained in the

union of F or for some i and fc > 0 there is a unique Jordan arc a : [0,1] -» X with
cr([0, l])nr {cr(0), <r(l)} and cr(0)e 7, and <r(l)e 7l+k.

Suppose that or exists. By the classification of compact planar surfaces, there
would be a smooth Jordan curve t in the interior of ûi such that rflX Tncris
one point which is not vertex and the intersection of t and a on Oi is transverse
at this point. As t intersects il2 transversely in one point, [r]n[/22] is nonzero
where fi dénotes the intersection pairing on homology in M with Z2-coefficients.
However, as ûx is a compact planar domain, t is homologous with Z2-coefficients
to some sum of boundary curves oi û^ As the boundary curves of 17 x and fl2 are
the same, some boundary curve 7, of Û2 must intersect il2 nontrivially in
homology. However, M is orientable and therefore we can push yx off il2 to
create a curve y[ which is disjoint from fl2. This curve is homologous to 7, but
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does not intersect Q2. This contradicts the intersection équation on homology and
therefore a can not exist. Hence there must be a Jordan curve a in X which is not
contained in F.

Let ax : S1 -* Ql and a2:S1-> Q2 be the Jordan curves with /(ai(0) g(«2(0)
and f(ai) a. Suppose for the moment that ax and a2 are contained in the
interior of Qx and il2. The curve a, disconnects Qx into two planar domains Q[,
Q'[ where Q[ is the planar domain containing the Jordan curve yv

Now consider the surface X obtained by gluing f(Q") and f(Q2) along a. If X
has a nonempty boundary, then for some i différent from 1, an oriented boundary
curve y, of X is homologous in X to a collection of curves in {±y2, ±y3,...,
±yp..., ±yn} where for the moment the curves F are oriented in an arbitrary
manner. Therefore the curves F-{yu y,} generate a subgroup of HX(M, Z) with
the same rank as F which is n — 1. For n ^ 3, this contradicts our assumptions. If
n - 2, then X is a disk and so y2 is homotopically trivial. This also contradicts our
assumptions and so X must hâve no boundary.

As X has no boundary, the surfaces /(/2i) and f(Q2) hâve the same boundary
curves. The usual cutting and gluing argument shows that / or g does not hâve
least area and hence part (3) is valid if the Jordan curve ax lies in the interior of
Qi. Actually the only reason that we chose the case iia1 lies in the interior of Qx"
was to make visualization of the intersection easier. The same argument still
produces a contradiction when part of a intersects the union of the curves in F.

This proves part (3) and complètes the proof of the theorem.

Remark. Theorem 2 can be proved by assuming appropriate conditions about
areas of planar domains which bound some subcollection of curves in F rather
than topological conditions. For example, suppose that F {yl9 y2} and that either

7i or 72 d°es not bound a disk with area less than twice the area of some annular
région joining them. Then the planar domain of least area joining yt and y2 will
be an embedded annulus and any two such annular surfaces intersect only along
their boundary curves. Note that this area condition fails for the example
described before Theorem 2.

2. Embedding of the partially free boundary value problem

Another type of embedding theorem that can be proved using the topological
tower construction is the partially free boundary value problem considered in
Courant's book [2]. In its simplest topological form the partially free boundary
value problem can be stated as follows. Let M be a compact three-dimensional
Riemannian manifold and yx be a Jordan curve on a boundary component dx of M
which is freely homotopic to a closed curve y2 on another component d2 of the
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boundary of M. Let F be the family of ail maps from the annulus fl to M which

maps one boundary curve of û homeomorphically onto 7! and the other
boundary curve of il into d2. Then we say that a minimal immersion / : û —> M is

a solution to the partially free boundary value problem for yt and d2 if feF and /
has least area in F.

THEOREM 3. Suppose M is a compact orientable Riemannian three-
dimensional manifold with convex boundary, yt is a Jordan curve on a component
dx of the boundary of M and yx is freely homotopic to a curve on a différent
component d2 of the boundary. Then

(1) There exists a solution /:il-»M to the partially free boundary value

problem for yx and d2 if the infimum of areas of maps in F is strictly less

than the area of any map of a disk with boundary yx. Furthermore f is

continuous in fl and smooth in the interior of il.
(2) Any such solution f is one-to-one and everywhere orthogonal to d2.

Proof. The existence of a solution to the partially free boundary value problem
can be proved using the methods in the proof of the free boundary value problem
in [51

After conformai reparametrization we may assume that il is a circular domain
where the inner circle is the unit circle S1 and /(S1) yx. From the approximation
arguments in [4] and [5] we may assume that the map / is simplicial with respect
to some triangulations of O and M Therefore the image surface f(fl) has a

regular neighborhood Nt in M. After restricting the range space of / to Nu there
is a new map fxiQ—* Nl9 Let H be the subgroup of H1(N1,Z2) generated by
fi(Sx). If H is not ail of Hi(Nu Z2), then there exists a surjective homomorphism

p : H^Nx, Z2) -» Z2 with p([fi(S1)]) 0. This homomorphism induces a surjective
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homomorphism p : ir^NJ -» Z2. Since the kernel of p has index two in tt^Ni),
there is a 2-sheeted covering space Pt : Nx —» Nx associated to this subgroup. Since

the map f:Q-+N1 satisfies fi*(iri((l)) c: P1*(Tr1(N1)) ker (p), the lifting theorem
for covering spaces implies that ft lifts to a map fx:fl-+ Nx. After restricting the

range of fx to a regular neighborhood N2 of /2(/2), we get a new map /2:0 —> N2.

Repeating this construction fc-times yields the tower below. As was discussed

in [4] or [5], this construction terminâtes with a map fk:O-+Nk with fk(Sl)
generating Hr(Nk, Z2). Hère P, is the restriction of P, to Nl+1 and each Nt is a

Riemannian manifold with the pulled back Riemannian metric.

ASSERTION 1. fk'M-*Kk is one-to-one.

Proof. As H^N^ Z2) is generated by fk(Sl), H^N^ Z2) is equal to the trivial
group or the group Z2. If Hi(Nk, Z2) is the trivial group, it is straightforward to
check that the boundary of Nk consists entirely of sphères (see [4] for a proof). In
this case y=fk(Sl) lies on some sphère S in the boundary of Nk.

In [4] and [5] it is shown that there exists, after subdivision, a simplicial
retraction R:Nk-»fk(Û) such that (1) R |(dNk-fk(dfl)) is locally one-to-one,
and (2) R | dNk covers each 2-simplex of fx(O) exactly two times.

The Jordan curve 7 disconnects the sphère S into two disks Dx and D2.
Computing areas, we hâve

Area(R | DO + Area (R | D2) Area(JR |S)<Area(R |dNk)<2 Area(/k).

Hence either the area of R | Dt or R | D2 is not greater than Area (fk) Area (ft).
Therefore we may assume that the area of, say, g Pi°P2°* * • °Pk_i°jR | Dx is not
greater than the area of f. Furthermore, the area of g can be decreased along a

folding curve which is a self-intersection curve of fk(O) in the case fk(D) is not
embedded (see Theorem 4 in [4] for a rigorous proof of this fact). This contradicts
the original assumption that / is a solution to the partially free boundary value

problem.
Thus we may assume that Hi(Nk, Z2) is Z2. In this case it is easy to show that

fk(dfl) is contained in a torus component T of the boundary of Nk (see the proof
of Theorem 5 in [4]). Furthermore, as H1(Nk,Z2) is generated by /(S^, the

boundary curves of fk(O) are disjoint and are nontrivial homology classes on dNk.

From the simple topology of curves on a torus we may conclude that fk(dO)
disconnect T into a collection of closed planar domains, two of which are annular
régions Ax and A2 where the boundary of the annular région A, consists of /^(S1)
and part of the other boundary curve of fk(i2).

Let R:Nk->fk({l) be the retraction discussed above. Then, as before,
Area (R | At) + Area (R | A2) < Area (fk), and so we may assume that
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Axea (R \ Ax) is strictly less than Area (fk). However, the boundary curves of
g (F1oP2o* • -oFfc.x0!?) | At consists of yx and a curve on the boundary compo-
nent d2. As Area (g) < Area (/), we arrive at a contradiction which shows the map
fk is one-to-one and proves Assertion 1.

ASSERTION 2. /k_x is one-to-one.

Proof. If /k_x is not one-to-one, then the map /k_! has singular points which
are double points. As /k_x is everywhere orthogonal to the boundary of Nk_x, the
maximum principle or Lemma 5 in [4] implies that the image of the boundary
component of fl différent from S1 is not completely contained in the singular set

S(/k-i). The arguments in [4] show that there exists a Jordan curve oti'.S1-^ Q or
a Jordan arc a^fO, l]-> O with a(0), a(l)edO which bounds with some part of
dû a closed connected domain ùx in O with /21nS(/k_1) a1. Let a2 be the
double curve corresponding to ai. By our choice of ai, the Jordan curve a2 will
bound, with some parts of dO, a closed subdomain Û2 of il whose interior is

disjoint from 121.

A cutting and gluing argument shows that we can interchange the région Q x

and fî2 to get a new continuous piecewise smooth map g :û —>/k_1(f2) with the

same area as /k_x(/2) and such that G PXQP2°' • -°Ph-2og is a candidate for a

solution to the partially free boundary value problem. However, the area of G
can be decreased along the folding curve ax which contradicts the least area

property for /. This contradiction proves the assertion which in turn implies part
(2) of the theorem.

Remarks. The previous theorem can be generalized in a number of interesting
ways. For example, one can replace yx by a collection Ft {yu 72» • • • » 7kl °f
pairwise disjoint Jordan curves and y2 by F2 {ai,..., an} a collection of curves
which lies on distinct boundary components of dM différent from the boundary
components containing the Jordan curves in f\. In this case we assume that there
is a map of a planar domain into M whose boundary curves are Fx U F2. One can
then pose a partially free boundary value problem and if there is a least area
solution to this problem, one can prove that the solution is embedded. The proof
of this fact can be shown using the techniques of proof given in Theorem 3 and in
Theorem 5 of [4].

It is important to note that the existence of embedded solutions to other free
boundary value problems can also be shown. For example, suppose we replace the
condition that yt and y2 lie on distinct components of the boundary of M, by the
condition that y2 lies in the complément of some compact pièce F of the

boundary surface containing yt. Then if a solution to this free boundary value

problem exists and the boundary of the map is disjoint from dF, then the solution
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is an embedding. Such free boundary value problems occur naturally for, say,
certain convex subsets of euclidean three space.

The solution to the free boundary value problem in [5] can be generalized to
annular or even planar domains. For example, suppose that yx is a loop on a

boundary component dx of a convex M, which is homotopically nontrivial in M.
Suppose 7i is homotopic to a loop y2 on a différent boundary component d2 of M.
Then there exists an immersion f.fl-^M of an annulus of least area with one
boundary curve on dt and the other boundary curve on d2 and so that the induced

map on fundamental groups is nontrivial. Furthermore, / is as regular as the
metrie of M and any such / is one-to-one.

3. The equivariant Dehn's lemma

In [5] we proved the equivariant loop theorem by using the disjointness
property of least area disks. The disjointness property in Theorem 2 for least area

planar domains can also be used to prove the following equivariant theorem.

THEOREM 4 (Equivariant Dehn's lemma for planar domains). Suppose F
(Yi> Y2> • • • > Ynl is a collection of smooth disjoint unoriented Jordan curves on the

boundary of an orientable three-dimensional manifold M. Suppose either the curves
in F generate a rank (n -1) subgroup of the first homology group ofMorn equals to

two and the curve yx is homotopically nontrivial in M. Suppose also that the

collection F is the image of the boundary of a map of a compact planar domain into
M. If G is a compact subgroup of Diff+ (M) which acts freely on the union of F,
then F is the boundary of an embedded compact planar domain in M which is

invariant under those éléments of G that leave some yx in F invariant.

Proof. As G is compact, we may assume that G acts on M as a group of
isometries. Furthermore, it is elementary to construct an invariant metric on M
with convex boundary by averaging the metric on dM and taking the product
metric in a neighborhood of dM. We may also assume that M is compact by
restricting the manifold to a regular neighborhood of the G orbits of the image of
the map of the compact planar domain given in the hypothesis.

By Theorem 1, there exists a smooth embedded connected compact planar
domain Q of least area in M with boundary curves in F. By Theorem 2, any two
such least area planar domains are either disjoint in the interior of M or equal.

Suppose now that g:M~*M is an élément of G which leaves invariant the
Jordan curve 7, and suppose g(û)^{i. As g leaves yt invariant and has no fixed

points on 7,, g acts on a regular neighborhood of 7, as a rotation. As g(iî)^f2
and g(Q) is another planar domain of least area, g(O) is disjoint from il in the



234 WILLIAM H MEEKS III AND SHING-TUNG YAU

interior of M. This implies that g(il) lies locally on one side of il. By convexity
(see for example [4] or [6]), the surfaces il and g(il) are immersed and transverse
to the boundary of M.

Let J(y[(t)) dénote the vector obtained by rotating the tangent vector y[(t)
clockwise by 90 degrees in the tangent space of Tyt(t)dM with respect to the
induced orientation. Define aa(yXt)) and ag(n)(Yt(0) as the oriented angle
between the vector J(y[(t)) and the tangent planes of the corresponding surfaces.

After integrating along 7,, we hâve

#n I aa(y(t)) dt and 0g(xî) J ag(n)(7(0) dt.

As g acts as rotation on the regular neighborhood of 7,, an(g(y(t)))
and hence 6n 0^(ny On the other hand, as il lies locally on one side of g(il)9
either an(Y,(0)^Og<n)(Yi(0) for ail t or else afl(Yi(0)^ttg(n)(Y,(0) for ail t. As the

intégrais are the same, an(Yi(0) Yg(n)(Yi(0)« This shows that g(il) and il are

everywhere tangential to each other along yx. Therefore, the maximum principle
(or Lemraa 5 in [4]) implies that il and g(il) intersect in an open set. Hence the

disjointness property of il implies that il g(il). This complètes the proof of the
theorem.

THEOREM 5 (Equivariant Dehn's lemma for disks). Suppose F
{71,..., 7n} is a collection of disjoint Jordan curves on the boundary of an
orientable three-dimensional manifold M. Suppose each yv is homotopically trivial
in M. If G is a compact group acting on M as a group of orientation preserving
dijfeomorphism which acts freely on the union of F, then there exists a collection of
embedded invariant disks {Dx, D2,..., Dn} which are pairwise disjoint with dDt

7, and whose union is invariant under G.

Proof. After picking an invariant metric, G acts as a group of isometries. As in
the previous lemma, we can assume that this metric is convex and M is compact.
Let Dj be a disk of least area with boundary curve yx and let G • Dt dénote the

union of the least area disks which are images of Dx under G. By the argument
given in the previous theorem, Dx is the only disk in G • Dx whose boundary
curve is 71. This implies that each of the curves in G • yx bound a unique disk in

GDX.
If G • 7! is not ail of F, then let D2 be a disk of least area with a boundary

curve in F\(G • 7t) and G • D2 be the union of the orbits of D2 under the action
of G. As before, thèse are embedded and disjoint. As the disks in Gt • Dx and

G • D2 can only intersect in their interiors and as they hâve least area, they do not
intersect. This last fact is proved in [4] where we show that if two embedded
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minimal disks intersect only in their inteiiors, then there is a closed Jordan curve
in their intersection which bounds two least area disks. Then by a cutting and

gluing argument we can decrease the area of one of the GiD^ which is

impossible.
If G • yx U G • y2 does not exhaust the curves in F, then we can find a new

least area disk D3 with boundary curve in F —(G • 7! U G • y2). Let G • D3 be the
orbits of D3. Continuing this process eventually, we can produce the required
disks G • DUG • D2,...,G • Dk.

COROLLARY. Suppose t : M —» M is an orientation preserving diffeomorphism
of a three-dimensional manifold M which is an isometry with respect to some metric

on M. If t leaves invariant a Jordan curve y on the boundary of M which is

homotopically trivial in M, then r has a fixed point on M.

Proof Let G be the closure in Diff+ (M) of the cyclic subgroup generated by
t. As 7 lies on the boundary of an orientable three-dimensional manifold, G
restricts to an effective action on 7. Hère G is either a finite cyclic group or S1. By
the previous theorem there is either a fixed point of t on 7 or else there is a disk
in M which is invariant under t. If r has no fixed points on 7, then the Brower
fixed point theorem implies that t has a fixed point on the invariant disk. This

proves the corollary.

4. The equivariant loop theorem

In this section we are going to prove the equivariant loop theorem by first
proving a disjointness property of a certain generating set of closed geodesics on
the boundary of the three-dimensional manifold and then applying the

equivariant Dehn's lemma of Section 3. We begin with the following

DEFINITION. Let M be an n-dimensional compact Riemannian manifold
and let H be a normal subgroup of ttx(M). Then a collection F
{Yi> Y2> • • • > Yn> • • •} of closed geodesics is said to be a short generating set for H if
for each n, yn represents a closed curve in H of least length in the complément of
the normal subgroup of H generated by the free homotopy classes F
(Yi, Y2, • • • Yn-J.

LEMMA 1. Suppose yx and y2 are embedded distinct closed geodesics on a

boundary surface % of a three-dimensional Riemannian manifold M. If yx and y2
intersect nontrivially and are homotopically trivial in M, then one of thèse geodesics,

say Y2» can be expressed as the product of two closed nongeodesic curves in yx U y2,
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each with length less than or equal to length of y2, and thèse nongeodesic curves are
homotopically trivial in M.

Proof. Since an embedded géodésie is determined by its tangent vector at a

single point and the exponential map is a local diffeomorphism, it is easily seen
that yx and y2 intersect transversally in a finite number of points. Hence we may
consider yt and y2 as simplicial curves on X with respect to some triangulation of
M. By Dehn's lemma there exist embedded pieeewise linear disks Dt and D2 with
boundary curves yx and y2 respectively, which are in gênerai position.

Since Dx and D2 are in gênerai position, they intersect in a compact one-
dimensional manifold with boundary. Let I be an interval component in Dx C\D2.
The interval I disconnects Dt into two closed subdisks Dn and D12 and
disconnects D2 into two closed subdisks D21 and D22. Let a(J=Dljn5 and

suppose that an is the shortest such arc. Then the length of the boundary of each

of the disks D1 D11UI D21 and D2 Dlt UrD22 is less than or equal to the

length of y2. Hère Ur means that we pas te the disks along their common
boundary arc /. On the other hand, y2 can be expressed as a product of
dDt • dD2 (a21an) • {a^la22). Since dDx and dD2 are not geodesics, dDt and

dD2 are the required closed curves. This complètes the proof of the lemma.

THEOREM 6. Suppose M is a compact orientable three-dimensional Rieman-
nian manifold with a boundary component X. Let K Ker (/#) be the kernel of the

map i%:rri(X)-* irx(M) induced by inclusion. Then with respect to any fixed metric

on X, there exists a finite short generating set F {yx, y2,..., yn} for K. For any
such generating set the geodesics in F are embedded. Furthermore, any two geodesics

in the union of any two short generating sets are either equal or disjoint.

Proof. We first show that there is a minimal generating set F {yt, y2,..., yn}
for K consisting of embedded geodesics. Since there are only a finite number of
free homotopy classes on a compact surface having length less than a given
constant, we can choose a short generating set for K by sequentially picking the
next free homotopy class of least length. To be précise, suppose by induction
Fn~i ~{ji, Y2> • • • > Yn-il hâve been chosen. If Fn-X is not a short generating set,
then we let yn be a closed géodésie of ieast length in the complément of the
normal subgroup of K generated by rn_x. We will now show that yn is embedded.

Since yn : S1 -» M is a closed géodésie, it is determined by its tangent vector at
a point and its multiplicity which is the number of times it transverses the same

path. As a géodésie of multiplicity one is always in gênerai position with respect to
itself, we may assume that YnCS1) is a simplicial curve with respect to some

triangulation of M. Hence yn : S1 -> M is also simplicial with respect to the pulled
back triangulation on S1.
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Let /:D->Mbea branched simplicial immersion such that /1 dD yn. Then
after restricting to a regular neighborhood Nt of f(D) in M, there is a new map
f1:D-* Nt. As in the proof of Dehn's lemma (see [4] or [1]), we can construct a

tower where we may assume that the boundary of Nk consists entirely of sphères
and each of the manifolds Nt are Riemannian with respect to the pulled back
me trie. Hère Pl^1:Nl^1-> Nt^t is the universal covering space of N^t and N, is a

regular neighborhood of the image of some lift f^t to this universal covering
space.

ASSERTION 1. The lift fk has an embedded boundary curve.

Proof. Since C fk(dD) lies on a sphère, every Jordan curve in the 1-complex
C is homotopically trivial in Nk^x. As the fundamental group of C is gênerated as

a tt^C, p) module by Jordan curves, there is a Jordan curve 7' in C such that
y' =zpQop1o- • .opk_x(y) does not lie in the normal subgroup of K generated by
Fn_1. If C is not a Jordan curve, then the length of yn is not minimal. This shows

that C is a Jordan curve. Since C has less length than any nontrivial multiple of C
and C is homotopically trivial, the lift fk \ dD must be an embedding.

ASSERTION 2. yn is embedded.

Proof. If yn is not embedded, then there exists a smallest m>0 such that
/m | dD is not embedded. By the previous assertion /m+11 dD exists and is

one-to-one. Let /m i°/m+i be the composition of /m+1 with the inclusion map
into the total space of the universal covering space Pm : Nm -* Nm. By définition of
fm, fm is a lift of the map fm to its universal covering space. Since fm is not
one-to-one, two points on fm(dD) must be identified under a nontrivial covering
transformation t: Nm -* Nm.
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First, suppose T(fm(dD)) j= fm(dD). Then with respect to the pulled back metric
on Nm, Lemma 1 implies that one of thèse geodesics, say /m(dD), can be

expressed as a product of two closed nongeodesic curves c^, a2 with length (a,)^
length (/m0D)) length(7n). Hence either Po°- • •o?m_1oJPm(a1) or P0o-..o
Pm_1oJPm(a2) does not lie in the normal subgroup of K gênerated by Fn_1

(7i> Y2> • • • > 7n-il and has length less than the length of yn. This contradicts the
least length property of 7n and shows that yn is embedded in the case

r(fm(dD))ïfm(dD).
If T(fm(dD)) fm(dD), then by the Corollary to Theorem 5, r has a fixed point

in Nm which implies that r is the identity map contrary to our hypothesis about t.
This shows that this case can not occur and that yn is embedded. This ends the

proof of Assertion 2.

By induction we can continue this process to find a short generating set F for
K consisting of embedded geodesics. The argument given above also implies that
any short generating set consists of embedded geodesics.

Let F {yu 7n,...} be a possibly infinité short generating set for K. We
will now show that the embedded geodesics in F are disjoint and the number of
éléments in F are bounded by 3 g where g is the genus of X. Suppose yt and yl+k
are geodesics in F which intersect each other and where fc > 0. Lemma 1 shows

that the free homotopy class of one of thèse geodesics can be expressed as the

sum of two homotopy classes of less length. This immediately contradicts the least

length property for thèse geodesics and thereby proves the geodesics in F are

disjoint. This argument also proves the last statement in the theorem.

If M2 is a compact orientable surface of genus g and F {yly..., 73g+i} is a

collection of 3g+ 1 disjoint Jordan curves on the surface, then the classification
theorem for compact surfaces can be used to show that two of thèse Jordan curves

are isotopic. Hence there are at most 3g +1 éléments in a short generating set for
K where g is the genus of X. This last observation complètes the proof of the
theorem.

THEOREM 7 (Equivariant loop theorem). Suppose G is a finite group which
acts on a compact orientable three-dimensional manifold M with boundary a? a

group of orientation preserving diffeomorphisms. Then there exists a collection
A ={Dl5 D2,..., Dn} of embedded pairwise disjoint disks in M which satisfy

(1)
(2) The normal subgroup generated by F {dDu dD2,..., dDn} is the kernel K

of the inclusion map of the fundamental group of each component X of the

boundary of M into M.
(3) The union of A is G invariant.
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Proof. If we produce a collection of disjoint Jordan curves r {yu y2,..., 7n}

on dM such that the normal subgroup of tt^ôM) generated by F is K and G acts

freely on the union of F, then the theorem will follow from Theorem 5. To prove
the existence of such a F, we first consider a short generating set F'
{(*!, a2,..., ak} given by Theorem 6. If G acts freely on the union of F', then F'
is the required collection of Jordan curves. If G has a fixed point on F', then we

carry out the foliowing procédure.
Let N, be a regular neighborhood of the curve yt on dM that is small enough

so that the collection of thèse neighborhoods is invariant under G and thèse

neighborhoods are pairwise disjoint. Clearly, N, is difïeomorphic to S1x[0,1].
Let F be the collection of ail the boundary circles of thèse regular neighborhoods.
As G acts as a group of orientation preserving transformations of the boundary of
M, and N, is an annulus, any élément geG which has a fixed point on dNt must
be equal to the identity on N, and hence the identity on M. Therefore G acts

freely on the union of F. By the previous discussion this complètes the proof of
the theorem.
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