On the quantitative boundary behavior of conformal maps.

Autor(en): Pommerenke, Ch. / Warschawski, S.E.
Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 57 (1982)

PDF erstellt am: 22.07.2024
Persistenter Link: https://doi.org/10.5169/seals-43876

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On the quantitative boundary behavior of conformal maps

Ch. Роmmerenke* and S. E. Warschawski*

1. Introduction

Let Γ be a closed Jordan curve in \mathbf{C} and let f map the unit disk \mathbf{D} conformally onto the inner domain of Γ. For $\omega_{1}, \omega_{2} \in \Gamma$, let $\Gamma\left(\omega_{1}, \omega_{2}\right)$ denote the arc (of smaller diameter) of Γ between ω_{1} and ω_{2}. We shall study the relation between the geometric quantity

$$
\begin{equation*}
\eta(\delta)=\sup _{\left|\omega_{1}-\omega_{2}\right| \leq \delta} \sup _{\omega \in \Gamma\left(\omega_{1}, \omega_{2}\right)}\left(\frac{\left|\omega_{2}-\omega\right|+\left|\omega-\omega_{1}\right|}{\left|\omega_{2}-\omega_{1}\right|}-1\right)^{1 / 2} \tag{1.1}
\end{equation*}
$$

and the analytic quantity

$$
\begin{equation*}
\beta(\delta)=\sup _{1-\delta \leqq|\zeta|<1}(1-|\zeta|)\left|\frac{f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right| \quad(0<\delta \leqq 1) . \tag{1.2}
\end{equation*}
$$

The relation between $\eta(\delta)$ and other properties of f has been investigated in two papers by F. D. Lesley and the second author [4][5], and our main theorem is based in part on these results.

The curve Γ (which need not be rectifiable) is called asymptotically conformal if $\eta(\delta) \rightarrow 0$ as $\delta \rightarrow 0$; this holds [7, Th. 1] if and only if $\beta(\delta) \rightarrow 0$ as $\delta \rightarrow 0$. The connection with quasiconformal mappings was studied in a paper with J. Becker [2].

THEOREM 1. Let f map \mathbf{D} conformally onto the inner domain of the asymptotically conformal curve Γ. Then, for $0<\varepsilon<1 / 2$, there exists $\delta_{0}(\varepsilon)>0$ such that

$$
\begin{equation*}
c \eta\left(\delta^{1+\varepsilon}\right)<\beta(\delta)<M\left[\eta\left(\delta^{1-\varepsilon}\right)+\delta^{\varepsilon / 6}\right] \quad\left(0<\delta<\delta_{0}(\varepsilon)\right) \tag{1.3}
\end{equation*}
$$

where $c>0$ and M depend only on f.

[^0]This theorem gives the best result if Γ is "not too smooth." For instance, if $c_{1}(\log 1 / \delta)^{-a}<\eta(\delta)<M_{1}(\log 1 / \delta)^{-a}$ for $0<\delta<\delta_{1}$ and some $a>0$ then Theorem 1 (with $\varepsilon=1 / 4$) shows that

$$
\begin{equation*}
c_{2} \eta(\delta)<\beta(\delta)<M_{2} \eta(\delta) \quad\left(0<\delta<\delta_{2}\right) . \tag{1.4}
\end{equation*}
$$

We shall study $\boldsymbol{\beta}(\boldsymbol{\delta})$ and $\eta(\boldsymbol{\delta})$ in Section 2 and prove the lower estimate (1.3). The much more difficult proof of the upper estimate (1.3) will be given in Section 3.

In the last section, we derive some consequences of Theorem 1 and construct examples (using lacunary series):
(a) The curve Γ is smooth if [4, Prop. 3]

$$
\begin{equation*}
\int_{0}^{1} \frac{\eta(t)}{t} d t<\infty, \tag{1.5}
\end{equation*}
$$

and we shall see that this condition is best possible and that it does not imply that Γ is Dini-smooth. It follows from (1.5) that

$$
\begin{equation*}
c_{3} \eta(\delta)<\beta(\delta)<M_{3} \int_{0}^{\delta} \frac{\eta(t)}{t} d t+M_{3} \delta \int_{\delta}^{1} \frac{\eta(t)}{t^{2}} d t \quad\left(0<\delta<\delta_{3}\right), \tag{1.6}
\end{equation*}
$$

and this estimate is better than (1.3) if $\eta(\delta)$ behaves like δ^{a}. It also follows [4, Th. 3] from (1.5) that $\log f^{\prime}$ is continuous in $\overline{\mathbf{D}}$, and we shall improve the estimate for the modulus of continuity.
(b) The curve Γ is rectifiable and even asymptotically smooth if

$$
\begin{equation*}
\int_{0}^{1} \frac{\eta(t)^{2}}{t} d t<\infty, \tag{1.7}
\end{equation*}
$$

and this condition is again best possible. Hence $\log f^{\prime} \in \operatorname{VMOA}$ [7, Th. 2], and we shall show that

$$
\log f^{\prime} \in \mathrm{BMO}_{\partial \mathbf{D}}(\rho)
$$

for a certain $\rho(\delta)$; see Sarason's lecture notes [11, Chapter 5] for a discussion of these function classes.

Throughout the paper, we denote by $\delta_{0}, \delta_{1}, \ldots$, by c, c_{1}, \ldots and by M, M_{1}, \ldots positive constants that depend only on the function f and possibly on displayed parameters, while K, K_{1}, \ldots will denote absolute constants.

2. The lower estimate

2.1. Some properties of β. let $\beta(\delta)$ be defined by (1.2). The maximum principle shows that

$$
(1-|\zeta|)\left|\frac{f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right| \leqq(t+\delta) \frac{\beta(\delta)}{\delta} \text { for } 1-t-\delta \leqq|\zeta| \leqq 1-\delta .
$$

Hence $\delta \beta(t+\delta) \leqq(t+\delta) \beta(\delta)$ and similarly $t \beta(t+\delta) \leqq(t+\delta) \beta(t)$, and it follows that

$$
\begin{equation*}
\beta(t+\delta) \leqq \beta(t)+\beta(\delta) \quad \text { for } \quad t, \delta>0, \quad t+\delta \leqq 1 . \tag{2.1}
\end{equation*}
$$

Thus β is increasing and subadditive.
It follows from (1.2) by integration that

$$
\left|\log \frac{f^{\prime}\left(\rho e^{i t}\right)}{f^{\prime}\left((1-\delta) e^{i t}\right)}\right| \leqq \beta(\delta) \log \frac{\delta}{1-\rho} \quad \text { for } \quad 1-\delta \leqq \rho<1 .
$$

If $\beta(\delta) \rightarrow 0$ as $\delta \rightarrow 0$ we conclude that, for $\varepsilon>0$,

$$
\begin{equation*}
(1-|\zeta|)^{\varepsilon} \leqq\left|f^{\prime}(\zeta)\right| \leqq(1-|\zeta|)^{-\varepsilon} \quad\left(1-\delta_{1}(\varepsilon) \leqq|\zeta|<1\right) \tag{2.2}
\end{equation*}
$$

THEOREM 2.1. Let f map \mathbf{D} conformally onto the inner domain of an asymptotically conformal curve. If $|\zeta|=1-\delta<1$ and $a \geqq 1$ then

$$
\begin{equation*}
\frac{\beta(\delta)}{2} \leqq \max _{\substack{z \in \overline{\bar{x}} \\|z-\zeta| \leqq a \delta}}\left|\frac{f(z)-f(\zeta)}{(z-\zeta) f^{\prime}(\zeta)}-1\right| \leqq 60 a^{3} \beta(\delta) \tag{2.3}
\end{equation*}
$$

for $0<\delta<\delta_{2}(a)$.
Proof. (a) Since

$$
\frac{f(z)-f(\zeta)}{(z-\zeta) f^{\prime}(\zeta)}-1=\frac{f^{\prime \prime}(\zeta)}{2 f^{\prime}(\zeta)}(z-\zeta)+O\left(|z-\zeta|^{2}\right) \quad(z \rightarrow \zeta)
$$

the left-hand inequality (2.3) follows from a well-known coefficient estimate applied to $\{|z-\zeta|=\delta\}$.
(b) Let $z \in \mathbf{D}$ and $|z-\zeta| \leqq a \delta$. We see from (2.1) that $\beta((a+1) \delta) \leqq$
$(a+2) \beta(\delta) \leqq 3 \beta(\delta)$. Hence, by definition (1.2),

$$
\begin{aligned}
\left|\log \frac{f^{\prime}(z)}{f^{\prime}(\zeta)}\right| & =\left|\int_{\zeta}^{z} \frac{f^{\prime \prime}(t)}{f^{\prime}(t)} d t\right| \leqq \int_{\zeta}^{z} \frac{6 a \beta(\delta)}{1-|t|^{2}}|d t| \\
& =3 a \beta(\delta) \log \frac{1+|s|}{1-|s|} \leqq 6 a \beta(\delta) \log \frac{1}{1-|s|}
\end{aligned}
$$

where we integrated along the non-euclidean segment from ζ to z and where $s=(z-\zeta) /(1-\bar{\zeta} z)$. Writing $\beta=\beta(\delta)$ we deduce that

$$
\left|\frac{f^{\prime}(z)}{f^{\prime}(\zeta)}-1\right| \leqq \exp \left|\log \frac{f^{\prime}(z)}{f^{\prime}(\zeta)}\right|-1 \leqq(1-|s|)^{-6 a \beta}-1
$$

Since $|d z / d s|=|1-\bar{\zeta} z|^{2} /\left(1-|\zeta|^{2}\right) \leqq 5 a^{2} \delta$ we obtain by another integration that

$$
\begin{aligned}
\left|\frac{f(z)-f(\zeta)}{(z-\zeta) f^{\prime}(\zeta)}-1\right| & \leqq \frac{5 a^{2} \delta}{|z-\zeta|} \int_{0}^{|s|}\left[(1-\sigma)^{-6 a \beta}-1\right] d \sigma \\
& =\frac{5 a^{2} \delta}{|1-\bar{\zeta} z|}\left(\frac{1-(1-|s|)^{1-6 a \beta}}{(1-6 a \beta)|s|}-1\right) \leqq 60 a^{3} \beta
\end{aligned}
$$

for $0<\delta \leqq \delta_{0}$ if δ_{0} is chosen so small that $6 a \beta(\delta)<1 / 2$. This proves the right-hand inequality (2.3).
2.2. Geometric properties of η. By elementary geometry, the definition (1.1) of η means that $\Gamma\left(\omega_{1}, \omega_{2}\right)$ lies in an ellipse with loci ω_{1} and ω_{2} and with minor half axis $\left(2+\eta(\delta)^{2}\right)^{1 / 2} \eta(\delta) \delta / 2$; this is $<\eta(\delta) \delta$ for small δ. We need a somewhat different description in terms of the width of a strip; this result was independently proved by C. FitzGerald.

LEMMA 2.1. If $\eta(\delta) \rightarrow 0(\delta \rightarrow 0)$ then, for $0<\delta<\delta_{0}$,

$$
\begin{equation*}
\frac{\eta(\delta)}{3}<\sup _{\left|\omega_{1}-\omega_{2}\right| \leqq \delta \delta} \sup _{\omega \in \Gamma\left(\omega_{1}, \omega_{2}\right)}\left|\operatorname{Im} \frac{\omega-\omega_{1}}{\omega_{2}-\omega_{1}}\right|<\eta(\delta) . \tag{2.5}
\end{equation*}
$$

Proof. The right-hand inequality follows at once from the remark about the enclosing ellipse. We prove now that $\eta(\delta)<3 \eta^{*}(\delta)$ where $\eta^{*}(\delta)$ denotes the middle term in (2.5).

Let $\omega_{1}, \omega_{2} \in \Gamma$ with $\left|\omega_{1}-\omega_{2}\right| \leqq \delta$ and let $\omega \in \Gamma\left(\omega_{1}, \omega_{2}\right)$. We may assume that

$$
\begin{equation*}
\omega_{1}=0, \quad \omega_{2}=\delta ; \quad \omega=r e^{i \theta}, \quad 0 \leqq \theta<\pi, \quad r \cos \theta \leqq \delta / 2 \tag{2.6}
\end{equation*}
$$

If δ is sufficiently small then $\eta^{*}(\delta)<\eta(\delta)<1 / 2$. Hence $r \sin \theta \leqq \delta \eta^{*}(\delta)<\delta / 2$ which, together with $r \cos \theta \leqq \delta / 2$, shows that $r<\delta / \sqrt{ } 2$. Since $\sqrt{x+y}-\sqrt{x} \leqq y /(2 \sqrt{x})$ for $x>0, y>0$, we conclude that

$$
\begin{aligned}
\frac{\left|\omega_{2}-\omega\right|+\left|\omega-\omega_{1}\right|}{\left|\omega_{2}-\omega_{1}\right|}-1 & =\frac{\left[(\delta-r)^{2}+4 r \delta \sin ^{2}(\theta / 2)\right]^{1 / 2}-(\delta-r)}{\delta} \\
& \leqq \frac{2 r \delta \sin ^{2}(\theta / 2)}{\delta-r} \leqq \frac{2 \delta \eta^{*}(\delta)^{2}}{\delta(1-1 / \sqrt{ } 2)},
\end{aligned}
$$

and thus that $\eta^{*}(\delta)^{2}<8 \eta(\delta)^{2}$ for small δ.
Remark 2.1. The last result implies that $\eta(2 \delta) \leqq K \eta(\delta)$. We only indicate the proof. With the convention (2.6), choose $\omega_{1}^{\prime}, \omega_{2}^{\prime} \in \Gamma(0, \delta)$ such that $\left|\omega_{1}^{\prime}-\omega_{2}^{\prime}\right|=\delta / 2$, $\omega \in \Gamma\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ and $\left[\omega_{1}^{\prime}, \omega_{2}^{\prime}\right]$ is paraliel to $[0, \delta]$. Let $\omega \in \Gamma\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ be a point on the perpendicular bisector of [$\omega_{1}^{\prime}, \omega_{2}^{\prime}$]. We consider now the pairs $\{0, \omega\},\{\omega, \delta\}$, $\left\{\omega_{1}^{\prime}, \omega_{2}^{\prime}\right\}$ and see by elementary geometry that

$$
\delta \eta^{*}(\delta)=\max |\operatorname{Im} \omega|<3 \eta^{*}(\delta / \sqrt{ } 3)
$$

for small δ. Applying this twice we obtain $\eta^{*}(\delta)<9 \eta^{*}(\delta / 3)<9 \eta^{*}(\delta / 2)$.
2.3. Proof of the lower estimate (1.3). Let $z_{1}, z_{2} \in \partial \mathbf{D},\left|z_{1}-z_{2}\right|=\delta$ and choose $\zeta \in \mathbf{D}$ on the perpendicular bisector of $\left[z_{1}, z_{2}\right]$ such that $|\zeta|=1-\delta$. It follows from Theorem 2.1 with $a=2$ that, for z on $\partial \mathbf{D}$ between z_{1} and z_{2},

$$
\begin{equation*}
\frac{f(z)-f(\zeta)}{f^{\prime}(\zeta)}=(z-\zeta)+b \quad \text { with } \quad|b| \leqq K_{1} \delta \beta(\delta) . \tag{2.7}
\end{equation*}
$$

Writing b_{i} instead of b for the cases $z=z_{j}$, we thus see that

$$
\begin{equation*}
\frac{f(z)-f\left(z_{1}\right)}{f\left(z_{2}\right)-f\left(z_{1}\right)}=\frac{\left(z-z_{1}\right)+\left(b-b_{1}\right)}{\left(z_{2}-z_{1}\right)+\left(b-b_{2}\right)} . \tag{2.8}
\end{equation*}
$$

Since $\left|\operatorname{Im}\left[\left(z-z_{1}\right)\left(\bar{z}_{2}-\bar{z}_{1}\right)\right]\right| \leqq \delta^{3}$ we deduce from (2.7) and (2.8) that

$$
\begin{equation*}
\left|\operatorname{Im} \frac{f(z)-f\left(z_{1}\right)}{f\left(z_{2}\right)-f\left(z_{1}\right)}\right| \leqq \frac{\delta^{3}+K_{2} \delta^{2} \beta(\delta)}{\left[\delta-2 K_{1} \delta \beta(\delta)\right]^{2}} \leqq M_{2} \beta(\delta) \tag{2.9}
\end{equation*}
$$

for sufficiently small δ because $\delta \leqq M_{1} \beta(\delta)$ by (2.1).

Since Γ is a quasiconformal curve it follows [6, p. 315] that

$$
\begin{equation*}
\frac{\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|}{(1-|\zeta|)\left|f^{\prime}(\zeta)\right|} \geqq c_{1} \frac{\operatorname{diam} \Gamma\left(f\left(z_{1}\right), f\left(z_{2}\right)\right)}{(1-|\zeta|)\left|f^{\prime}(\zeta)\right|} \geqq c_{2} . \tag{2.10}
\end{equation*}
$$

Hence (2.2) with $\varepsilon / 2$ instead of ε shows that

$$
\begin{equation*}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \geqq c_{2}(1-|\zeta|)^{1+\varepsilon / 2}=c_{2} \delta^{1+\varepsilon / 2} \geqq \delta^{1+\varepsilon} \tag{2.11}
\end{equation*}
$$

if $0<\delta<\delta_{0}(\varepsilon)$, and the lower estimate (1.3) follows from (2.9) and Lemma 2.1.

3. The upper estimate

3.1. Connection with conformal mapping of strips. To obtain an upper bound for $\beta(\delta)$ we map \mathbf{D} and the inner domain of Γ conformally onto infinite strips. Let, as above, f denote a univalent function in \mathbf{D}, as well as its continuous extension to $\partial \mathbf{D}$, which maps \mathbf{D} onto Ω, and let $f\left(\zeta_{0}\right)=\omega_{0}\left(\left|\zeta_{0}\right|=1\right)$. The functions

$$
\begin{equation*}
z=x+i y=h(\zeta)=\log \frac{\zeta_{0}+\zeta}{\zeta_{0}-\zeta} \text { and } \quad w=u+i v=H(\omega)=-\log \left(\omega-\omega_{0}\right) \tag{3.1}
\end{equation*}
$$

where \log denotes the principal value for $\zeta \in \mathbf{D}$ and \log is a determination of the logarithm for $\omega \in \Omega$ obtained by fixing a branch at a point of $\bar{\Omega}-\left\{\omega_{0}\right\}$, map \mathbf{D} onto the strip $\Sigma=\{z|-\infty<x<+\infty,|y|<\pi / 2\}$ and Ω onto a striplike domain S, depending on ω_{0}. Its boundary is a closed Jordan curve C with a point, w_{∞}, at $w=\infty$. Then $F=h \circ f^{-1} \circ H^{-1}$ is a conformal map of S onto Σ. Let $f\left(-\zeta_{0}\right)=\omega_{0}^{\prime}$ and $w_{0}^{\prime}=H\left(\omega_{0}^{\prime}\right)$; then $\lim _{w \rightarrow w_{\infty}} \operatorname{Re} F(w)=\infty$ and $\lim _{w \rightarrow w_{o}^{\prime}} \operatorname{Re} F(w)=-\infty$. The points w_{0}^{\prime} and w_{∞} decompose C into two subarcs C_{+}and C_{-}, where the notation is so chosen that, under the mapping F, C_{+}corresponds to $\{y=\pi / 2\}$ and C_{-}to $\{y=-\pi / 2$).

A simple calculation leads to the equation $\left(w=-\log \left(f(\zeta)-f\left(\zeta_{0}\right)\right)\right)$

$$
\begin{equation*}
\frac{F^{\prime \prime}(w)}{\left[F^{\prime}(w)\right]^{2}}+\frac{1}{F^{\prime}(w)}-1+\frac{\zeta_{0}-\zeta}{\zeta_{0}}=-\frac{\zeta_{0}^{2}-\zeta^{2}}{2 \zeta_{0}} \frac{f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}(|\zeta|<1) . \tag{3.2}
\end{equation*}
$$

3.2. A comparison strip. Let $0<\varepsilon<1 / 10$. We assume in the following that Γ is an asymptotically conformal curve and use the notations of Section 3.1; $\boldsymbol{K}, \boldsymbol{K}_{1}, K_{2}, \ldots$ denote absolute constants, $\boldsymbol{M}, \boldsymbol{M}_{1}, \boldsymbol{M}_{2}, \ldots$ depend only on f and
parameters. We write

$$
\begin{equation*}
\tilde{\eta}(u)=\eta\left(2 e^{-u}\right)+2 e^{-u \varepsilon} \tag{3.3}
\end{equation*}
$$

LEMMA 3.1. There exists a constant a_{1} which depends only on f (but not on $\left.\omega_{0}\right)$ and a strip

$$
S_{1}=\left\{w=u+i v \mid v>a_{1}, \varphi_{-}(u)<v<\varphi_{+}(u)\right\} \subset S
$$

where φ_{-}and φ_{+}are continuous, piecewise linear functions in $\left[a_{1}, \infty\right)$ with the following properties:
(i) The corners of both curves $\left\{v=\varphi_{ \pm}(u)\right\}$ occur at most at points $u=u_{n}$ ($n=1,2, \ldots$) with $u_{n+1}-u_{n}=1 / 2$.
(ii) If for $u \geqq a_{1}$

$$
\varepsilon(u)=\sup _{t \geqq u}\left\{\left|\varphi_{+}^{\prime}(t)\right|,\left|\varphi_{-}^{\prime}(t)\right|\right\}
$$

then

$$
\begin{equation*}
\varepsilon_{1}(u) \equiv \varepsilon(u)+2 e^{-u \varepsilon} \leqq K_{1} \tilde{\eta}(u-1) \quad\left(u \geqq a_{1}+1\right) \tag{3.4}
\end{equation*}
$$

(iii) For $u>a_{1}$, let θ_{u} denote the crosscut $\left\{\operatorname{Re} w=u, \varphi_{-}(u)<v<\varphi_{+}(u)\right\}$ of S_{1} and $\theta(u)=\varphi_{+}(u)-\varphi_{-}(u)$ its length. Then there exists exactly one crosscut Θ_{u} of S which contains θ_{u} and joins a point of C_{+}to one on C_{-}. If $\Theta(u)$ is the length of Θ_{u} then

$$
\begin{equation*}
\Theta(u)-\theta(u)+2 e^{-u \varepsilon} \leqq K_{2} \tilde{\eta}(u-1) \quad\left(u \geqq a_{1}+1\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
|\theta(u)-\pi| \leqq K_{3} \tilde{\eta}(u-1) \quad\left(u \geqq a_{1}+1\right) \tag{3.6}
\end{equation*}
$$

It should be noted that, while S and S_{0} change with $\omega_{0} \in \Gamma, a_{1}$ is independent of ω_{0}.

The proof of this lemma is contained in Section 2.2 of [4]. Note the difference in the definition of $\tilde{\eta}(u)$ here in (3.3) and in [4]. The strip S_{0} constructed there is denoted here by S_{1}. The fact that for $u>a_{1}$ the region S has one and only one crosscut Θ_{u} is stated in Section 1.2 of [4] which is referred to in 2.2.

LEMMA 3.2. There exists an $a>a_{1}+1$ which depends only on f which the following properties. Let $S_{0}=\left\{w=u+i v \mid u>a, \varphi_{-}(u)<v<\varphi_{+}(u)\right\}$ where φ_{+}and φ_{-}are the functions in the definition of S_{1} of Lemma 1 ; thus $S_{0} \subset S$. Let $F_{0}=X_{0}+i Y_{0}: S_{0} \rightarrow \Sigma$ denote the one-to-one conformal map of S_{0} onto Σ such that, for $w \in S_{0}, \lim _{u \rightarrow+\infty} \operatorname{Re} F_{0}(w)=+\infty$ and $F_{0}\left(a+i \varphi_{ \pm}(a)\right)= \pm i \pi / 2$. Then for $Y(w)=\operatorname{Im} F(w)$

$$
\begin{equation*}
\left|Y(w)-Y_{0}(w)\right|<M_{1} \tilde{\eta}\left(\frac{u}{1+3 \varepsilon}\right) \quad \text { for } \quad w \in S_{0}, u<M_{2}(\varepsilon) \tag{3.7}
\end{equation*}
$$

Again we note that our constants are independent of ω_{0}.
Proof. We refer to the proof of Lemma 2 in Section 2.6 of [4] up to and including equation (2.6.14). There an a is determined such that S_{0} satisfies the hypotheses (a) and (b) of Theorem 2 of [5] with $L=2 \pi, l=1 / 8, c$ replaced by c_{0}, an absolute constant defined in ([4], (2.6.13)), $\mu=1 / 2, \quad \alpha_{+}(u)=\alpha_{-}(u)=$ $2 \sqrt{2} \tilde{\eta}(u) / \pi$, and, by ([4], (2.6.14)),

$$
\lambda(u)=\left[1+\frac{2 \sqrt{ } 2}{\pi} \tilde{\eta}(u)\right]^{-1} .
$$

Note that a depends only on η and thus on f, but not on ε. Furthermore, in the notation of this theorem, $\varepsilon(u) \leqq \varepsilon_{1}(u) \equiv \varepsilon(u)+2 e^{-u \varepsilon} \leqq K_{1} \tilde{\eta}(u-1)$ by (3.4) and $\delta(u) \leqq \delta_{1}(u) \equiv \delta(u)+2 e^{-u \varepsilon} \leqq K_{2} \tilde{\eta}(u-1)$ by (3.5). (Theorem 2 of [5] assumes that $\varepsilon(u) \geqq 2 e^{-p u}$ and $\delta(u) \geqq e^{-p u}$ for some $p>0$. However, if this condition is not satisfied for any $p>0, \varepsilon(u)$ and $\delta(u)$ may be replaced by $\varepsilon_{1}(u) \equiv \varepsilon(u)+2 e^{-p u}$ and $\delta_{1}(u) \equiv \delta(u)+e^{-p u}$ for some $p>0$.) Hence we can apply the result of Part (i) of the proof of Theorem 2 in [5], namely, the inequality (4.5). Here we take $p=\varepsilon$, $p_{1}=5 \varepsilon / 4, \nu_{1}=1+2 \cdot 5 \varepsilon / 4=1+5 \varepsilon / 2$ and we obtain for $w \in S_{0}$

$$
\left|Y(w)-Y_{0}(w)\right| \leqq M_{3}\left[\tilde{\eta}\left(u / \nu_{1}-1\right)\right]^{\lambda\left(u / \nu_{1}-1\right)}
$$

for $u \geqq q_{3} \nu_{1}$ (see [5], (4.5)). We now determine $M_{2}>q_{3} \nu_{1}$ such that

$$
\frac{u}{1+\frac{5}{2} \varepsilon}-1>\frac{u}{1+3 \varepsilon} \text { and } \tilde{\eta}\left(\frac{u}{1+3 \varepsilon}\right)<e^{-1} \quad \text { for } \quad u>M_{2}(\varepsilon) .
$$

Since $[\tilde{\eta}(u)]^{\lambda(u)}$ increases with decreasing u, the factor of M_{3} is

$$
\leqq\left[\tilde{\eta}\left(\frac{u}{1+3 \varepsilon}\right)\right]^{\lambda(u /(1+3 \varepsilon))}=\tilde{\eta} \cdot\left[\frac{1}{\tilde{\eta}}\right]^{K \tilde{\eta} /(1+K \tilde{\eta})} \leqq \eta\left[\frac{1}{\tilde{\eta}}\right]^{K \tilde{\eta}}\left(K=\frac{2 \sqrt{ } 2}{\pi}\right)
$$

For $u>M_{2}(\varepsilon)$ we have $\tilde{\eta}(u /(1+3 \varepsilon))<e^{-1}$ and, therefore $[1 / \tilde{\eta}]^{K \tilde{\eta}} \leqq \exp (2 \sqrt{ } 2 / \pi e)$. Hence we obtain (3.7) with $M_{1}=M_{3} \exp (2 \sqrt{ } 2 / \pi e)$.
3.3. Estimates for $F_{0}^{\prime}(w)$ and $F_{0}^{\prime \prime}(w)$. The following Lemma is in part a quantative version of a known result on L-strips [13, Theorem X] adapted to our special situation.

We choose an absolute constant α with $3 / 4<\alpha^{3}<1$, say

$$
\alpha=(4 / 5)^{1 / 3}
$$

and use the notation of Lemma 3.3. Let $\psi(u)=\frac{1}{2}\left[\varphi_{+}(u)+\varphi_{-}(u)\right]$ and $\Lambda=\{u \geqq a$, $v=\psi(u)\}$.

LEMMA 3.3. There exists $a(\varepsilon)$ and $x_{0}(\varepsilon)$ depending only on ε and f such that, with $S(\alpha)=\left\{u \geqq a(\varepsilon),|v-\psi(u)| \leqq \alpha^{2} \pi / 2\right\}$,

$$
\begin{align*}
& \left\{\left|w-w^{*}\right| \leqq \alpha \pi / 2\right\} \subset S_{0} \quad \text { for } \quad w^{*} \in \Lambda, \quad \operatorname{Re} w^{*} \geqq a(\varepsilon), \tag{3.8}\\
& \left|F_{0}^{\prime}(w)-1\right| \leqq K \tilde{\eta}\left(\frac{u}{1+4 \varepsilon}\right) \text { for } w \in S(\alpha), \tag{3.9}\\
& \left|\frac{F_{0}^{\prime \prime}(w)}{F_{0}^{\prime}(w)}\right| \leqq K \tilde{\eta}\left(\frac{u}{1+4 \varepsilon}\right) \text { for } \quad w \in S(\alpha), \tag{3.10}\\
& F^{-1}\left(\left[x_{0}(\varepsilon),+\infty\right)\right) \subset S(\alpha) . \tag{3.11}
\end{align*}
$$

Proof. Let $\left\{u_{n}\right\}$ be the sequence of points, $u_{n+1}-u_{n}=1 / 2, u_{n} \geqq a$, at which possible corners of the graphs represented by φ_{+}and φ_{-}occur. By considering the module of the quadrilateral formed by the crosscuts $\theta_{u_{n}}$ and $\theta_{u_{n+1}}$ and the arcs $\left\{u_{n} \leqq u \leqq u_{n-1}, v=\varphi_{ \pm}(u)\right\}$ with respect to the family of curves joining these arcs, we obtain by a known argument (see e.g. [8, pp. 598-599]) that, for $w_{n}=$ $u_{n}+i \psi\left(u_{n}\right), X_{0}(w) \equiv X_{0}(u, v)$,

$$
\begin{equation*}
X_{0}\left(w_{n+1}\right)-X_{0}\left(w_{n}\right) \leqq \pi \int_{u_{n}}^{u_{n+1}} \frac{d u}{\theta(u)}+\frac{\pi}{2} \int_{u_{n}}^{u_{n+1}} \frac{\varphi_{+}^{\prime 2}+\varphi_{-}^{\prime 2}}{\theta(u)} d u+\sigma\left(u_{n}\right)+\sigma\left(u_{n+1}\right) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{0}\left(w_{n+1}\right)-X_{0}\left(w_{n}\right) \geqq \pi \int_{u_{n}}^{u_{n+1}} \frac{d u}{\theta(u)}-\left[\sigma\left(u_{n}\right)+\sigma\left(u_{n+1}\right)\right] . \tag{3.12}
\end{equation*}
$$

Here

$$
\sigma(u)=\operatorname{Max}_{w_{i} \in \theta_{u}} \operatorname{Re}\left(F_{0}\left(w_{2}\right)-F_{0}\left(w_{1}\right)\right),
$$

the oscillation of $\operatorname{Re} F_{0}(w)$ on θ_{u}. We note that (using $\left.\theta(u) \leqq 2 \pi\right)$

$$
\begin{equation*}
\pi \int_{u_{n}}^{u_{n+1}} \frac{d u}{\theta(u)} \geqq \pi \frac{u_{n+1}-u_{n}}{2 \pi}=\frac{1}{4} \tag{3.13}
\end{equation*}
$$

Now, integrating along Λ, we have

$$
X_{0}\left(w_{n+1}\right)-X_{0}\left(w_{n}\right)=\int_{u_{n}}^{u_{n+1}}\left[\frac{\partial X_{0}}{\partial u}+\frac{\partial X_{0}}{\partial v} \psi^{\prime}(u)\right] d u
$$

and by use of the (generalized) mean value theorem we obtain

$$
Q_{n}=\frac{X_{0}\left(w_{n+1}\right)-X_{0}\left(w_{n}\right)}{\pi \int_{u_{n}}^{u_{n+1}} \frac{d u}{\theta(u)}}=\frac{\theta\left(u_{n}^{\prime}\right)}{\pi}\left[\frac{\partial X_{0}}{\partial u}+\frac{\partial X_{0}}{\partial v} \psi^{\prime}(u)\right]_{u=u_{n v}^{\prime} v=\psi\left(u_{n}^{\prime}\right)}
$$

since $\psi^{\prime}(u)$ is continuous (even constant) on (u_{n}, u_{n+1}); $u_{n}<u_{n}^{\prime}<u_{n+1}$. If we write $A(w)=\operatorname{Arg} F_{0}^{\prime}(w)$, we obtain

$$
\begin{equation*}
Q_{n}=\frac{\theta\left(u_{n}^{\prime}\right)}{\pi}\left|F_{0}^{\prime}\left(w_{n}^{\prime}\right)\right|\left(\cos A\left(w_{n}^{\prime}\right)-\sin A\left(w_{n}^{\prime}\right) \psi^{\prime}\left(u_{n}^{\prime}\right)\right), \quad w_{n}^{\prime}=u_{n}^{\prime}+i \psi\left(u_{n}^{\prime}\right) . \tag{3.14}
\end{equation*}
$$

We now use estimates from [5] for $\left|\operatorname{Arg} F_{0}^{\prime}(w)\right|$ in the Remark to Theorem 1 (at the end of its proof) and for $\sigma(u)$ in [5], (2.3). We apply these inequalities with $L=2 \pi, p=\varepsilon, p^{\prime}=5 \varepsilon / 4$ and obtain using (3.4) in Lemma 3.1 of the present paper

$$
\begin{equation*}
|A(w)| \leqq 2 K_{1} \tilde{\eta}\left(\frac{u}{1+5 \varepsilon / 2}-1\right) \leqq 2 K_{1} \tilde{\eta}\left(\frac{u}{1+3 \varepsilon}\right) \text { for } \quad u \geqq M_{4}(\varepsilon) \geqq M_{2}(\varepsilon) . \tag{3.15}
\end{equation*}
$$

We can also choose $M_{4}(\varepsilon)$ so large that, by [5], (2.3),

$$
\begin{equation*}
\sigma(u) \leqq 4 \pi \cdot K_{1} \tilde{\eta}\left(\frac{u}{1+3 \varepsilon}\right), \quad u \geqq M_{4}(\varepsilon) . \tag{3.16}
\end{equation*}
$$

Furthermore $\left|\psi^{\prime}(u)\right| \leqq \varepsilon(u) \leqq K_{1} \tilde{\eta}(u-1) \leqq K_{1} \tilde{\eta}(u /(1+3 \varepsilon))$ for $u \geqq M_{2}(\varepsilon)$. Writing $\cos A=1-2 \sin ^{2}(A / 2)$ we obtain

$$
\begin{align*}
1-K_{5} \tilde{\eta}^{2}\left(\frac{u}{1+3 \varepsilon}\right) & \leqq \cos A\left(w_{n}^{\prime}\right)-\sin A\left(w_{n}^{\prime}\right) \psi^{\prime}\left(u_{n}^{\prime}\right) \\
& \leqq 1+K_{5} \tilde{\eta}^{2}\left(\frac{u}{1+3 \varepsilon}\right), \quad u \geqq M_{4} . \tag{3.17}
\end{align*}
$$

We can determine $M_{5}(\varepsilon)>M_{4}(\varepsilon)$ such that

$$
\begin{equation*}
1-K_{5} \tilde{\eta}^{2}\left(\frac{u}{1+3 \varepsilon}\right)>\frac{1}{2} \text { for } u \geqq M_{5} \tag{3.18}
\end{equation*}
$$

From (3.11), (3.12), and (3.13) we have

$$
1-4\left[\sigma\left(u_{n}\right)+\sigma\left(u_{n+1}\right)\right] \leqq Q_{n} \leqq 1+\tilde{\eta}^{2}\left(u_{n-1}\right)+4\left[\sigma\left(u_{n}\right)+\sigma\left(u_{n+1}\right)\right]
$$

and using (3.16), (3.17), and (3.18) we obtain for $u_{n} \geqq M_{5}$

$$
1-K_{6} \tilde{\eta}\left(\frac{u_{n}}{1+3 \varepsilon}\right) \leqq \frac{\theta\left(u_{n}^{\prime}\right)}{\pi}\left|F_{0}^{\prime}\left(w_{n}^{\prime}\right)\right| \leqq 1+K_{6} \tilde{\eta}\left(\frac{u_{n}}{1+3 \varepsilon}\right),
$$

and we may assume $1-K_{6} \tilde{\eta}(u /(1+3 \varepsilon))>0$ for $u>M_{5}$. Finally, by (3.6) we find

$$
1-K_{7} \tilde{\eta}\left(\frac{u_{n}}{1+3 \varepsilon}\right) \leqq\left|F_{0}^{\prime}\left(w_{n}^{\prime}\right)\right| \leqq 1+K_{7} \tilde{\eta}\left(\frac{u_{n}}{1+3 \varepsilon}\right), \quad u_{n}^{\prime}>u_{n} \geqq M_{5}(\varepsilon) .
$$

or

$$
\begin{equation*}
\| F_{0}^{\prime}\left(w_{n}^{\prime}\right)|-1| \leqq K_{7} \tilde{\eta}\left(\frac{u_{n}}{1+3 \varepsilon}\right) \text { for } u_{n}>M_{5}(\varepsilon) . \tag{3.19}
\end{equation*}
$$

Now we come to the proof of (3.8) and (3.9). Here we make use of Lemma 2 in [5]. According to this lemma we can determine an $M_{6}>M_{5}+\pi$ such that for any $w^{*}=u^{*}+i v^{*} \in \Lambda$ with $u^{*} \geqq M_{6}$ there is an $r=r\left(u^{*}\right)$ such that the disk $\left\{\left|w-w^{*}\right|<r\right\} \subset S_{0}$. Moreover, we can, because of (3.4) and (3.6) and the expression for $r\left(u^{*}\right)$, assume that

$$
r\left(u^{*}\right) \geqq \frac{\pi}{2} \theta=r_{0} \quad \text { for } \quad u^{*}>M_{6}(\varepsilon)
$$

Thus the disk $\left\{\left|w-w^{*}\right| \leqq \theta \pi / 2\right\} \subset S_{0}$ for $w^{*} \in \Lambda, u^{*} \geqq M_{6}(\varepsilon)$.

We consider now $g(w)=\log \left(F_{0}^{\prime}(w) /\left|F_{0}^{\prime}\left(w^{*}\right)\right|\right)$ with $\operatorname{Im} g(w)=\operatorname{Arg} F_{0}^{\prime}(w), w^{*} \in$ $\Lambda, u^{*}>M_{6}(\varepsilon)$. By (3.15),

$$
|\operatorname{Im} g(w)| \leqq 2 K_{1} \tilde{\eta}\left(\frac{u^{*}-\pi}{1+3 \varepsilon}\right) \text { for }\left|w-w^{*}\right| \leqq r_{0}
$$

and, therefore, we have in $\left|w-w^{*}\right| \leqq \alpha r_{0}=\alpha^{2}(\pi / 2)$.

$$
\begin{equation*}
|\log | \frac{F_{0}^{\prime}(w)}{F_{0}^{\prime}\left(w^{*}\right)}\left|\left\lvert\, \leqq \frac{2}{\pi} 2 K_{1} \tilde{\eta}\left(\frac{u^{*}-\pi}{1+3 \varepsilon}\right) \log \frac{1+\alpha}{1-\alpha} .\right.\right. \tag{3.20}
\end{equation*}
$$

Given $w^{*} \in \Lambda$ we can find a u_{n}^{\prime} in the sequence determined above such that $\left|u_{n}^{\prime}-u^{*}\right| \leqq \frac{1}{2}$. Since $\left|\psi^{\prime}(u)\right| \leqq \frac{1}{2}$ in the interval between u_{n}^{\prime} and u^{*} (except when u is a corner-point), we have $\left|w_{n}^{\prime}-w^{*}\right|<\sqrt{ } 5 / 4<\alpha r_{0}$ for $\alpha>3 / 4$. Hence we may apply (3.20) for $w=w_{n}^{\prime}$ and obtain thus

$$
\begin{equation*}
|\log | \frac{F_{0}^{\prime}\left(w_{n}^{\prime}\right)}{F_{0}^{\prime}\left(w^{*}\right)}\left|\left\lvert\, \leqq \frac{4}{\pi} K_{1} \tilde{\eta}\left(\frac{u^{*}-\pi}{1+3 \varepsilon}\right) \log \frac{1+\alpha}{1-\alpha} .\right.\right. \tag{3.21}
\end{equation*}
$$

From (3.20) and (3.21) we have for $\left|w-w^{*}\right| \leqq \alpha r_{0},\left|w_{n}^{\prime}-w^{*}\right| \leqq \sqrt{ } 5 / 4$:

$$
|\log | \frac{F_{0}^{\prime}(w)}{F_{0}^{\prime}\left(w_{n}^{\prime}\right)}\left|\left\lvert\, \leqq K_{8} \tilde{\eta}\left(\frac{u^{*}-\pi}{1+3 \varepsilon}\right)\left(K_{8}=\frac{8 K_{1}}{\pi} \log \frac{1+\alpha}{1-\alpha}\right)\right.\right.
$$

Hence

$$
\left|\frac{F_{0}^{\prime}(w)}{F_{0}^{\prime}\left(w_{n}^{\prime}\right)}-1\right| \leqq e^{K_{8}} K_{8} \tilde{\eta}\left(\frac{u^{*}-\pi}{1+3 \varepsilon}\right)
$$

We use (3.19) to estimate $\left|F_{0}^{\prime}\left(w_{n}^{\prime}\right)\right|$. We have $u_{n} \geqq u^{*}-\frac{1}{2}>u^{*}-\pi$. We choose now $M_{7}(\varepsilon)>M_{6}(\varepsilon)$ so large that $K_{7} \tilde{\eta}\left(u^{*}-\pi /(1+3 \varepsilon)\right)<1$ for $u^{*}>M_{7}$. Then we have $\left|F_{0}^{\prime}\left(w_{n}^{\prime}\right)\right| \leqq 2$ and therefore

$$
\begin{equation*}
\left\|F_{0}^{\prime}(w)|-| F_{0}^{\prime}\left(w_{n}^{\prime}\right)\right\| \leqq 2 K_{9} \tilde{\eta}\left(\frac{u^{*}-\pi}{1+3 \varepsilon}\right), \quad K_{9}=e^{K_{8}} K_{8} \tag{3.22}
\end{equation*}
$$

We take now $\operatorname{Re} w=\operatorname{Re} w^{*}=u$. Writing

$$
\begin{equation*}
w \in S(\alpha)=\left\{u \geqq M_{7}, \psi(u)-\alpha^{2} \frac{\pi}{2}<v<\psi(u)+\alpha^{2} \frac{\pi}{2}\right\} \tag{3.23}
\end{equation*}
$$

we have by (3.22) and (3.19)

$$
\begin{aligned}
\| F_{0}^{\prime}(w)|-1| & \leqq\left\|F_{0}^{\prime}(w)\left|-\left|F_{0}^{\prime}\left(w_{n}^{\prime}\right)\|+\| F_{0}^{\prime}\left(w_{n}^{\prime}\right)\right|-1\right|\right. \\
& \leqq\left(2 K_{9}+K_{7}\right) \tilde{\eta}\left(\frac{u-\pi}{1+3 \varepsilon}\right) .
\end{aligned}
$$

Using this in conjunction with (3.15) we obtain

$$
\left|F_{0}^{\prime}(w)-1\right| \leqq K \tilde{\eta}\left(\frac{u-\pi}{1+3 \varepsilon}\right) \leqq K \tilde{\eta}\left(\frac{u}{1+4 \varepsilon}\right)
$$

for $w \in S(\alpha)$ and $u \geqq M_{8}(\varepsilon)$. If we now set $a(\varepsilon)=\max \left(M_{7}(\varepsilon), M_{8}(\varepsilon)\right)$ we obtain (3.9).

To prove (3.10) note that for $\left|w-w^{*}\right| \leqq \alpha r_{0}, u^{*}>a(\varepsilon)$

$$
\left|\frac{F_{0}^{\prime \prime}(w)}{F_{0}^{\prime}(w)}\right| \leqq \frac{2}{r_{0}(1-\alpha)^{2}} \operatorname{Max}_{\left|W-w^{*}\right| \leqq r_{0}}\left|\operatorname{Arg} F_{0}^{\prime}(W)\right| \leqq \frac{8 K_{1}}{\pi \alpha(1-\alpha)^{2}} \tilde{\eta}\left(\frac{u^{*}}{1+4 \varepsilon}\right)
$$

by (3.15). Taking here $\operatorname{Re} w=u=u^{*}$ we obtain the inequality (3.10).
Let $\Lambda_{ \pm}=\left\{u>a(\varepsilon), v=\psi(u) \pm \alpha^{2} \pi / 2\right\}$. For $w=u+i v_{+} \in \Lambda_{+}$and $w=u+i v_{-} \epsilon$ $\Lambda_{\text {- we have }}$

$$
\begin{aligned}
Y_{0}\left(u, v_{+}\right)-Y_{0}\left(u, v_{-}\right) & =\int_{v_{-}}^{v_{+}} \frac{\partial Y_{0}(u, v)}{\partial v} d v=\int_{v_{-}}^{v_{+}} \frac{\partial X_{0}(u, v)}{\partial u} d v \\
& =\int_{v_{-}}^{v_{+}}\left|F_{0}^{\prime}(u+i v)\right| \cos A(u+i v) d v .
\end{aligned}
$$

By the first inequality in (3.9) and (3.15) the integrand

$$
\left|F_{0}^{\prime}(u+i v)\right|\left(1-2 \sin ^{2} \frac{A(u+i v)}{2}\right) \geqq\left(1-K \tilde{\eta}\left(\frac{u}{1+4 \varepsilon}\right)\right)\left(1-2 K_{1}^{2} \tilde{\eta}^{2}\left(\frac{u}{1+3 \varepsilon}\right)\right)>\alpha
$$

for $u \geqq M_{9}$ for a sufficiently large $M_{9}>a(\varepsilon)$. Hence for $u \geqq M_{9}$

$$
Y_{0}\left(u, v_{+}\right)-Y_{0}\left(u, v_{-}\right) \geqq\left(v_{+}-v_{-}\right) \alpha=\pi \alpha^{2} \cdot \alpha=\pi \alpha^{3} .
$$

Since $\alpha^{3}=\frac{4}{5}$ this implies that, for $u \geqq M_{9}, F_{0}\left(u+i v_{+}\right)$lies above the line $y=$ $-\pi / 2+4 \pi / 5=3 \pi / 10$ and $F_{0}\left(u+i v_{-}\right)$lies below the line $y=\pi / 2-4 \pi / 5=-3 \pi / 10$.

By Lemma 3.2 we can determine an $M_{10}(\varepsilon) \geqq M_{9}(\varepsilon)$ so large that
$\left|Y(w)-Y_{0}(w)\right|<\pi / 20$ for $\operatorname{Re} w>M_{10}(\varepsilon)(w \in S)$. If $w=u+i v_{x}, u>M_{10}(\varepsilon)$, then $F\left(u+i v_{+}\right)$lies above the line $y=(3 \pi / 10)-\pi / 20=\pi / 4$ and $F\left(u+i v_{-}\right)$lies below the line $y=-\pi / 4$. Hence the substrip $\left\{u>M_{10}(\varepsilon), \psi(u)-\alpha^{2} \pi / 2<v<\psi(u)+\right.$ $\left.\alpha^{2} \pi / 2\right\}$ of $S(\alpha)$ contains the image C_{0} of a part of the real axis $\left\{x \geqq x_{0}(\varepsilon), y=0\right\}$ under the mapping $z \mapsto F^{-1}(z)$. That this $x_{0}(\varepsilon)$ can be determined uniformly for all $\omega_{0} \in \Gamma$ and depends only $M_{10}(\varepsilon)$ and f follows from the uniform continuity of f on $\partial \mathbf{D}$ and the application of the mappings (3.1).
3.4. Proof of the upper estimate (1.3). We consider $F(w)-F_{0}(w)$ in the disk $\left\{\left|w-w^{*}\right| \leqq \alpha \pi / 2=r_{0}\right\}$, where $w^{*} \in \Lambda$ and $\operatorname{Re} w^{*}>a(\varepsilon)$ so that this disk is in S_{0}. By Lemma 3.2, if $w \in S_{0}$ and $u>M_{2}(\varepsilon)$, then $\left|\operatorname{Im}\left(F(w)-F_{0}(w)\right)\right| \leqq M_{1} \tilde{\eta}(u /(1+3 \varepsilon))$. Hence by the Schwarz-Poisson representation we have in the disk $\left\{\left|w-w^{*}\right| \leqq\right.$ $\left.\alpha r_{1}=\alpha^{2} \pi / 2\right\}$

$$
\begin{equation*}
\left|F^{\prime}(w)-F_{0}^{\prime}(w)\right| \leqq \frac{4 M_{1}}{\pi \alpha(1-\alpha)^{2}} \tilde{\eta}\left(\frac{u}{1+3 \varepsilon}\right) \tag{3.24}
\end{equation*}
$$

and

$$
\left|F^{\prime \prime}(w)-F_{0}^{\prime \prime}(w)\right| \leqq \frac{16 M_{1}}{(\pi \alpha)^{2}(1-\alpha)^{3}} \tilde{\eta}\left(\frac{u}{1+3 \varepsilon}\right) .
$$

We set $\delta_{1}(\varepsilon)=2 e^{-x_{0}(\varepsilon)} /\left(1+e^{-x_{0}(\varepsilon)}\right)$. Substracting from and adding to the lefthand side of (3.2) the term

$$
\frac{F_{0}^{\prime \prime}(w)}{\left[F_{0}^{\prime}(w)\right]^{2}}+\left[\frac{1}{F_{0}^{\prime}(w)}-1\right]
$$

and using (3.24), (3.25) and (3.9) we obtain for $\zeta=\rho \zeta_{0}, 0<\rho<1,1-\rho \leqq \delta_{1}(\varepsilon)$

$$
\frac{1-\rho}{2}\left|\frac{f^{\prime \prime}(\zeta)}{f^{\prime}(\zeta)}\right| \leqq(1-\rho)+M \tilde{\eta}\left(\frac{u}{1+4 \varepsilon}\right)=1-\rho+M\left[\eta\left(2 e^{-u /(1+4 \varepsilon)}\right)+2 e^{-\varepsilon u}\right] .
$$

Here M depends only on the function η. Since $e^{-u}=\left|f(\zeta)-f\left(\zeta_{0}\right)\right| \leqq \frac{1}{2}(1-\rho)^{1-\varepsilon}$ if $1-\rho \leqq \delta_{0}(\varepsilon) \leqq \delta_{1}(\varepsilon)$ by (2.2) we have

$$
2 e^{-u /(1+4 \varepsilon)} \leqq(1-\rho)^{(1-\varepsilon) /(1+4 \varepsilon)}<(1-\rho)^{1-5 \varepsilon} \quad \text { for } \quad 1-\rho \leqq \delta_{0}(\varepsilon) .
$$

(Note that $\delta_{0}(\varepsilon)$ is independent of ζ_{0}, ω_{0}.) Hence, for $1-\rho=\delta$,

$$
\frac{1}{2} \beta(\delta) \leqq \delta+M\left[\eta\left(\delta^{1-5 \varepsilon}\right)+2 \delta^{5 \varepsilon / 6}\right] \text { for } \delta \leqq \delta_{0}(\varepsilon),
$$

because $\varepsilon(1-\varepsilon)>5 \varepsilon / 6$. If we replace now ε by $\varepsilon / 5$ we obtain the upper estimate.

4. Consequences and examples

4.1. Smooth curves. We derive now some results of Lesley and the second author [4] from Theorem 1.

THEOREM 4.1. Let f map \mathbf{D} conformally onto the inner domain of Γ and let

$$
\begin{equation*}
\int_{0}^{1} \frac{\eta(t)}{t} d t<\infty . \tag{4.1}
\end{equation*}
$$

Then Γ is smooth, $\log f^{\prime}$ has a continuous extension to $\overline{\mathbf{D}}$ and

$$
\begin{equation*}
\max _{\left|\zeta_{1}-\zeta_{2}\right| \leqq \delta}\left|\log f^{\prime}\left(\zeta_{1}\right)-\log f^{\prime}\left(\zeta_{2}\right)\right| \leqq M \int_{0}^{\delta 1-\tau} \frac{\eta(t)}{t} d t+M(\varepsilon) \delta^{\varepsilon / 6} \tag{4.2}
\end{equation*}
$$

for $0<\varepsilon<\frac{1}{2}$ and $0<\delta<1$.
As Rubel, Shields and Taylor have shown [9], it does not matter whether the maximum is taken for $\zeta_{1}, \zeta_{2} \in \partial \mathbf{D}$ or for $\zeta_{1}, \zeta_{2} \in \overline{\mathbf{D}}$. The upper bound in [4, Application 1] is, instead of (4.2),

$$
M(\varepsilon) \int_{0}^{\delta 1-e} \frac{\eta(t)}{t} \log \frac{1}{\eta(t)} d t+M(\varepsilon) \delta^{1-\varepsilon} \int_{\delta^{1-\epsilon}}^{1} \frac{\eta(t)}{t^{2}} \log \frac{1}{\eta(t)} d t .
$$

Integration of (1.6) gives the same bound with $\delta^{1-\varepsilon}$ replaced by δ. The estimate (4.2) is still better for "not too smooth" curves.

Proof. It follows from (1.2) that, for $\zeta_{1} \in \partial \mathbf{D}$ and $0<\delta<1$,

$$
\int_{(1-\delta) \zeta_{1}}^{\zeta_{1}}\left|\frac{d}{d z} \log f^{\prime}(z)\right||d z| \leqq \int_{1-\delta}^{1} \frac{\beta(1-r)}{1-r} d r .
$$

By Theorem 1, this is

$$
\leqq M_{1} \int_{0}^{\delta} \frac{\eta\left(t^{1-\varepsilon}\right)+t^{\varepsilon / 6}}{t} d t=\frac{M_{1}}{1-\varepsilon} \int_{0}^{\delta^{1-\varepsilon}} \frac{\eta(t)}{t} d t+\frac{6 M_{1}}{\varepsilon} \delta^{\varepsilon / 6}
$$

Hence (4.1) implies that $\log f^{\prime}$ is continuous in $\overline{\mathbf{D}}$ so that Γ is smooth. If $\zeta_{2} \in \partial \mathbf{D}$ and $\left|\zeta_{1}-\zeta_{2}\right| \leqq \delta$, a similar argument shows that

$$
\int_{(1-\delta) \zeta_{1}}^{\zeta_{2}}\left|\frac{d}{d z} \log f^{\prime}(z)\right||d z| \leqq \frac{2 M_{1}}{1-\varepsilon} \int_{0}^{\delta^{1-\varepsilon}} \frac{\eta(t)}{t} d t+\frac{12 M_{1}}{\varepsilon} \delta^{\varepsilon / 6}
$$

Adding these two estimates we obtain (4.2); the range $\delta_{0}(\varepsilon) \leqq \delta<1$ is trivial.
We prove now that (1.5) implies (1.6). Since $c_{1} \leqq\left|f^{\prime}(\zeta)\right| \leqq M_{1}$ for $\zeta \in \overline{\mathbf{D}}$ by Theorem 4.1, it follows (see (2.10)) that

$$
\begin{equation*}
c_{2} \delta \leqq\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leqq M_{2} \delta \quad \text { for } \quad\left|z_{1}-z_{2}\right|=\delta, z_{1}, z_{2} \in \partial \mathbf{D} . \tag{4.3}
\end{equation*}
$$

The lower estimate (1.6) is proved as in 2.3 with (2.11) replaced by (4.3). Furthermore, it was shown in [4, Cor. 1] that

$$
\begin{equation*}
\left|\arg f^{\prime}\left(\zeta_{1}\right)-\arg f^{\prime}\left(\zeta_{2}\right)\right| \leqq M_{3} \int_{0}^{\delta} \frac{\eta(t)}{t} d t+\delta \tag{4.4}
\end{equation*}
$$

we have used Remark 2.1 to bring that result to this form. Now the upper estimate (1.6) follows by applying (4.4) to the derivative of the Poisson-Schwarz formula; see [14, Lemma 3].

Remark 4.1. The condition that $\log f^{\prime}$ is continuous in $\overline{\mathbf{D}}$ does not conversely imply (4.1). To see this, let h be analytic in \mathbf{D} and continuous in $\overline{\mathbf{D}}$ with $h(\mathbf{D}) \subset \mathbf{D}$ such that

$$
\begin{equation*}
\int_{0}^{1}\left|h^{\prime}(x)\right| d x=\infty . \tag{4.5}
\end{equation*}
$$

The function f defined by $\log f^{\prime}=2+h$ satisfies $\left|\arg f^{\prime}(z)\right|<\pi / 4$ for $z \in \mathbf{D}$. Hence f is one-to-one in $\overline{\mathbf{D}}$ and Γ is a Jordan curve. The proof of Theorem 4.1 shows that (4.1) does not hold because of (4.5).
4.2. Asymptotically smooth curves. The Jordan curve Γ is called asymptotically
smooth if it is rectifiable and if

$$
\begin{equation*}
\sup _{\left|\omega_{1}-\omega_{2}\right| \leqq \delta} \frac{l\left(\Gamma\left(\omega_{1}, \omega_{2}\right)\right)}{\left|\omega_{1}-\omega_{2}\right|} \rightarrow 1 \quad \text { as } \quad \delta \rightarrow 0 \tag{4.6}
\end{equation*}
$$

where l denotes the length. This is equivalent [7, Th. 2] to $\log f^{\prime} \in \mathrm{VMOA}$ (vanishing mean oscillation [10]). If ρ is a positive increasing function with $\rho(\delta) \rightarrow 0$ as $\delta \rightarrow+0$, let $\mathrm{BMO}_{\partial \mathbf{D}}(\rho)$ denote the space of all $g \in L^{1}(\partial \mathbf{D})$ such that

$$
\begin{equation*}
\frac{1}{l(I)} \int_{I}\left|g(z)-g_{I}\right||d z| \leqq M \rho(\delta), \quad g_{I} \equiv \frac{1}{l(I)} \int g(\zeta)|d \zeta| \tag{4.7}
\end{equation*}
$$

for all arcs $I \subset \partial \mathbf{D}$ with $l(I) \leqq \delta$. The space $H^{1} \cap L^{1}(\partial \mathbf{D})$ is a subspace of VMOA. See [11, Chapter 5] for a discussion of these concepts.

THEOREM 4.2. Let f map \mathbf{D} conformally onto the inner domain of Γ. If

$$
\begin{equation*}
\int_{0}^{1} t^{-1} \eta(t)^{2} d t<\infty \tag{4.8}
\end{equation*}
$$

then Γ is asymptotically smooth and

$$
\begin{equation*}
\log f^{\prime} \in \mathrm{BMO}_{\partial \mathbf{D}}\left(\rho_{\varepsilon}\right) \tag{4.9}
\end{equation*}
$$

for $0<\varepsilon<\frac{1}{3}$ where

$$
\begin{equation*}
\rho_{\varepsilon}(\delta)=\int_{0}^{\delta^{1-\varepsilon}} t^{-1} \eta(t)^{2} d t+\delta^{\varepsilon / 5} \quad(0<\delta<1) \tag{4.10}
\end{equation*}
$$

We need a lemma on functions of bounded mean oscillation.

LEMMA 4.1. Let g be analytic in D and let

$$
\begin{equation*}
\left|g^{\prime}(z)\right| \leqq \varphi(\delta) \quad(|z| \leqq 1-\delta) \tag{4.11}
\end{equation*}
$$

for $0<\delta<1$. If

$$
\begin{equation*}
\rho(\delta) \equiv\left(\int_{0}^{1} \frac{t \delta}{t+\delta} \varphi(t)^{2} d t\right)^{1 / 2}<\infty \tag{4.12}
\end{equation*}
$$

then $g \in \mathrm{BMO}_{\partial \mathbf{D}}(\rho)$ and moreover, for $1-\delta \leqq|\zeta|<1$,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\partial \mathbf{D}}|g(z)-\mathrm{g}(\zeta)|^{2} \frac{1-|\zeta|^{2}}{|z-\zeta|^{2}}|d z| \leqq K_{1} \rho(\delta)^{2} \tag{4.13}
\end{equation*}
$$

Proof. For $\zeta \in \mathbf{D}$, let

$$
\begin{equation*}
g_{x}(z)=g\left(\frac{z+\zeta}{1+\bar{\zeta} z}\right)-g(\zeta) \quad(z \in \mathbf{D}) \tag{4.14}
\end{equation*}
$$

It easily follows from Parseval's formula that

$$
\begin{equation*}
\left\|g_{2}\right\|_{2}^{2} \leqq \frac{2}{\pi} \iint_{\mathbf{D}}\left(1-|z|^{2}\right)\left|g_{\zeta}^{\prime}(z)\right|^{2} d x d y \tag{4.15}
\end{equation*}
$$

Substituting $z \mapsto(z-\zeta) /(1-\bar{\zeta} z)$ we therefore obtain from (4.14) that

$$
\begin{aligned}
\left\|g_{l}\right\|_{2}^{2} & \leqq \frac{2}{\pi} \iint_{\mathbf{D}} \frac{\left(1-|z|^{2}\right)\left(1-|\zeta|^{2}\right)}{|1-\bar{\zeta} z|^{2}}\left|g^{\prime}(z)\right|^{2} d x d y \\
& \leqq \int_{0}^{1}\left(1-r^{2}\right)\left(1-|\zeta|^{2}\right) \varphi(1-r)^{2}\left(\frac{4}{2 \pi} \int_{0}^{2 \pi} \frac{d t}{\left|1-r \bar{\zeta} e^{i t}\right|^{2}}\right) r d r
\end{aligned}
$$

by (4.11). Hence it follows from the Poisson integral formula that, for $|\zeta| \geqq 1-\delta$,

$$
\left\|g_{\|}\right\|_{2}^{2} \leqq K_{1} \int_{0}^{1} \frac{(1-r) \delta}{1-r+\delta} \varphi(1-r)^{2} d r .
$$

Another substitution shows that this estimate is equivalent to (4.13).
Given an $\operatorname{arc} I \subset \partial \mathbf{D}$ we choose $\zeta \in \partial \mathbf{D}$ such that $1-|\zeta|=2 l(I)$ and $\zeta /|\zeta|$ is the midpoint of I. Then we obtain from (4.13) that

$$
\frac{1}{l(I)} \int_{I}|g(z)-g(\zeta)|^{2}|d z| \leqq K_{2} \int_{I}|g(z)-g(\zeta)|^{2} \frac{1-|\zeta|^{2}}{|z-\zeta|^{2}}|d z| \leqq K_{3} \rho(\delta)^{2}
$$

for $|\zeta| \geqq 1-\delta$. Since the left-hand side is not increased if we replace $g(\zeta)$ by the mean value g_{I} we see that (4.7) holds.

Proof of Theorem 4.2. Let $g=\log f^{\prime}$. It follows from Theorem 1 that, for

$$
\begin{aligned}
& |z| \leqq 1-\delta \\
& \quad\left|g^{\prime}(z)\right|=\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqq \frac{M(\varepsilon)}{\delta}\left(\eta\left(\delta^{1-\varepsilon}\right)+\delta^{\varepsilon / 6}\right)
\end{aligned}
$$

Hence the function defined in (4.12) satisfies

$$
\rho(\delta)^{2} \leqq 2 M(\varepsilon)^{2} \int_{0}^{1} \frac{\delta}{t(t+\delta)}\left[\eta\left(t^{1-\varepsilon}\right)^{2}+t^{\epsilon / 3}\right] d t
$$

Writing $\tau=\delta^{1-\varepsilon / 3}$ we deduce that

$$
\begin{aligned}
\rho(\delta)^{2} & \leqq M_{1}(\varepsilon) \int_{0}^{\tau}\left[\frac{\eta\left(t^{1-\varepsilon}\right)^{2}}{t}+t^{\varepsilon / 3-1}\right] d t+M_{2}(\varepsilon) \int_{\tau}^{1} \frac{\delta}{t^{2}} d t \\
& \leqq M_{3}(\varepsilon) \int_{0}^{\tau 1-\varepsilon} \frac{\eta(t)}{t} d t+M_{4}(\varepsilon)\left[\tau^{\varepsilon / 3}+\frac{\delta}{\tau}\right]
\end{aligned}
$$

Since $(1-\varepsilon / 3)(1-\varepsilon)>1-4 \varepsilon / 3$ we obtain (4.10) replacing ε by $3 \varepsilon / 4$.
Remark 4.2. We mention that (4.8) implies

$$
\begin{equation*}
\sup _{\left|\omega_{1}-\omega_{2}\right| \leqq \delta} \frac{l\left(\Gamma\left(\omega_{1}, \omega_{2}\right)\right)}{\left|\omega_{1}-\omega_{2}\right|} \leqq 1+M \int_{0}^{\delta} \frac{\eta(t)^{2}}{t} d t \tag{4.16}
\end{equation*}
$$

We shall not give the proof; it is purely geometric and proceeds by successive subdivisions of $\Gamma\left(\omega_{1}, \omega_{2}\right)$.
4.3. A class of examples. We show now that β can be prescribed up to multiplicative bounds and that the assumptions (4.1) of Theorem 4.1 and (4.8) of Theorem 4.2 cannot be replaced by weaker conditions of the same general type. Note that β is subadditive, by (2.1).

THEOREM 4.3. For every increasing subadditive function $\varphi(\delta)(0<\delta \leqq 1)$, a univalent function $f(z)(z \in \mathbf{D})$ can be constructed such that
(i) $c \varphi(\delta) \leqq \beta(\delta) \leqq M \varphi(\delta)$ for $0<\delta \leqq 1$;
(ii) $\int_{0}^{1} \frac{\eta(t)}{t} d t<\infty \Leftrightarrow \Gamma$ smooth $\Leftrightarrow \log f^{\prime}$ continuous in $\overline{\mathbf{D}}$;
(iii) $\int_{0}^{1} \frac{\eta(t)^{2}}{t} d t<\infty \Leftrightarrow \Gamma$ rectifiable $\Leftrightarrow \log f^{\prime} \in$ VMOA.

Proof. Let b be a positive constant to be chosen later. We define

$$
\begin{equation*}
b_{0}=b \varphi(1), \quad b_{k}=b \varphi\left(\frac{1}{2^{k}}\right)-\frac{b}{2} \varphi\left(\frac{1}{2^{k-1}}\right) \quad(k=1,2, \ldots) ; \tag{4.17}
\end{equation*}
$$

it follows from the subadditivity that $b_{k} \geqq 0$. Induction shows that

$$
\begin{equation*}
\sum_{k=0}^{n} 2^{k-n} b_{k}=b \varphi\left(2^{-n}\right) \quad(n=0,1, \ldots) \tag{4.18}
\end{equation*}
$$

We define now f by $f(0)=0$ and

$$
\begin{equation*}
\log f^{\prime}(z)=g(z)=\sum_{k=0}^{\infty} b_{k} z^{2 k} \quad(z \in \mathbf{D}) \tag{4.19}
\end{equation*}
$$

this is a lacunary series with Hadamard gaps. If $0<r<1$ then

$$
\begin{equation*}
\max _{|z|=r}\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=g^{\prime}(r)=\sum_{k=0}^{\infty} 2^{k} b_{k} r^{2 k-1} \tag{4.20}
\end{equation*}
$$

Let $2^{-n-1} \leqq 1-r<2^{-n}(n \geqq 1)$. We see from (4.20) and (4.18) that

$$
\begin{aligned}
(1-r) r g^{\prime}(r) & \leqq \sum_{k=0}^{\infty} 2^{k-n} b_{k}\left(1-2^{-n-1}\right)^{2^{k}} \\
& \leqq b \varphi\left(2^{-n}\right)+\sum_{k=n+1}^{\infty} 2^{k-n} b_{k} \exp \left(-2^{k-n-1}\right)
\end{aligned}
$$

Since $b_{k} \leqq b \varphi\left(2^{-k}\right) \leqq b \varphi(1-r)$ for $k \geqq n+1$, we conclude that

$$
\begin{equation*}
(1-r) r g^{\prime}(r) \leqq 2 b\left[1+\sum_{j=0}^{\infty} 2^{j+1} \exp \left(-2^{j}\right)\right] \varphi(1-r) \tag{4.21}
\end{equation*}
$$

Hence we see from (4.20) that $\left(1-|z|^{2}\right)\left|f^{\prime \prime}(z) / f^{\prime}(z)\right|<\frac{1}{2}$ for $z \in \mathbf{D}$ if b is chosen sufficiently small, and Becker's criterion [2] shows that f maps \mathbf{D} conformally onto the inner domain of a quasiconformal Jordan curve Γ. We verify now that this function f satisfies (i)-(iii).
(i) It follows from (4.20) and (4.21) that

$$
\beta(\delta)=\sup _{1-\delta \leq r<1}(1-r) g^{\prime}(r) \leqq M \sup _{1-\delta \leq r<1} \varphi(1-r)=M \varphi(\delta) .
$$

Furthermore we see from (4.20) that, if $2^{-n-1}<1-r \leqq 2^{-n}(n \geqq 1)$,

$$
(1-r) r g^{\prime}(r) \geqq \sum_{k=0}^{n} 2^{k-n-1} b_{k}\left(1-\frac{1}{2^{n}}\right)^{2} \geqq \frac{b}{8} \varphi\left(\frac{1}{2^{n}}\right) \geqq \frac{b}{8} \varphi(1-r)
$$

Hence the lower estimate (i) also holds.
(ii) In view of Theorem 4.1, it is sufficient to show that the smoothness of Γ implies (4.1). If Γ is smooth then, by Lindelöf's theorem [6, p. 295],

$$
\arg f^{\prime}(z)=\sum_{k=0}^{\infty} b_{k} r^{2^{k}} \sin \left(2^{k} \theta\right) \quad\left(z=r e^{i \theta}\right)
$$

is continuous in $\overline{\mathbf{D}}$. Hence Szidon's theorem [1, p. 246] shows that $\sum b_{k}<\infty$. Since $\eta(t) \leqq M_{1} \beta\left(t^{1 / 2}\right) \leqq M_{2} \varphi\left(t^{1 / 2}\right)$ by Theorem 1 and by (i), we see from (4.17) that

$$
\begin{aligned}
\int_{0}^{1} \frac{\eta(t)}{t} d t & \leqq 2 M_{2} \int_{0}^{1} \frac{\varphi(t)}{t} d t \leqq 2 M_{2} \sum_{k=0}^{\infty} \varphi\left(\frac{1}{2^{k}}\right) \\
& =\frac{4 M_{2}}{b} \sum_{k=0}^{\infty} b_{k}<\infty
\end{aligned}
$$

(iii) Because of Theorem 4.2 and the remarks preceding it, we have only to show that the rectifiability of Γ implies (4.8). If Γ is rectifiable then $\log f^{\prime}\left(r e^{i \theta}\right)$ has, a limit as $r \rightarrow 1-0$ for almost all θ [6, p. 320]. Hence it follows from Zygmund's theorem [1, p. 237] applied to the lacunary series (4.19) that $\sum b_{k}^{2}<\infty$. As above we deduce that

$$
\int_{0}^{1} \frac{\eta(t)^{2}}{t} d t \leqq M_{3} \int_{0}^{1} \frac{\varphi(t)^{2}}{t} d t \leqq M_{3} \sum_{n=0}^{\infty} \varphi\left(2^{-n}\right)^{2}
$$

and, by (4.18) and Schwarz's inequality, this is

$$
\leqq 2 M_{3} \sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} 2^{k-n} b_{k}^{2}\right)=4 M_{3} \sum_{k=0}^{\infty} b_{k}^{2}<\infty
$$

Remark 4.3. A smooth curve Γ is called Dini-smooth if the modulus of continuity $\omega(\delta)$ of the tangent angle (as a function of arc length) satisfies

$$
\begin{equation*}
\int_{0}^{1} \frac{\omega(t)}{t} d t<\infty \tag{4.22}
\end{equation*}
$$

It is easy to see that $\eta(\delta) \leqq K_{1} \omega(\delta)$. Hence (4.22) implies (4.1). This gives a new proof of the well-known fact [12] that $\log f^{\prime}$ is continuous in $\overline{\mathbf{D}}$ if Γ is Dinismooth.

We show now that (4.1) does not conversely imply (4.22). Let f again be defined by (4.19) where $b_{k}>0$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty} b_{k}<\infty, \quad \sum_{k=1}^{\infty} k b_{k}=\infty . \tag{4.23}
\end{equation*}
$$

The proof of Theorem 4.3(ii) shows that (4.1) holds. If $\omega^{*}(t)$ denotes the modulus of continuity of $\arg f^{\prime}\left(e^{i \theta}\right)$, it follows from Theorem 4.1 that $\omega(t) \geqq \omega^{*}\left(c_{1} t\right)$. By Szidon's theorem [1, p. 246],

$$
\begin{aligned}
\omega^{*}(t) & =\sup _{\theta}\left|\operatorname{Im}\left[\log f^{\prime}\left(e^{i \theta+i t / 2}\right)-\log f^{\prime}\left(e^{i \theta-i t / 2}\right)\right]\right| \\
& =2 \sup _{\theta}\left|\sum_{k=1}^{\infty} b_{k} \cos \left(2^{k} \theta\right) \sin \left(2^{k-1} t\right)\right| \geqq c_{2} \sum_{k=1}^{\infty} b_{k}\left|\sin \left(2^{k-1} t\right)\right| .
\end{aligned}
$$

Hence

$$
\int_{0}^{1} \frac{\omega^{*}(t)}{t} d t \geqq c_{2} \sum_{k=1}^{\infty} b_{k} \int_{0}^{1} \frac{\left|\sin \left(2^{k-1} t\right)\right|}{t} d t \geqq c_{3} \sum_{k=1}^{\infty} k b_{k}=\infty
$$

because of (4.23), so that (4.22) does not hold.

REFERENCES

[1] Bary, N. K., A treatise on trigonometric series, vol. II, Pergamon Press, New York, 1964.
[2] Becker, J. Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43.
[3] - and Pommerenke, Ch., Über die quasikonforme Fortsetzung schlichter Funktionen, Math. Z. 161 (1978), 69-80.
[4] Lesley, F. D. and Warschawski, S. E., Boundary behavior of the Riemann mapping function of asymptotically conformal curves, preprint, Math. Z., to appear.
[5] - and -, Oscillation on vertical crosscuts in the conformal mapping of infinite strips, J. London Math. Soc., to appear.
[6] Pommerenke, Ch., Univalent functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[7] - On univalent functions, Bloch functions and VMOA, Math. Ann. 236 (1978), 199-208.
[8] Rodin, B., The method of extremal length, Bull. Amer. Math. Soc. 80 (1974), 587-606.
[9] Rubel, L. R., Shields, A. L. and Taylor, B. A., Mergelyan sets and the modulus of continuity of analytic functions, J. Approximation Th. 5 (1975), 23-40.
[10] Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
[11] -, Function theory on the unit circle, Virginia Polytechnic Institute and State University, Blacksburg, 1978.
[12] Warschawski, S. E., Über das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung, Math. Z. 35 (1932), 321-456.
[13] - O, On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942), 280-335.
[14] -, Boundary derivatives of minimal surfaces, Arch. Rational Mech. Analy. 38 (1970), 241-256.

Fachbereich Mathematik
Technische Universität
D1000 Berlin 12
West Germany

Department of Mathematics
University of Califormia, San Diego
La Jolla, CA 92093
U.S.A.

Received August 26, 1981

[^0]: *This research was in part supported by the National Science Foundation.

