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The module of a 2-component link

J. Levine

The most prominent algebraic invariant of a link L in 3-space is the funda-
mental group II of the complément. One might try to extract &quot;abelian&quot; invariants
from 77. The most obvious candidate: 11/11&apos;, where 77&apos; is the commutator subgroup
of 77, is not very useful since, by Alexander duality, this is just the free abelian

group with rank the multiplicity (i.e. number of components) of L. A reasonable
next candidate is A(L) 77777&quot;, considered as a module over 77/77&apos;. If L is

oriented, a canonical basis of 7T/7T is defined by the meridians of L. Thus A(L)
has a well-defined structure as modulue over A^ -Z[tu t~l1&gt;..., t^, f&quot;1]

(/x multiplicity of L). We refer to this as the module of L. An alternative
description can be given by considering the universal abelian covering X of the
complément X of L. The group of covering translations of X is canonically
identified with 77/77&apos; and then HX(X)^A{L), as a J7//7&apos;-module.

A closely related invariant of L is what is sometimes called the Alexander
module of L, Â(L). This is classically defined as the A^-module presented by the
Jacobian matrix of any présentation of 77. Equivalently Â{L)~HX{X, *), where *
is the inverse image of a base-point * of X. Thus we hâve an exact séquence:
0 -» A(L) -&gt; Â(L) -&gt; M-» 0, where M is the &quot;augmentation idéal&quot; of A^ gener-
ated by ^-1,..., f^-l.

A classical collection of invariants considered by Fox [F] is the séquence of
elementary ideals, or Fitting invariants, É,(L), *^0. Ét(L) is defined to be the
idéal of A^ generated by the (n-i)-order minors of a présentation matrix of
Â(L) obtained from n generators. One also considers the greatest common
divisior Ât(L) of Ét(L)-note that j5+1(L)2É,(L), and so il+1(L)|i,(L). Fur-
thermore Éo(L) 0 4o(L): ÂX{L) is the Alexander polynomial of L. One can
define Et(L) and 4,(L) from A(L) in the same way; then 4,(L) il+1(L), but
E,(L) + ÉI+1(L), in gênerai. If p 1, then Et(L) ÉI+1(L), in fact, Â(L) A(L)®
Al9 and E0(L) is principal and non-zero.

See [C], [F], [H], [Hl], [L], [M] for détails and more information.
The torsion submodule tA of A A(L) carries a sesqui-linear Hermitian
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378 J LEVINE

pairing &lt; with values in S(A) Q(A)/A (Q(A) is the quotient field of A),
referred to as the Blanchfield pairing (see [B], [Ll]). If j3: Â -&gt; HomA (A, S(A)) is

the adjoint of (Â is the conjugate of A, defined by changing the action of A
on A via the anti-automorphism f(x, y)-»/(x~\ y&quot;1)) then Kernel j3 is referred
to as the null-space of and cokernel j3 as the conull-space. If /u, l, the

pairing is non-singular. See [B], [H] for more information.
The problem of giving a purely algebraic characterization of A(L), with the

Blanchfield pairing, has been solved in the case fi 1 (see [Ll]). Bailey [By] has

given a characterization of A(L) in terms of the présentation matrix, when /x 2.

The présent paper is devoted to a further examination of A(L) when jli 2; in
paricular the identification of some of its algebraic properties and a characterization

of certain natural &quot;parts&quot; of A(L).
We write A A2 Z [x, x&quot;1, y, y&quot;1], and use the notation G ttIit\ A

A(L), B H2(X)-note that H,(X) 0, for i&gt;2. We begin by presenting the
main results.

A. r rank A rankB&lt;l. B is a free A-module. If / is the linking number
of the link components, then r=l implies Z 0. A®Z Z/l.

B. If i^O, then A has projective dimension one, (we will say A is one-
dimensional), the Blanchfield pairing is non-degenerate (i.e. null-space 0) and
the conull-space ^AJIb where It is the idéal gênerated by

and
jcy

C. If l 0, we define longitudinal éléments Çx, ÇyeA by lifting into X
&quot;longitudinal&quot; circles parallel to the x and y components of L which link neither

component (£x, £y are, therefore, determined up to multiplication by éléments of
II/II&apos;). fx (resp £y) générâtes the submodule of éléments invariant under x
(resp. y). The annihilator idéal of Çx (resp. £y) is generated by x-1 (resp. y-1)
and one more élément ju,(y) (resp. À(x)). Thus fi(y) (resp. k(x)) is well-defined up
to unit multiple in Z [y, y&quot;1] (resp. Z[x, jc&quot;1]); À(x), jit(y) will be called the

longitudinal orders of L and dépend only on A.
D. If / 0 and r 0, then À(x) 0 /i(y) and A is one-dimensional and

contains an élément a such that (y-1) a Çx and (x-1) a £y. Thus the
annihilator idéal of a is generated by (x-l)(y-l). The null-space of is

generated by a, while the conull-space «A/(jc-l)(y-l). In fact, AJ(a) is one-
dimensional and the pairing on AJ(a) induced by the Blanchfield pairing is

non-singular.
E. If r 1, then, we may choose À(l) 1 ja(1) and, in fact, k(x) | A(x) and

jit(y)|4(y), where â(x),A(y) are the Alexander polynomials of the individual

components of L considered as knots.
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Furthermore, tA®Z 0 and fA A/tA is isomorphic to an idéal I of A. I
may be uniquely specified by demanding that its greatest common divisor be 1 ; in
that case, I+M= A. Another idéal Jç / can be defined from L; / is generated by

(x-l)(y-l) I and an élément or(x, y)g/, which is well-defined modulo
(x - l)(y -1) I Then cr(x, y) s A(x&quot;1) + /xCy&quot;1) -1 mod (x - l)(y - 1) and so o-(x, y)
defines a slightly sharper invariant of L than the pair (à(jc), /Lt(y)), since i/(x-l)
(y-1) J-» A/(x-l)(y-l) has kernel

Jn(x-l)(y-l)A

F. If r= 1, the null-space of &lt; is the &quot;pseudo-null&quot; submodule P(Â) of Â
(i.e. the set of ail éléments whose annihilator idéal has greatest common divisor 1

see [Bo]. P(A) contains the submodule Po generated by £x, £y which coïncides
with the submodule generated by £ i~x + £y, whose annihilator idéal is generated
by er(x, y) and (x-l)(y-l). Po is the submodule of éléments annihilated by

(x-l)(y-l). P(Â)/P0«c1(Jr)-we use the notation el(R) ExtlA(R, A) for any
A-module JR. In fact, P(À)**e1(J). The conull-space C is isomorphic to the
kernel of a homomorphism e2(I)-&gt; A/J, whose cokernel is isomorphic to e2(tA).
A and tA hâve projective dimension &lt;2.

G. Realization: Let A(x), jn(y) be polynomials and I an idéal of A satisfying:
(i) A(l) 1 /x(l); (ii) greatest common divisor of / is 1 and (iii) ACx&quot;1)^ ^(y&quot;1)-

1 e /. Then there exists a 2-component link whose module A has longitudinal
orders A(x), /i(y) and fA^I. Note (i), (ii) and (iii) are necessary conditions (see

(C) and (E)).
We refer the reader to work of Hillman [H],[H1],[H2] and Sato [S] for

related and overlapping results.

§1

We begin by considering the Cartan-LeRay spectral séquence of the covering
X-&gt;X. Elq Hp(G;Hq(X)) 0 for p&gt;2 or q&gt;2 and so E3pq E°;q. Straightfor-
ward examination obtains an exact séquence: H2{X)-*&gt; H2(G)-~* A®Z-+ 0

where &lt;f&gt; is induced by the map X-» K(G, 1) corresponding to the covering X.
Now H2(X) H2(G) Z and &lt;f&gt; multiplication by /; thus A ® Z is infinité cyclic,
if J 0, and cyclic of order /, if If 0. Now a standard Nakayama lemma argument
allows us to construct A e A such that AA 0 and 4(1,1) lk, for some integer
k&gt; 0: if {aj generate A, then we may write la, X K,ap where A,, e M, and, thus,
A det (I8tj - \tJ) annihilâtes A. This shows that A is a torsion module if ifO.

That rank A rank B foliows from considération of the Euler characteristic:
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rank B -rank A XaW xiX)= 0- (#a is the Euler characteristic using rank as

a A-module.) To see that rank fî^l, choose a finite 2-dimensional cellular
structure on X (actually a compact-déformation retract of X) and let C*, C*
dénote the corresponding chain complexes of X and X If DX] and dXJ are matrix
représentatives, with respect to the cell basis, of the boundary maps C2(X)—»
Ci(X) and C2(X) -+ Cx(X), then d,, Dy(l, 1). Now rank B nullA (D,,)&lt;

nullz(Dli(l,l)) rankH2(X) l. Note that this argument shows rank H2(X)&lt;

ix -1 for a jui-component link.

§2

We now define the Blanchfield pairing on tA with values in S(A).
Let K be a triangulation of X and K&apos; the dual triangulation - let K and K&apos; be

the induced triangulations of X If a, j8 e fA, choose représentative cycles z of a
in K and w of /3 in K&apos;. If Àa 0, À g A, choose a chain c in K such that 5c Àz.

Now define (a, ($) modA. Standard arguments (see [Ll]) show this is

well-defined. Furthermore (a, |3) (j8, a), using the usual symmetry properties of
intersection. An alternative définition of the adjoint j8 of is obtained by
composing the maps:

tffiCX) S Ht(X) -£-+ H^X, dX) &amp; H2(X; A)

&gt;61(rH1(X))-HomA (tff^X), S(A)) (1)

D is the Reidemeister-Milnor duality isomorphism ([M]) and p is a &quot;universal

coefficient&quot; homomorphism defined on Dj%tHt(X) which will be explained below.
We are now taking X to be a compact manifold, the complément of an open
tubular neighborhood of L.

It is not hard to equate this définition with the foliowing reformulation;

; S(A)) &gt;H(X, aX; S(A))^H\X&apos;, S(A))

HomA (tH^X), S(A)) (2)

where p is the standard Kronecker map on cohomology, and d* is the Bockstein
from the coefficient séquence 0 —&gt; A —&gt; Q(A) —&gt; S(A) —&gt; 0 Note that Image d*
tHt(X) and so any élément a of tH^X), can be pulled back to q&apos;€H2(X; S(A)).
Any two pull-backs a&apos;, a&quot; differ by the image of an élément of H2(X: Q(A)).
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Using naturality of the maps of (2) with respect to the homomorphism Q(A)-&gt;

S(A), we see that a&apos;-a&quot; passes to an élément of HomA {tHx{X), S(A)) which
cornes from HomA (fH^X), Q(A)) 0. Thus the composition defined by (2) is

wei)-defined on tHx{X). This reformulation is seen to be équivalent to our first
définition using the définition of D via the intersection pairing.

§3

To understand the maps p, p used in our définitions of the Blanchfield pairing
we need a &quot;universal coefficient&quot; considération of the relation between homology
and cohomology. Recall the universal coefficient spectral séquence (see [Me]):
Given a free left chain complex C* over a ring A and a left module N, there exists

a spectral séquence &quot;converging&quot; to H*(C;N), with Esterais given by E£,=
ExtA (HP(Q, N), and differential dr in Er of degree (1 - r, r). There is a filtration

Hm(C; N) Jm0 2 Jm_ltl 2 • • • 2 /i,m_i =&gt; J0,m

where Jpq/Jp-i.,,+1 ***££,. To define p, we simply consider Hm(C;N) Jmt0~»
E~o c E20 HomA (Hm(C),N). To define p (on Kerp), we take Kerp
JW_M -*&gt; E-.ltl s Ei_lfl Exti(Hro.1(QLN): Looking back at (1), we see that p
is well-defined on éléments coming from tH^X), since p is obviously zéro on any
torsion élément when N=A (and A is a domain).

We will consider the universal coefficient spectral séquences for C=C*{X) and

OC*(X,dX), with N A. In each case the spectral séquence can be reduced to
one or more exact séquences. This réduction is straightforward and we omit the

détails. The exact séquences obtained are the following:

0-&gt; H\X\ A)Ï*A*-+z-*hiL&gt;*\*) -&gt; 0 (3)

0 -&gt; Jn -&gt; H2(X; A)ÛB*-* e2(A) -+ 0 (4)

\B) (5)

o) -* H2(X, ÔX; A) -? Bo -» e2(A0) -? H3(X, dX)

&gt;e3(Ao)^0 (6)

AS^H^aXjA) (7)

where we use the notation A Ht(X), B H2(X), (as before) Ao

Hx(X, dX), Bo H2(X, aX), ef ExtA A) and * e° HomA A).
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We also note the exact homology séquence:

0 -» B -* Bo -&gt; Hx(aX) -» A -&gt; Ao -&gt; H0(aX) -&gt; H0(X) -» 0. (8)

It is easy to see that H*(dX) dépends only on the linking number / and is given as

follows:

L) (9)

(10)
(A/(x-l)0A/(y-l) 1 0

In (10), when / 0, generators are given by the two longitudes, lifted into X.

§4

In the case r 0, it follows from (8) that rank Ao rank Bo 0 also. Thus
A* fî* A* B* 0 From (3) and (7) we conclude Bo«H1(H:A) 0 and

B « H\X, SX; A) 0. From (4) and (5), we conclude e2(A) 0 e\A) and so A
is one-dimensional (note eq 0 for q &gt; 3, since A has homological dimension 3).

The Blanchfield pairing 0: Â —» HomA (A, S(A)) ^ ex(A) can be written as the

composition (according to (1)):

If P dénotes the null-space of j8, and C the conull-space, we can deduce from (3)
and (8) an exact séquence:

0-&gt;H1(dX)-*P-*Z-*K-+C-&gt;Q (il)

where K Kernel {H0(dX) -* H0(X) « Z} - from (8).
In order to analyze the map Z—&gt; KçH0(ôX), we first recall that the edge

homomorphism

Ext! (H0(C), N) Elq-+* Eoq JOq £ Jq0 Wq(C; N)

is équivalent to the homomorphism induced by a chain map C* —» F*, where Kjc is a

free resolution of H0(C), which induces the identity map on H0(C) H0(F). In
case A Ztt and C* C*(X), where X is a regular 7r-covering of X, this coïncides
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with the homomorphism Ext\(Z, N) Hq(7r; N)-&gt; Hq(X, N) induced by the
classifying map X -» Bit of the covering X -&gt; X. Now our map Z-^Kç H0(dX)
is the composition

Z e2(Z)-^Jf2(X; AHH^

where e&apos; is the edge homomorphism of the universal coefficient spectral séquence

of_H*(X;A), which coincides with the composition Z e2(Z)^H2(dX: A)»
H0(dX), where sf is the edge homomorphism of the universal coefficient spectral

séquence of H*(dX;A). Now the map dX^&gt;BG, which classifies the covering
dX—&gt; dX, is an f-fold covering on each component of dX (dX is the disjoint union
of two tori and BG a single torus). Therefore the induced map H2(G; A)-»
H2(aX;A)«A/(jc-l,yï-l)©A/(y-l,xl-l) maps a generator onto

xl -1
(&lt;t&gt;t(y), &lt;foOO), where ^(x) ~. If //0, this is a monomorphism, and, since

Hx(dX) 0 (see (10)), we conclude P 0. Furthermore we now see that Cok {Z -&gt;

KçHo(aX)} has a présentation {a, j3:(x-l)a =0 (y- I)j3, ^(y)a &lt;/&gt;i(x)j3},

and it, therefore, follows from (11) that C corresponds to the submodule of
éléments Àa + /i,/3 (À, /x 6 A) satisfying:

It is not hard to see that C will, therefore, be generated by y a -13, subject to
the relations

To complète the protf of (B) it suffices to check that:

4&gt;t(xy) ^ &lt;^(x) + ^(y) ~ l mod (x - l)(y -1).

But this follows from the easy fact that, for any /(x, y)e A:

§5

The longitudinal éléments &amp;, £y of (C) are the generators of the image
&gt; A in (8). According to (10) (x -1)4 0 (y - l)£y. If r 0, then Bo 0
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and, from (10), we see that x —1 (y-1) générâtes the annihilator of £x(£y). Note
that our compilation of Z—» K, in the preceding paragraph, shows that it is zéro,
when / 0, and, therefore, (11) contains the short exact séquence: 0 —» Ht(dX) —&gt;

P-&gt;Z-»0.
If we can show that P~A/(x —l)(y — 1) (with generator a), then it follows that

we may choose Çx (y - ï)a, Çy=(x — \)a as longitudinal éléments, i.e. they are
images, under Hx{dX) —» N, of generators of the respective summands (see (10)).
Since we hâve already proved C^AI(x — l)(y — 1), the remaining assertions of (D)
follows from the Hermitian property of the Blanchfield pairing together with:

LEMMA. Let A be a one-dimensional torsion A-module equipped with a

sesquilinear Hermitian pairing { with null-space K and conull-space C. Then

K^ex{C) and, if A&apos; A/K, the induced pairing on A&apos; is non-degenerate with

conull-space ^e2(C). If e3(C) 0, then A&apos; is one-dimensional.

Proof of Lemma:
Dénote the adjoint of &lt; &gt; by &lt;j&gt;: A -&gt; e1(Â); we hâve, by hypothesis an exact

séquence^ 0—» K-&gt; A-%e1(Â)—&gt; C-»0. The transpose of &lt;/&gt;:A—»

e2&lt;f&gt; —
e1e1A &gt;exA coincides with &lt;f&gt; (this is what Hermitian means), where A —&gt;

e1e1A is a standard &quot;double dual&quot; map. Since A is one-dimensional this double
dual map is an isomorphism. Now consider the diagram of exact séquences:

0

1

0-»K-»A-*A&apos;-h&gt;0

\ 1

VA
I
C

I
0

From this we dérive the diagram of exact séquences:

0
4

0 -»• e\C) -&gt; eV(A) -»¦ e\A&apos;) -* c2(C) -» e2e\A) 0

I
A ^
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as well as the isomorphism e&apos;(A&apos;)~eI+1(C), i&gt;2. We immediately see that
K**e\Q, the cokernel of the map À&apos;-+e\A&apos;\ induced by e1&lt;f) &amp; is e2(C),
and that A&apos; is one-dimensional if e3(C) 0.

§6

From now on we will assume r 1, since ail the statements for r 0 hâve been

proved. We first point out that B^Hl{X, dX; A), by duality, and, by (7), we then
conclude B~A%, which is free-over a unique factorization domain, R* is free
for any module R of rank &lt;1.

We examine the longitudinal éléments. We can define £x, £yeA, when / 0,

by choosing translates of the components Kx, Ky of L into X which hâve 0 linking
number with their associated components - since / 0 thèse translates lift into X
defining £x, £y up to multiplication by a unit of A. Clearly Çx, Çy gênera te

Image {H^dX) -» HX(X)}, and we hâve (x - l)fx 0 (y - l)£y (this distinguishes
£x from fy). We now show the existence of A(x), n(y), as in (C).

Consider the infinité cyclic covering Xx of X defined by the homorphism
JI -» G —» Z, which sends x —» 1 and y —» 0. Thus X is an infinité cyclic covering
of Xx, and in fact, Q(XX) « C*(X)/(y - l)Q(X). We obtain, by tensoring C*(X) with
the short exact séquence:

the following exact homology séquence:

^ H2(XX) -^ Ht(X) -2^ HX{X)

&gt; H0(X) (12)

Now Xx is closely related to the infinité cyclic covering Yx of the complément of
Kx. In fact Yx-Xx is the union of translates, by powers of x, of the solid torus

formed by lifting a tubular neighborhood of Ky into Yx. Thus Ht(Yx,Xx)~
AI(y -1), if i 2, 3, and zéro otherwise. By considering the exact séquence of the

pair (Yx, Yx) and the facts that H,(Yx) 0 if i^2, we see easily that H2(Xx)«

A/(y-l) and obtain an exact séquence:

0 -» A/(y -1) -* H^XJ -^ Ht( Yx) -&gt; 0. (13)
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The séquence (12) can now be put in the simpler form:

0^&gt;AI(y-l)^&gt;AI(y-l)-+AÏ±+A-+H1(Xx)-+Z-*0 (12&apos;)

since H2(X) B^A. The image of a generator, under the injection A/(y-l)—&gt;

A/(y-l) is représentée by a non-zero polynomial À(x). Since a generator |y of
H2(Xx)^A/(y-l) is représentée! by the boundary torus of a tubular neighbor-
hood of Ky (lifted into Xx), it is straightforward to check, from the définition of
the boundary homomorphism H2(XX) -» H^X) A, that |y -» fy € A. It foliows
immediately that À(x) and y-1 generate the annihilator idéal of £y. A similar

argument establishes the existence of fx(y).
Note from (12&apos;) that £y générâtes the submodule of éléments invariant under

y. Thus À(x) is defined, purely algebraically, up to unit multiple, by the property
of being a generator, together with y-1, of the annihilator idéal of this
submodule - similarly for jn(y).

We now show \(x) \ A(x), where A(x) is the Alexander polynomial of Kx - this
will imply À(l) ±1. Let T be the torsion sub-module of A. We first dérive from
(12&apos;) and (13) an exact séquence:

0-* R -&gt; T^^T-^ S -&gt; 0 (14)

where R A/(À(x), y-1), SçH1(Yx) is the image of T under A-^H^XJ-»
H^YJ. The only point not immediately obvious is: Ker{T—? S}ç (y-l)T.
Suppose a e T and a ~-&gt; 0 in S. If a —&gt; 0 in HX(XX), then a (y - I)j3 for some

j8 € A, by exaetness of (12&apos;). But then aeT implies |8 g T. To see a -&gt; 0 in HX(XX)

it suffices by (13) to show /(x)a-»0 for any non-zero f(x). But, since aeT,
f(x, y) a 0 for some non-zero f(x, y). If we write f(x, y) f(x) + (y -1) g(x, y),
then 0 f(x) a + (y -1) g(x, y)a. Since (y -1) A -&gt; 0 in H^XJ, so does f(x)a. If
/(x) 0, then, by (12&apos;), À(x) g(x, y) a 0. But this would be impossible if we had

chosen f(x, y) with the smallest number of y -1 factors.
Now recall that 4(x) 4(ff1(Yx)), where 4(A), for any Ax-module A(AX

z[x, x&apos;1]^ A/(y-1)) is the greatest common divisor of the order idéal of A (see

[L]). We also recall the following property of A (A): if 0 -» A&apos; -* A -&gt; A&quot; -» 0 is a

short exact séquence of Ax-modules, then 4(A) 4(A&apos;) 4(A&quot;) (see [L] for a

proof). Thus, for example, A(S)\A(x) and, so, it suffices to prove that À(x)

A(R), R considered as a Ax-module) divides A(S). Define

and
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where &lt;£: T-&gt; T is multiplication by y- 1. Thèse are Ax-modules and we hâve a

family of short exact séquences: 0-» TI+1-&gt; T^V -* Tl+1-»0, for i&gt;0 (see

[L2]). From (14) we see that T0~R and T°~S. From the above-mentioned
multiplicative property of A we hâve A{Tl+l)A{T) A(Tt) A(Tl+1) for i&gt;0.

Therefore, we see that A(Tl+1) \ A(T+1) would imply A(Tt)\ A(V)-note that
thèse are ail non-zero, since A(Tl+1) \ A(Tt), A{Tl+1) \ A(T) and A(T0), A(T°) are
non-zero. Thus it suffices to show A(Tt) \ A{T) for some value of i. But T, 0, for
large enough i, since {Ker&lt;£t} is an increasing séquence of submodules in a

finitely-generated module over a Noetherian ring. This complètes the proof.

Of course, by a similar argument, we can show fi(y) \ A(y).
We can now show that Po, the submodule of A generated by £x and £y, is the

submodule of éléments annihilated by (x - l)(y -1). Suppose (x - l)(y -1) a 0;
then (y - l)a fÇx for some fe A. So /x(y)(y - l)a 0 which means jut(y) a g£y.

Since /u,(l) l, we may write jut(y) l + (y-l)jLt&apos;(y) and so a + (y
g£y or a + /ut&apos;(y) /&amp; gfy Thus a G Po.

§7

We now examine /A and prove /A ®A Z is infinité cyclic. (over Z) We already
know A®AZ is infinité cyclic, which implies fA®AZ is cyclic. If fA®AZ were
finite of order fc&gt;0, then /A®AZlp 0, for any p relatively prime to fc. If so, by
Nakayama&apos;s lemma, A • /A 0 for some A£ Mp, where Mp ker {A -» Z/p}. But

/A is torsion-free. If we define I to be the idéal of A with greatest common
divisor 1 which is isomorphic to /A, then I4-M=A. To see this choose Ael
which générâtes I/MI~I®Z~Z-we will show A(l,l) ±l. M(J/(A)) I/(A),
which implies, by Nakayma&apos;s lemma, that A • J/(A) O, i.e. 4Jç(A), for some

4 s 1 mod M- i.e. 4(1,1) ±1. Since I has greatest common divisor one, A e (A)

and so A(l, 1) ±1. To see that tA®AZ 0 (when r 1) consider the short exact

séquence 0-»fA-&gt;A-&gt;/A-&gt;0 and apply®AZ to obtain Tor1 (/A,Z)-&gt;

fA®Z-^ A®Z-»/A®Z-&gt;0. Since A&lt;8&gt;Z«Z«/A®Z, it suffices to show

Tor1 (/A, Z) Tor1 (J, Z) 0. Now Tor1 (/, Z) Tor2 (A//, Z) which can be consi-

dered to be the submodule of invariant éléments of A/J-i.e. of éléments a

satisfying xa ya a. But Aa 0, where \el satisfying A(l,l) l has been

found in the preceding paragraph, and so 0 (l + (x-l)A/ + (y~l)A&quot;)a

By the results of §7, we may break (8) up into two shorter exact séquences (for
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r=l):

0 -» B -* Bo -» A/(x -1)© A/(y -1) -» 0 (15a)

0 -* A/(p, (x - l)(y - 1)) -» A -&gt; Ao -» A/(x - l)(y - 1) -&gt; 0 (15b)

where p À(x) + /x,(y)-l (choosing À(l) 1 /x(l)). Note that the quotient of
A/(x-l)©A/(y-l) by the submodule generated by 0i(y),0) and (0,À(x)) is

isomorphic to A/(p, (x - l)(y -1)), using the generator (1,1), and the kernel of the
epimorphism A/(x -1)©A/(y -1) —&gt; Z is isomorphic to A/(x- l)(y-1), using the

generator (1,-1). Applying Hom( A) to (15a) yields an exact séquence:

Now e1(B) 0, since B is free. From (3), we conclude that B0~Hl{X\ A) is free
or isomorphic to M (the idéal in A generated by (jc — 1, y-1)), since A* is free.
But (15a) is possible only if B0~M. Thus e1(B0)^Z. We, therefore, hâve the
exact séquence:

0-&gt;B*-&gt;B*-&gt;A/(x-l)(y-l)^0 (16)

We now apply Hom A) to (15b) and obtain exact séquences:

0 -&gt; A* -* A* -&gt; Al(x - l)(y -1) -&gt; e^Ao) -&gt; ea(A) -^ 0 (17a)

0 -» e2(A0) -&gt; e2(A) -^ A/(ft (x - l)(y -1)) -&gt; eB(A0) -&gt; 0. (17b)

Note that

e2(A/(p, (x - l)(y -1)) - AJ(p, (x - l)(y -1))

and e3(A) 0 (by (5), since B is free).
We now examine the homomorphisms tA -» tA0 and fA-* fA0, using (15b).

Denoting the kernel and cokernel, respectively, by Ku K2 and Cl5 C2, we can

apply the snake lemma, using (15b) to obtain an exact séquence: 0-*Kl—»
A/(p, (x - l)(y -1)) -» X2 -^ Q -&gt; A/(x - l)(y -1) -» C2 -^ 0. Since K2 is torsion-
free and Ct torsion, we see that K2 0. For some idéal S 2 (x - l)(y -1), we hâve

l), C2~A/S
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and we hâve:

0 -» Al(p, (x - l)(y -1» -&gt; tA -&gt; tA0 -»• S/(x - l)(y -1) -&gt; 0 (18a)

0-*/A-*/Ao-*A/S-*0. (18b)

§8

We now deduce some facts from (3)-(6) and duality:

tÂ=e1(A0). (19)

This follows from (6), since el(A0) is torsion and B* is free.

0. (20)

This is just (3), since Jxl — tAo from (4).

0-^/Âo^B*-^62(A)-*0. (21)

This follows from (4).

Â (some fc&gt;0). (22)

This follows from (6), since H3(X, dX) » Z and c3(A0) cannot be isomorphic
to Z, since e\Z) ± 0 but e2e3 0 over A (see [Ba]).

We use the map X-* (X, dX) to map (22) -+ (21). Using (18b), (16) and (17b),

we obtain a commutative diagram:

0

4

JÀ -*
4

4

aïs a

4

0

0

4

B*o

4

B*
4

l/(x-l)(y-l
4

0

0

4

- e\A0)
4

-* e2(A)
4

A/(p, (x-D(y-l))
4

e3(A0)
4

0

(23)
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From the snake lemma we deduce an exact séquence:

0 -&gt; AIS -» A/(x - l)(y -1) -* A/(p, (x - l)(y -1)) -&gt; e\AQ) -&gt; 0. (24)

From this séquence we may deduce: e3(A0) 0 and S (x - l)(y -1). The first
of thèse follows from the fact that any epimorphism A^&gt;Z/k is of the form
/(*» y) -* û/(1, 1), where a e Z is relatively prime to fc, and p(l, 1) 1. To see the
second, let aeA represent the image of 1 under A/S-&gt; A/(x-l)(y-l). Then

(a,(x-l)(y-l)) (p,(x-l)(y-l)) and so a(l,l) ±l. But j3eS if and only if
(x — l)(y — 1) | aj8 and so Sç(x-l)(y-l). Since we already know S 2
(x - l)(y - 1), we hâve S (x - l)(y -1).

Now define / to be the ide^l of A, with greatest common divisor 1, isomorphic
to /Ao. We can rewrite (23) as follows:

0

1

I X

t&quot;

4

4

0

0

4

A

4

A

4

4

0

0
4

-* e2(Â0)

4

-&gt; e2(Â)

4

l)-»A/(p,(x-l)&lt;
4

0

(25)

The maps indicated by t, t&apos;, t&quot; and t0 are ail multiplication by éléments of
Q(A) - we also use r, t;, t&quot;, t0 to dénote thèse éléments. Obviously roeA and is a

unit multiple of (x - l)(y -1) and, since I and / hâve greatest common divisor

one, t&apos; and t&quot; are also in A. Now e2(Â0) and e2(Â) are pseudo-null since they are

grade&gt; 2 (see [Ba]) and grade ^2 means pseudo-null (see [R]). Therefore r&apos; and
t&quot; must be units of A; so reA and is a unit multiple of r0 or (x-l)(y-l).

Now choose an élément aeJ which maps onto a generator of A/(x - l)(y -1).
Therefore J (x-l)(y-l)I+(cr). From the left-most vertical row of (25) we see

that fa € (x - l)(y -1)1 if and only if (x - l)(y -1) | /. If / (x - l)(y - 1), this says

ael, and so Jç J. If &amp;&apos; is another élément such that / (x- l)(y -1)1+ (a&apos;), then
a straight-forward computation shows a&apos; - acr mod (x - l)(y -1) J, where a
u mod(x-l)(y-l) for some unit u of A. Since ael, we hâve cr&apos;

Mer mod (x - l)(y -1)1 and so a is well-defined up to unit multiple, mod (x -1)
(y-1) I. Finally, it follows from (25) that (cr,(x-l)(y-l)) (p,(x-l)(y-l)),
which implies o-= u&apos;p mod (x - l)(y -1) for some unit u&apos; of A.
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§9

We now détermine the null-space N and co-null space C of the Blanchfield
pairing. Its adjoint îA—» e1(tA), whose kernel and cokernel are N and C, can be
described as the composition:

1Â-&gt; e\A0) -&gt; e\tAQ) -* e\tA) (26)

where the first homomorphism is the isomorphism of (19) and the others are
induced by inclusion tA0 c Ao and A —» Ao. By its Hermitian property this
coincides with the composition;

1À-* rÂ0 -&gt; ex(A) -» e^fA). (27)

The middle map cornes from (20).
In (26), the last map is also an isomorphism - this follows from (18a), since

S (x-l)(y-l) and e°(A/(p, (x-l)(y-l)) e1(A/(p, (x-l)(y-l)) 0. Thus N
and C are isomorphic to the kernel and cokernel, respectively, of eî(A0)-*
e1(tA0). From the short exact séquence 0-» fA0—» Ao-»/Ao-&gt; 0, we conclude
N~e1(fA0) e1(J). Since ^(fA)«HomA (tA, S(A)) is pseudo-null free, and
e1(J)^e2(A/J) is pseudo-null, it follows that N is the pseudo-null submodule of
1À.

_We show that the map îAq-+ e1(A) in (27) is an isomorphism. Referring to
(20) we hâve already seen that A*-^&gt;Z is non-trivial, since B0^M and A* is

free. It remains to show that tA0 cannot contain a submodule isomorphic to Z/fc,
unless k 0 or 1. But we hâve seen e3(A0) 0 and an inclusion Z/k -&gt; Ao would
induce an epimorphism e3(A0)—» e3(Z/fe)«Z/fc (if fc&gt;0).

From the short exact séquence 0 —» fA —» A —» /A -&gt; 0 we deduce an exact

séquence.

0 -&gt; e^I) -&gt; e*(A) -+ ex(fA) -&gt; 62(/) -&gt; e\A) -&gt; e2(rA) -~&gt; 0 (28)

since fA^I and e3(I)~e4(A/I) 0. From (28) and (18a), we can deduce exact

séquences:

0 -* AJ(p, (x - l)(y -1)) -» N -&gt; e\I) ~&gt; 0 and

0 -^ C ~&gt; e2(J) -&gt; e2(A) -? e2(rA) -&gt; 0.

Recall S (x-l)(y-l). Since e2(A)~A/J from (25), we hâve completed the

proof of (F).
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§10

To prove (G) we will use the following spécial case of a resuit of Bailey [By]

THEOREM. Let (À,,) be an (nxn)-matrix over A satisfying (i) An 0; (ii)
AlJ AJJ/n&gt;i,/&gt;l(iii)Alj (x-1-l)(y-1-l)Â;i/orl&lt;/&lt;n(iv)AlJ(l,l) ±ôIJ

if n &gt; i, j &gt; 1. Then there exists a link, with l 0, whose module A has présentation

\ «!,..., an: £ KjOtj 0, i l,...,n\.

Since a proof this theorem has not appeared in a journal, we présent one in
the Appendix. We point out that our proof is very différent from Bailey&apos;s. Also
see [N]. ((Ai;) is referred to as a présentation matrix of A.) We prove two lemmas.

LEMMA 1. Let A be a link module with a présentation matrix (\l}) satisfying
(i)-(iv). Suppose (cr.) is an (nxl)-row vector, whose entries are relatively prime,
such that Xr=i o&apos;tK] 0 /or/ 1,..., n. Then a^s, 1) and o-^l, y) are the longitudinal

orders of A.

The next lemma deals with a more gênerai situation.

LEMMA 2. Let (ÀtJ) be an (n x n) matrix over a domain A, a présentation
matrix of a module A of rank one. Let M be the (n-l)x(n- \)-matrix (Ai;), 2 =^

i, j^n and suppose A detM±0. Let (/itJ) A • M~x{2&lt;i,/&lt;n), the cofactor
matrix of M and set p, £/n=2 jwi;A;1. Then fM is isomorphic to the idéal of A

generated by (A, p2,..., pj.

Proof of Lemma 1. Let 0-» W-* F0-^F1-^ A 0 be the resolution defined

by (At/), i.e. Fo and Fx are free modules of rank n with bases {aJjjSj with
d(Pi) YéJKj^r Since rank A l and projective dimension A ^2, W is free of
rank one. If a generator of W^F0 is Z.o^ft, then o-,&apos;= uav for some unit u in
A. Let Ax A/(y -1): then Torf (A, Ax) is the submodule of éléments of A anni-

hilated by y-1 (using exact séquence 0-» A^-Ua ~» Ax -&gt;0) which, by (C),
is isomorphic to AJ(\(x)). Using the resolution of A given above Torf
(A, Ax) is the homology of the chain complex:

t ® Ax
A
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where the modules are free over Ax and d\ d&quot; are represented by the matrices:
(o-t(x, 1) and (ÀtJ(x, 1)), respectively. Since À^Oc, 1) 0, for ail /, and Av(l, 1) ±8|;
for i,j^2, it follows easily that kernel d&quot; is the free submodule of FO®AAX

generated by px®l. Thus, since Image d&apos;ç kernel d&quot;, at (x, l) 0 for î&gt;l, and

Tort (A, Ax)~ A/faix, 1)).

A similar argument for /ut(y) complètes the proof.

Proof of Lemma 2. Suppose (pi;), 1&lt; i, /&lt; rc, is any matrix over A; consider
the module A&apos; presented by the product matrix (pi;)(Àl;)-i.e. A&apos;

Oi» • • •, Pn: I,,s PA; ft 0, i 1,..., n}. If {a,} are the generators of A, subject
to relations £, À,,», 0 (i 1,..., n), then ft —» a, defines an epimorphism
&lt;f&gt;: A&apos; —» A. The kernel of $ is generated by {y,}, where y, £, À^jS, (f 1,..., n),
and the {y,} are subject to relations Z;Pij7/ 0 (i=l,...,n). We apply thèse

observations to the matrix (py) given by

or /=1.

The matrix (crI/) (plJ)(Àl/) is given by

,=1A 7 1,

i,/s2.

Now det(pl/) ^1^0, which implies, since (pl;) is a relation matrix for Ker 0,
that Ker&lt;£&gt; is a torsion module. Thus &lt;f&gt; induces an isomorphism fA^fA&apos;. To

compute /A&apos;, we define a homomorphism \\i: A&apos; —» A by iM0i)= ~^&gt; t|Kj3,)= Pi for
i&gt;2. This is well-defined since it préserves the relations given by ail the rows of
(o-t/), except perhaps the first-but, since rank A&apos;= 1, the rows of (at]) are linearly
dépendent and, therefore, the relations given by the first row must also be

preserved (note that rows 2 through n are linearly independent). Since rank
A&apos; 1, iff induces an isomorphism /A&apos;«Image ty- (â, p2,..., pn). This complètes
the proof of lemma 2.

§11

We can now prove the realization theorem (G). Let a(x, y)

)-1 and choose éléments rl9..., rk e I so that (a, ru rfc) I
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Define the (n x rc)-matrix

(0

where n 2k + l as follows:

i=l=/

k + K i &lt; n, j 1

i l,2&lt;/&lt;fc + l

k + 1;

This matrix satisfies the conditions of Bailey&apos;s theorem and is, therefore, the
présentation matrix of a 2-link module A.

We can define a row-vector (o-,) satisfying the hypothesis of lemma 1 by
setting:

2&lt;i&lt;k + l
fc + K i &lt; n.

Since o-, T!,... rk are relatively prime, and cr(l,l) l, the {o-J are relatively
prime. Clearly a^x, 1) A(jc), cr^l, y) /x(y) and so, by lemma 1, thèse are the

longitudinal orders of A. To show /A « I, we apply lemma 2. For our matrix (Ai;),
À (-crâ)k and (fi,,,) is given by:

f(-cr&lt;r)fc-1a, 2&lt;i&lt;fc + l

Then

k + i &lt; n.

Thus /A « idéal generated by{(- cr&lt;x)\ (-cr)k&quot;1ô:kTl(l &lt; i &lt; fc), (-0-^)^,(1 &lt; i &lt; k)}.
If we divide out ±crk~1âk from thèse éléments, we find /A «idéal generated

by {a, t,, otti} {ct, Tt} I.
This complètes the proof of (G).
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Appendix

We outline a proof of Bailey&apos;s Theorem as stated in §11. The construction of
the desired Hnk proceeds, in the spirit of [L], by surgery on the complément of the
&quot;unlink&quot;, i.e. the Hnk formed by the boundary of two disjoint 2-disks in 3-space.

Let Xo be the complément of the unlink-then H^Xq) îs free of rank one.
Choose a generator e of H^Xq) and let {a^ (2&lt;i&lt;n) be disjoint imbedded
circles in Xo which lift to imbedded circles {ât} in Xo such that &amp;t represents \tle.
We would also like {a}, considered as a Hnk in 3-space, to be the (n-1)-
component unlink. If we give each cr, the normal framing which winds once
around and do surgery on S3, using thèse framed imbedded circles, the resuit £,
as in [L], is again diffeomorphic to S3. The desired Hnk L will be the original
unlink regarded, now, as a Hnk in S.

Let Y be the complément of the {cr^ in Xo and X be the complément of L in
X. Y and X will be the coverings of Y and X inherited from Xo; X is the
universal abelian covering of X. To compute HX{Y) we examine the homology
séquence of (Xo, Y). From this we conclude that HA{Y) is generated by éléments
{e&apos;, e2, • • •, Bn} where e&apos;-&gt; e under the inclusion Y —&gt; Xo, and et is represented by
a small circle which links âl simply. There is a single relation Y!î=i ai^i ~ 0, where

ax - E - &amp;v the intersection in A of a generator E of H2(X0) with &amp;v Since ât

represents \ne, we hâve

a^kaiE- e).

Finally, one may calculate E • e (x- l)(y-l) by a direct computation: E is

represented by a 2-sphere separating the components of the unlink and e is

represented by the loop r as follows:

So the relation is (x - l)(y - 1) Ir=2 A^e, 0.

To compute Ht{X) we now examine the homology séquence of (X, Y). From
this we conclude that Ht(X) has generators e&quot;, er2,..., s&apos;n, the images of
e&apos;, e2,..., en under the inclusion Y-» X, with the relation:

(x-l)(y-l
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and, in addition, new relations

(*) Àtle&quot; + X A;;e; 0, for some {à;,}.

s the class represented by the circle â[ obtained by
translating &amp;x along one of the vector fields of the normal framing of ât used in
the surgery. That the coefficient of ë is Àtl follows from the fact that âx represents
KlXe in HX{XO). We show that the correct original choice of ë results in the

following properties:
(i) a;, à;,
(ii) (t&gt;(\[) 8l}

where fy.A-^Z is the usual augmentation f(x, y) —» /(l, 1).

LEMMA. Suppose X is a compact oriented 3-manifold, X—&gt;X a regular
covering with r as the group of covering transformations. Let Tl5..., Tn be tori

components of dX which lift to fx ç X trivially covering Tv for each i. Let a,, j3, be

the canonical generators of Hiif,) represented by meridian and longitude circles.

Satisfying a,al 0 ftft and a.-ft^S,,. // I^A^a^ + I,/iijii#Oi) 0, i

1,..., m, is any set of relations in H^X), i: Tt ç X, then, for any i, j

where fi ~&gt; ji is the usual conjugation in Ztt.

Proof Write £, (Àva; + ^jSj) 6*0, for some 0, g H2(X, f where

d^rfl^X, f)-&gt; H^f) is the boundary homomorphism. Then, using the property:
If aeHx{t), 6eH2(X, f), then d*0 • a 0 • i^a we conclude that 0, • i*(a7)

0 0r

We hâve the equality &lt;x; ÀI1e/ + X/A^e^ in HX(Y). If we remove a tubular
neighborhod of the loop t, representing ë, from Y to obtain a new manifold W,

we obtain new équations: âfOl= À^eo + Z A;;ê0/ + /x,C in HjCW) where C is

represented by a meridian of the newly removed tube, e&apos;o is represented by a
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translate ?&apos; of f into W, and e0} -» ev cr^—» (t\. We apply the lemma to thèse
relations and conclude:

assuming that {e}} and C are oriented correctly. We now replace our original
choice of e&apos; by e&apos; +11,^6, and check that \&apos;l} is replaced by Ày-À,^. Now

property (i) is satisfied.
To verify property (ii), we need to add to the above argument the constraint

that r be chosen to hâve linking number 0 with t in S3. If we now project
everything to Wç=S3, the above équations imply:
(a) *(/i.)= Z(t,-ct1 + ^(Ai1)t&apos;)

(b) (t&gt;(X[)=l(apcr[-&lt;l&gt;(Ki)r)

where l dénotes linking number in S3. Since J(t, t&apos;) 0 by choice, and l(cro &lt;r;&apos;)

8l} by définition of crj, (a) and (b) imply:

or &lt;^(AJJ-Aïljui/) Sir as desired.
We finally propose to alter the {cr,} in order to change the {A[;} to the

prescribed {At/} for 2 &lt; i, ; &lt; n. As a preliminary considération we show how to
make certain elementary changes in the {A;;}. Choose gtG, and 2^ a, b&lt;n; we
will change aa to effect the change:

A;7±g i aj=bya^b

Choose an arc f in Xo from âa to g&lt;rb avoiding ail lifts of av t, and use y to
form a connected sum of &lt;ja with a small circle linking crb, as in the following
picture:

n



398 J LEVINE

To see that the {à;,} are changée as claimed, we use the following characteriza-
tion: given chains 0, in Xo such that ât- \llr d6l, then \&apos;l]=6l • &amp;&apos;v If we now
make the obvious change in 6a to accompany our change of cra, it is straight
forward to verify the new values of {À,&apos;,}. The ambiguity in sign is achieved by the
ambiguity in the connected sum, as in the picture.

Note that this construction will destroy the property that {cr,} should form a

trivial link in S3, as well as property (ii) of {À^}. The elementary changes in {À|;}
which would generate an arbitrary change preserving properties (i), (ii) are of the

following type: give geG and 2&lt;a, b&lt; n:

la;

i j a b

(i, /) j= (a, b) or (6, a)

But this change is realized by a pair of changes of the original type and,
therefore, we will be done if such a pair can be effected without changing the link
type of {cr,} in S3. To see this it is merely necessary to choose the two arcs from cra

to crb so that, in S3-{al}y they will be isotopic rel boundary, as suggested by the

following picture.
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