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Invariant differential operators in hyperbolic space

H. M. Reimann

1. Introduction

The conformai mappings in real higher dimensional space Rn, n &gt; 3, are the

proper Môbiustransformations. The group GM(n) of Môbiustransformations acts

on Rn=RnU{°°} and there is a subgroup isomorphic to GM(n-l) which
stabilizes the unit bail B. It is the action of this group GM(n — 1) and the induced
action on functions on the hyperbolic space B that will be studied.

The differentiation process leads from functions to vectorfields and tensorfields
of higher order. There is a natural setting which reduces the analysis of at least

the symmetric tensors with vanishing traces to the study of functions on a bigger
space X. Whereas the hyperbolic space B is isomorphic to O±(l, n)/O(n) this

space X is isomorphic to the quotient space O±(l, n)/O(n~l). Geometrically it
can be described as the cosphere bundle of the hyperbolic space B. The action of
the Môbius group GM(n -1) on X essentially is the action of GM(n -1) on the

cotangent space of B.
The approach described hère, whereby certain tensorfields on B are inter-

preted as functions on X, is inspired by a similar construction for the sphère (see

Levine [4]). The purpose of that construction was the characterization of invariant
Systems .of singular differential operators on the sphère. In both cases the

conformai structure seems to be essential.

The space C(X) of functions on X can be split into a direct sum of subspaces

C(X)= 0 Ek

The functions in Ek hâve an interprétation as tensorfields of symmetric tensors
with vanishing traces. Their analysis is in a certain sensé complementary to the

analysis of differential forms, which in the tensor language is a theory of
antisymmetric tensors. Certain striking analogies are apparent. The invariant
operators Sk and S* defined in Section 5, Theorem 7, are gêneralizations of the

operators grad and div. They play a rôle similar to the operators d and d* for
differential forms (see Theorems 7 and 9). In particular, Sk maps Ek into Ek+1
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Invariant differential operators m hyperbohc space 413

and S* maps Ek into J5lc~1. It is shown that the operators Sx and S* coincide with
certain operators studied by Ahlfors [1] (see Theorem 8).

There exists an invariant differential operator Dz on X which is of first order.
As a conséquence, the space of solutions of Dzf 0 is an algebra. The functions
fe E1 which satisfy Dzf O are exactly those which correspond to vectorfields v
in the Lie algebra of the Môbius group (Theorem 6).

The algebra of invariant differential operators on X is not commutâtive. It is

generated by 1, the first order differential operator Dz and a further differential
operator D|Yp of second order (Theorems 1 and 2). The operator D)Y|2 is basically
the Laplace-operator on the sphère O(n)/O(n-1). The spaces Ek appear as

eigenspaces of D\Y\2- The Laplace-Casimir operator Ax on X préserves the
eigenspaces (Theorem 9).

2. The Mobhis group and its Lie algebra

The Môbius group GM(n) is the transformation group of Rn =Rn U{&amp;&gt;} which
is generated by reflections in the sphères and hyperplanes of Rn. The group is

isomorphic to O±(l, n + 1), the subgroup of O(l, n + 1) which préserves the

positive cône:

l-l
(see Mostow [5]). The isomorphism is constructed in the following way: The

group O(l, n + 1) leaves invariant the quadratic form (y, y)= yl~Y?=î y2 and in
particular the cône {y eRn+2:(y, y) 0}. If inhomogeneous coordinates tj, yl/y0
are introduced, the group becomes a transformation group of the sphère S
{Tj€Rn+1:|rï| 1} and the éléments g and -g give rise to the same transformation.

Stereographic projection from the point en (0,..., 0,1) onto the plane
i7n4.1 0 then leads to the realization of O±(l, n +1) as a transformation group of
Rn. The subgroup of the Môbius group GM(n), which stabilizes the unit bail
fîcR&quot; is isomorphic to the Môbius-group GM(n-l) of one lower dimension.
This group which acts on B will again be denoted by GM(n-l). Observe that
under the above isomorphism this is exactly the subgroup O±(l, n) of O±(l, n + 1)

which stabilizes the lower half space in Rn+2. The éléments in matrix notation
hâve the spécial form

/ 0

8 8./ : I î,; 0,l,..., n goo&gt;0

\0 0
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Our main concern is with this group G GM(n — 1), n &gt; 3, which is the group of
conformai and anti-conformal mappings of the unit bail J5c=Rn onto itself.
Referring to the isomorphism GM(n-l) O±(l,n) we will speak about the
géométrie realization of the group, if we consider it as a transformation group of
B. The algebraic realization then refers to the group as a matrix group.

The unit bail B has the structure of a symmetric space (the hyperbolic space)
B G/K with the invariant metric ds2 p2 \dx\2, p(x) (1 - |x|2)~\ The stabilizer
K of the origin is the orthogonal group. We start with an explicit description of
the action of G GM(n-l)onfîcRn.

The stereographic projection of the sphère X ={r\eRn+1 :\r\\ 1} onto the
plane r\n+1 0 is given by the formula

and the inverse mapping is

\x\2-l

g (g,,) be an élément in O±(l, n) and consider O±(l, n) as the subgroup of
OJX, n +1) which stabilizes the unit vector en+1 (0,..., 0,1) e Rn+2. The image
of the half line y t(eo~en+1) t&gt;0 is the half line

t(geo-gen+1) *(gOo&gt; • • •, gno&gt; -1)

which in turn is mapped onto the point

*l=—(gio».--»gno»~l)
goo

Under stereographic projection this point projects onto

*=—— (gio,...,gno)eB (2.1)
1 + g

If g is in the subgroup O(n) of O±(l, n), then goo 1 and the corresponding point



Invariant differential operators in hyperbolic space 415

on the bail B is the center x 0. This establishes the isomorphism

B O±(l,n)/O(n)

The group O±(l, n) acts on the quotient space by left translation. The
Môbiustransformation corresponding to the élément g g O±(l, n) will be denoted

by t?. It is a conformai mapping if geSO±(l, n)

SO±(l,n) {geO±(l,n):detg&gt;0},

otherwise it is an anti-conformal mapping.
Consider the one parameter subgroup

(Ch

t Sh t \

* I (2-2)

Shr Ou/

in 0^(1, n). The curve xt rat(0) in the bail B is given by

Sh t _

The tangent vector to the curve at the origin is the vector

dx,

dt t=0

The élément Tg, g € O±(l, n), maps this curve onto the curve z, TgTai(0)

X&apos;
•&apos;

whose tangent vector at Tg(0) is given by

dt
gOn

t=o goo) 1 + goo

&quot;

v&amp;m • • • s ann)

The tangent vector en (0,..., 0,1) at the origin is therefore mapped onto the
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tangent vector £ at x =(l/(l + goo))(glo,..., gn0) with coordinates

&amp;=*g°n%-~IL- i l,...,n (2.3)
\ ¦¦¦ • gooi *¦ -r goo

The invariance of the quadratic form (y, y) implies

n

-l gok- Z g* k l,...,n
i=i

n
0 googok - Z gifcgio (2.4)

t=i

and it follows that

2
=l-|x|2 (2.5)

1 + goo

if x Tg(0). The length |£| (Xr=i £2)1/2 of the tangent vector $ can now easily be
calculated to be l-|x|2

(1 + g00)~2g0n(g00 &quot; 1) - (1 + g0û)&quot;12gLg00+ gûn+

(1 + goo)&quot;&apos;go^goO - 1 - 2goo) + gin + 1 1

l£l l-W2 (2-6)

This proves the invariance of the metrie

P=(i-ixi2r1

and the conformality (or anti-conformality) of the transformations rg.
Next we define the subgroup M of the Môbius group G GM(n — 1) as the

stabilizer of both the origin and the tangent vector en at the origin in B. M is a
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subgroup of K. In the algebraic picture this is the orthogonal group

(2.7)

The cosets are parametrized by the géométrie parameters x Tg(0) and Ç

dTg(0)en. We call the pair (x, |) the coordinates for the coset gO(rc-l). The
équations (2.1) and (2.3) express thèse coordinates by the matrix éléments gt] of g.

Geometrically, the quotient space G/M can be realized as the cosphere bundle X
of B. Since |£| 1-|jc|2, the group GM(n-l) acts on

X {(x,É)eBxR&quot;:|£|:=l-|x|2} (2.8)

and the action is seen to be transitive. It can be described by the formula

(x,f)-*(V,dT8(x)e) (2.9)

where drg(x) is the cotangent mapping which maps the cotangent space at x onto
the cotangent space at z Tgjc.

We now turn to a description of the Lie algebra g of O±(l, n). Let El} e

GL(n +1) dénote the matrix with élément 1 at the place i, j and zéro otherwise. A
basis for the Lie algebra of O±(l, n) is given by the matrices

XOj EOj 4- JBj0 / 1,..., n

and (2.10)

X^E^-E» l&lt;i&lt;/&lt;n

We set

Xl=XOl i l, ...,n-l
Z XOn (2.11)

The stabilizer O(n) of eo€Rn+1 is a maximal compact subgroup in O±(l, n) and

O±(l, n)/O(n) B is a symmetric space of rank one. In the Cartan décomposition

g I + p the subalgebra I has the vectorspace basis {Xt] : 1 &lt; i &lt; j &lt; n} and p is the
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linear subspace with basis {XOl : / 1,..., n}. The commutator relations

[p,p]&lt;=! (2.12)

[p,l]&lt;=P (2.13)

hold. A maximal abelian subalgebra in p is given by a RZ, it is one dimensional.
If the corresponding subgroup is denoted by A, then the subgroup O(n-1) M
defined above (2.7) is the centralizer of A in O{n) K. Its Lie algebra m has the
basis {X,, : 1 &lt; i &lt; j &lt; n -1}

The commutator relations are as follows

[tn,Z] 0

K,z]=y, [x,,xlJ]=xJ i&lt;j&lt;y&lt;n-i

[Y,,Z] X, [Y,,X,J]=y, lsKjSB-1 (2.14)

[X,,XJ X1, [Y,,Y,] -X,, ls

In particular it should be noted that if q is the linear subspace with basis

{X1,...,Xn_1,Z,Y1,...,Yn-1}then

[q,m]cq (2.15)

which shows that G/M is a reductive coset space (see Section 3). {Xl-Yl:i
1,..., n -1} is a basis of the a-root space n of the pair (g, a):

[tZ.X.-YJ *(*;-Y,), a(tZ) t

whereas n is given by {X, + Y, : i 1,..., n - 1}.

The Weyl group W O\n - 1)/O(n -1) where O\n -1) and O(n -1) are the
normalizer and centralizer of A in O(n) K consists of two éléments only. They
are represented by the identity and the matrix

w=\
*

1 (2.16)
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The mapping &lt;o, which maps the cosets gO(n-1) onto the cosets gwO(n-l) can
geometrically be described by the formula

&lt;o(x,£) (x,-£) (2.17)

This mapping is not a Môbiustransformation on X.
Geometrically, the Lie algebra of G GM(n-l) is given by the vectorfields

on B which generate the one parameter subgroups Tgt of G. The vectorfields are
determined by the équation

tHx) —Tg(;
dt

Conversely, the one parameter subgroup rgt is obtained from the vectorfield v by
solving the differential équation

dz x

with initial condition z(0) x. The one parameter subgroup is then given by
T6(x) z(r).

In a first step the vectorfields on Rn are determined, which are the infinitésimal

generators of the one parameter subgroups of the group GM(n) acting on Rn.

The vectorfields in the Lie algebra of GM(n-l) are then singled out by the
condition

(v(x),x) 0 for |x| l (2.18)

The vectorfield v has to be tangent to the boundary of B &lt;= Rn. The vectorfields in
the Lie algebra of GM(n) are

u(x) a + Bx + Àx + c \x\2~2x(c9 x) (2.19)

with a,c constant vectors in Rn, B a constant matrix with B&apos; —B and ÀeR.
The vectorfields Bx account for the rotations in Rn (the subgroup M with respect
to GM(n))y the constant vectors a for the translations (the subgroup N) and Kx

for the dilations (the subgroup A). The remaining vectorfields c\x\2-2x(c,x)
generate the one parameter subgroups r&amp; conjugate to the translations (the

subgroup N):

S °T« ° S(x) X + Ct
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where s is the reflection in the unit sphère. The vectorfields in the Lie algebra of
GM(n — 1) can easily be singled out by condition (2.18). The restrictions are A 0

and

(a, x)- (c, x) 0 for |x| l
The Lie algebra of GM(n -1) is therefore described by the vectorfields

|x|2)-2x(c,x) (2.20)

The vectorfields Bx now correspond to the subalgebra ï &lt;= g and the remaining
vectorfields to the complementary subspace

3. Invariant differential operators

The group O±(l, n) is not connected. The connected component of the

identity is the subgroup SO±(1, n). The spaces O±(l, n)/O(n-l) and
SO±(1, n)/SO(n — 1) are isomorphic coset spaces with in the first instance the

group O±(l, n), in the second the group SO±(1, n) acting by left translations.

DEFINITION (Nomizu [6]). Let G be a connected Lie group with Lie
algebra g and dénote the adjoint représentation of G on g by Ad (g). Assume that

M is a closed subgroup with Lie algebra m. The coset space G/M is reductive, if
there exists a subspace q of g, complementary to m, such that Ad (m) q&lt;=q for ail

me M.

Upon taking G SO±(1, n) and M SO(n -1) one finds that the subspace q

with basis {Xt,..., Xn_l5 Z, Yu Yn_i} is complementary to the Lie algebra m
of M and that furthermore [m, q]c=q (see (2.11) and (2.15)). Since M is

connected, this implies Ad (m) q&lt;=^(\ for ail me M. The coset space X
SO±(1, n)/SO(n-l) (with SO±(1, n) acting on it by left translation) is therefore
reductive.

By définition, the differential operator D on G/M is invariant (with respect to
left translations Tg/(x) /(Tg_xx)) if Drg/ TgD/ for ail feCc(G/M) and for ail

g e G. The algebra of invariant differential operators is denoted by D(G/M). It
can be determined on the base of a theorem of Helgason [3]. For this purpose let
I(q) dénote the polynomials in the symmetric algebra S(q) over q, which are
invariant under Ad (m) for ail me M. The polynomials in S(q) are polynomials in
the variables Zl9..., Zk where {Zu Zk} is a basis in M.
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The symmetrization mapping A associâtes with every polynomial QeS(oi) a

differential operator on the group G. Symmetrization is a linear mapping, which

maps the éléments YXY2 • • * Yp e S(q) (where the Y} are éléments in the subspace

q of g, / 1,..., p) onto the differential operator

A(Y1y2...yp)=i-I
P •

In this sum a runs over the symmetric group on p letters. In particular, À (Y) is

the differential operator defîned by the Lie algebra élément Yeg

THEOREM (Helgason). Let G/M be a reductive coset space, g
Ad (m)q c q for ail me M. Then there exists a linear bijection of I(q) onto D(G/M).
It associâtes to the polynomial Q(ZU ,Zk)eI(q) the differential operator DQ
which can be determined by one of the équivalent methods :

f)/(g pt^ (3.1)

where tt is the canonical projection of G onto G/M, 7r(g) x.

(2) À(Q)(f oir) Dofoir (3.2)

This formula defines Dof9 since à(Q)(/ott) is constant on each coset gM if

THEOREM 1. Let G SO±(l,n), M SO(n-l) and g m+q with the

specified basis {Xu Xn_l5 Z,Ylf...9 Yn^} for q (see Section 2). Then the

algebra I(q) of Ad (M) invariant polynomials is generated by the polynomials

i, z, |x|2=Ixf, (x,Y) f x,rn |y|2=I
1=1 1=1 1=1

We calculate the action of Ad (m). If Xem, Yeq then

Ad(exptX)Y etadXY= £ —(adX)nY
n=o ni
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Set X X,,€tn and Y Zt, which stands for X, or Y,eq. Then

(adX,J)Z,=[XlJ&gt;Z,] -ZI

(ad X,,)Z, Z,, (ad X,,)Zk =0 k+i,i

Ad(exptX,,)Zl= ^ ^
Zt cos t - Z, sin t

Ad (exp fXJZ, Zx sin f H- Z, cos t

It follows that

Ad(m)Xk=X mhkX

for m exp tXtJ e SO(n -1) c: GL(n -1) with m (mhk). This équation therefore
holds for ail meSO(n-l). Furthermore, if X J2»11xfcXk, then Ad(m)X
ZS^iX^Xh with x&apos; mx. Similarly, if y Z^11ykYk then Ad (m)Y Sl-i y^h
with yf my. Finally, since Ad (m)zZ zZ (z eR), the action of Ad (m) on the

polynomials P(x, y, z) in the variables x, y gR&quot;&quot;1, z gR is given by

Ad (m)P(x, y, z) P(mx, my, z)

Assume now that the polynomial Q is invariant under the action of Ad (M). It
can then be written as a finite sum

with invariant polynomials Qk(x, y). It is well known (see e.g. Weyl [7] p. 31 ff.)
that the invariant polynomials in the variables x, y under the action

(x, y) —&gt; (mx, my) m e SO(n -1)

are generated by the polynomials 1, \x\2 Y?ZÎ xf,(x, y) 2?-i xJi and |y|2

Zr^i y?• This proves the theorem.
The invariant operators 1,DZ, D|X|2,D(XY) and DjY|2 generate the whole
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algebra D(G/M). This follows from the fact that

where the order of the invariant differential operator D is less than the sum of the
degrees of the polynomials Px and P2 (see Helgason [3] p. 269). In the présent
situation there is however more that can be said:

THEOREM 2. The differential operators satisfy the following commutator
relations :

[Dz,D|xP] -2D(x,Y) (3.3)

[Dz,D1Y|2] -2D(x,y) (3.4)

[Dz, D(x, Y)] -D|x,2-D,y,2 (3.5)

Consequently, D(G/M) is generated by 1,DZ and D\Y\* (or by 1,DZ and D|X|2).

The proof relies on the symmetrization mapping À. The diflferential operator
DZ|Y|2 is obtained from the differential operator on G which is given by

À(Z |Y|2) =^&quot;f 2(Y, • Y, • Z + Y, • Z • Y, +ZY,- Y,)

The commutator relations for the Lie algebra (2.14) then imply

|2) nf YrYr Z-\&quot;f (Xt •YI-fYl ^
A(Z|Y|2)= I Z- Y, • Y,+- I (X, • Y. + YrX,

1=1 ^1=1

It follows that

i -j

6
&apos;

which proves the first equality. The second is proved in the same way and the
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third is a conséquence of the following équations:

+ Z-X,-Y.+Z-Y.-X,)
è&quot;ï (X, Yt + Y,- X.) • Z-è&quot;ï (X, • X, +Y, • Y,)

1=1 1=1

n-1 n-1
=è Z z &apos; &lt;xi • Y*+ y. * xi)+2 Z (x, • x, + y, • y,)

i=i i=i

The Killing form on the Lie algebra of SO(1, n) is given by

X=£xlXl+ Ç x^X,

(see the définitions (2.10) and (2.11) in section 2). The Killing form is invariant
under Ad (g) for ail geSO(l, n) and in particular for geSO(n) or SO(n-l).
The Casimir operator restricted to B SO±(1, n)/SO(n) is

(3.6)

and restricted to X=SO±(1, n)/SO(n-l) it is

-Dw (3.7)

It foliows that the operators AK and AM, considered as operators in D(G/M)
commute. In fact, AM commutes with every differential operator in D(G/M).

In the next section it will be shown that the operators in D(G/M) are invariant
under the whole group O±(l, n) and not only under the subgroup SO±(1, n).

4. The calculations for some operators

In this section the géométrie versions of the operators Dz, D\Y\* and D(x&gt; v&gt;

will be calculated. This means that the operators will be expressed as differential
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operators in the variables (x, £). Recall that

^=d + goor1g.o (2.1)

and

4 2gOnglO(l + goo)&quot;2 - 2gm(l + goo)&quot;1

1 (2.3)

i 1,..., n are the coordinates for the coset gO(n —1). The matrices (g,,)

representing g satisfy the relations (2.4) and in particular

2(l + g0Or1 l-M2 tél2 (2.5) (2.6)

and

(x | €)
n \1 £ g,0gm)

t i ^ + goo

2gOn(l + goo)^!*!2- g0û(l + goo)&quot;1)

(4.1)

Let at =exp tZ dénote the one parameter subgroup of O±(l, n) defined by Z. In
order to calculate Dzf at the point (x, £) (coordinates of the coset gO(n -1)), the
définition of Lie derivatives is used:

Dzf(x,() £f(xt,£) (4.2)

where (x,, è) are the coordinates of the coset gatO(n~l):

(xt\ (&amp;o Ch r + gm Sh 0(1 + goo Ch t + go« Sh r)-1 (4.3)

(fi). 2(goo Sh t + gOn Ch 0(g,o Ch t + gm Sh 0(1 + goo Ch t + gOn Sh r)~2

-2(gl0 Sh r + gm Ch 0(1 + goo Ch t + gOn Sh f)&quot;1 (4.4)

It follows that

gmd + goo)&quot;1 &quot; &amp;0g0»d + goo)&quot;2 &quot;èfi (4.5)
dt t=O
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and after some calculations

-2gOn(l + goo)&quot;1!, - 2(1 + goor&apos;

dt

The operator Dz can be expressed by the formula

t=0,ti&apos;* dt -o ,ti&apos;fc A

THEOREM 3.

1=1 1=1

(4.6)

(4.7)

(4.8)

This operator is invariant under the group GM(n -1) of Môbiustransformations on
X. Under the mapping oj(x, |) (x, —g) it transforms into the operator —Dz.

The group GM(n -1) has two components. By construction, the operator Dz
is invariant under proper Môbius transformations. It suffices to prove its
invariance for a single transformation rg&gt; g^SO±(l, n). Such a transformation is

The transformed operator is

4 î /,.Tfc

(4.9)

-h|2y,)

It coïncides with Dz. The same calculation shows that the mapping eu (see (2.17))
transforms Dz into the operator —Dz.
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A remark about the derivatives fXi, /4 i 1,..., n is appropriate. The function
/ is defined on

In order that the derivatives with respect to x and £ hâve some meaning, the
domain of définition for / first has to be extended into a neighbourhood of X in
R2n. The resulting operator Dz is however known to dépend only on the values of
/ on X. It is independent of the particular extension of /.

The calculation of the remaining operators D|Y|2 and D(x Y) is based on the
theorem of Helgason (section 3). For fixed g with coordinates (x, f) and for a

given function feCc(G/M) consider the function

/(s, t)=fo Jg exp £ (s,Xt + tX)) (4.10)

7T is the canonical projection and (x(s, i), f (s, i)) are the coordinates of
7r(g exp £r=i (stXt + ttYt)). Take as an example the operator D(x Y). We then hâve

f(s,t) (4.11)

The chain rule for the second derivative fSjtt gives

Z- 7x,xm;i
m, 1 1 «S,

The partial derivatives of / with respect to x and £ hâve the same interprétation
as above. In addition, the calculations will show that the derivatives of the
coordinate functions at s t 0 are functions on the group. However the resulting
operator maps functions on X into functions on X. It can be expressed in the
variables x and £

The first derivatives of the coordinate functions
Let el9..., en_! be the canonical basis in the parameter spaces Rn-1 for the s
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and t variables. If h e R then

h + eOl Sh h

xm(O,he,)=
gmO

1 + goo

2g,
g00 Ch h + gOj Sh

2gmo(go? sin h + gOn cos fe) 2(gmj sin h H- gmn cos h)
2(1 + goo) 1 + goo

The partial derivatives at (s, t) (0,0) are

àXn d
— — xm(hep0)
d$j ah

_ gmj gmOgpj

h=o 1 + goo (1 + goo)2

goo)3 (1 + goo)2 (1 + goo)2

Hm= 2gmOgOl 2gm) ^23^ (1 + goo)2 1 + goo 3s,

The following expressions are needed for the differential operators:

&quot;y1 dxidx^= _
1 V.1 ôx,ôen= 1 &quot;yd&amp;Hz

,_i 3s, 5s, 2 ,fî 3s, 3tj 4 ,fl 3f, ÔI,

(4.13)
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As an example, the calculation of formula (4.13) is given:

gmJ gmOgOj V g,, glogO} \
o)2Al + goo

2
ds, ds, \l + goo (l + goo)2Al + goo (1 + goo)2/

(1 + g00)~2gm,gl, ~ (1 + g(X))~ 3(gl0gm,g0,

âs dS
O&quot; glngmn)

(gl0(g00gm0~ gOngmn) + gmo(googlO ~

+ (1 + g00)~4gl0gm0(g00~ 1 ~ gOn)

The expression |^^m has the value

(1 + g00)~4g0ng(0gm0 ~ gon(l + goo)&quot;3(giogmn + gmOgln) + (1 + goo)~2glngmn

Therefore

(Ail partial derivatives are taken at s t 0.)

The second derivatives of the coordinate functions
The second derivatives are calculated according to the formulas

d2x

dSj dtj
lim h&apos;2(x(hep he])-x(hep0)-x(0, he^-f x(0,0))

- lim fr2(£(0, he,) + f(0, -he,)-2f(0,0))

Up to third order terms

2/2) + gmjh - gmnft2/2)
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with

N 1 + goo(l + h212) + g0]h - g0nh2/2

The resulting expressions (at s t 0) are

as, ai,
4Çm

2gmO(gL-2go,)(l + goo) 3 + (-2gmngOn - gmo + 4g0jgmj)(l + goo)

dtf
Çm

As above this leads to the required équations

n-l a2v „ 1

n-l ^21^ ° (4-16)

Ï^l! -(n-l)^ (4.18)

THEOREM 4. The operator D!Yp on XsOJl, n)/O(n-1) js giucn fey

I 2 Z /«.fin (4.19)
1, m 1 m 1

If is invariant under the Môbius group GM(n -1) and under the mapping co(x, £)
(*&gt;-£). At the same timc, DjYp ïs the Laplace operator on the sphère {£eRn:
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Consider the stabilizer K O(n) of the sphère

The Lie algebra éléments Yu..., Yn_a (see (2.11)) are in the Lie algebra ï of
O(n). The invariant differential operator DlY|2 is therefore a differential operator
on the subgroup O(n). Furthermore, it is the restriction of the Casimir operator
Si^K/&lt;n X?, ^ ï onto the quotient space X O(n)/O(n -1). This operator is the
Laplace operator on the sphère.

According to the preceeding formulas (4.13)-(4.18), the operator D|Yp on X
has the explicit form given in the theorem. In particular it is seen to be

independent of the x coordinate (apart from the restriction |£| l-|x|2).
The invariance of the operator D\Y\* under the whole Môbius group GM(n -1)

and under the mapping &lt;o can be established with the same method which was
used in connection with the operator Dz.

COROLLARY. AH differential operators on X which are invariant under the

group of spécial Môbius transformations SM(n -1) SO±(1, n) are invariant under
the whole group GM(n-l). The operators D|Y|2 and D\x\2 ^re also invariant under
the mapping w, yet (o transforms Dz and D(XY) into -Dz and -D(X,y) respec-
tively.

THEOREM 5. The operator DiX y) is given by

Î
l, m 1

- z

(4-20)

5. Spherical harmonies and the operators Sk and S*

A spherical harmonie of degree k on the sphère X ={ÇeRn :|f| 1} is the

restriction of a harmonie polynomial in Rn which is homogeneous of degree k.

The space of spherical harmonies of degree k will be denoted by Hk. Alterna-
tively, it can be described as the eigenspace with eigenvalue -fc(fc + n-2) of the

Laplace operator As on the sphère. The System of spherical harmonies is
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complète in L2(X). It gives a décomposition of this space as a direct orthogonal
Hilbert sum

L2(S)= 0 Hk
k=0

DEFINITION. A spherical harmonie of degree k on X= O±(l, n)IO(n -1) is

an eigenfunction of the operator D|Yj2 with eigenvalue -fc(fc-f n-2).

{feC°°(X):Dwf=-k(k + n-2)f} (5.1)

If a function feC°°(X) is an eigenfunction of the operator D|y|2, then for every
fixed x

~ Ï /6jÔ£n-«imté|2)-(n-l) Ï /*»Ên=A/
l, m==l m l

But the left hand side is the spherical Laplace operator Ax applied to /(x, £) with
x fixed. Therefore the eigenvalue À is of the form -fc(fc-fn-2) for some non
négative integer k. If {hkl9..., hkd}, d d(k), is an orthogonal basis in Hk, then

with coefficients ckj / 1,..., d which will dépend (smoothly) on x. Conversely,

any such function is in Ek.

From the completeness property of the System of spherical harmonies on 2 we
conclude that any function /gC°°(X) has an expansion of the form

/(*,£)= t tckJ(x)hkj(e (5 2)
k=Oj=l

which converges for every fixed x in L2(X).
A harmonie polynomial p of degree fc in (Rn) defines a symmetric tensor î of

order k with vanishing traces

anv permutation cr on the indices (5.3)

Zé ^&quot;3 «k=0
1 1
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Conversely, to any such tensor the formula associâtes a harmonie polynomial p
which is homogeneous of degree fc. The functions fe Ek therefore can be viewed
as tensorfields of order k on the hyperbohc space B O±(l, n)/O(n)&apos;

Ek={feC~(X):f(x,è) (l-\x\2r2k £ tlx lk(x)£h • • • £J (5.4)

In this représentation t(x) tli lk(x) is a tensorfield of symmetric tensors with
vanishing trace. The factor (l-|x|2)~2k is a normalizing factor.

The type of the tensorfield t is given by its transformation behaviour under
Môbius transformations Recall that the action of GM(n -1) on X is defined by

(x,ê)-&gt;(T8x,dTg£) (2.9)

The action on C(X) then becomes

/* X*, £W(rgx, drg£) (5.5)

First consider the spécial case of a vectorfield

&apos;(x,|)=(1-|tkx|2)kx|2)-2

We set y=Tgx. Since ds2 (l-|x|2)~2|dx|2 is an invariant metric, the JacobianTg

déterminant of the matrix

representing the tangent mapping drg(x) is given by

±(l-|y|2)n(l-|x|2rn

The conformality (or anti-conformality) implies that ((l-|x|2)/(l-|y|2))G(x) is an

orthogonal matrix. In particular

G-&apos;ix) (1 - |x|2)2(l - |y |2r2G&apos;(x) (5.6)
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(G* is the transposée matrix). It then follows that

n n
|2\-2 V Vr&apos;(x,ê)=a-ixi2)

=d-lxi2r2
k l

with

Next assume that feEk,

Then the same calculations show that

with

where the afcj are the components of the matrix G~1(x). The transformation
behaviour of the tensors is influencée by the choice of the normalizing factor

(l-|x|2)~2\ To illustrate this set

f(xy £) (1 - |x|2)-2 X&lt;plk(x)4&amp; (5.9)

Hère, 0(x) (&lt;plk(x)) is a symmetric matrix with vanishing trace. The same

calculations as above then show that

=a - m2)-2 ii, k
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where the transformed matrix is given by

4&gt;s Xx) G~\x)&lt;P(tsx)G(x) (5.10)

This transformation behaviour differs from the preceding by a factor
(det G(x))2/n.

THEOREM6. A function /(x, £) (l-|x|2r2Ln=i t\(x)6 eJE1 satisfies
0 if and only if v is a vectorfield in the Lie algebra of GM(n — 1).

The vectorfields v in the Lie algebra of GM(n -1) are of the form

\x\2)-2x(c,x) (2.20)

with Bl -B and ceRn. Direct vérification shows that the functions fe E1 which
are associated to thèse vectorfields satisfy Dzf 0. Conversely, assume that fe E1
satisfies

0

for ail (x, £)eX (^t,j is the notation for the partial derivative (dvJdXj)(x)). It
follows that

and in particular

Assume now that i, / and k are différent indices. Then the differentiated équations
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show that vltjk 0. Similarly

and therefore

This shows that ail third order derivatives vanish. The vectorfield is therefore
given by a second order polynomial

u»(x) 2 Z aiki*k*i + Z bikXk + c, i 1,..., n
Kl k

and it can be assumed that

A comparison of the coefficients in the équations

with

(«, X) è Z ^ikl^XkX! + Z frifcVk + Z
i, k i, k t

now results in the équations

a»* -2ck i, fc 1,..., n

btk--bkl

Since it is already known that

0,^=0 if if\
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and

0ku &quot;~aiki 2ck if kj=i

it can be concluded that

n jx_

Vt(x)= Yé aikiXkXl —2aiuX2 + 2 Lé fl^Xic&quot;*&quot;

n n

k =1 k#i k 1

This shows that

u(x)==c(1 + |jc|2)-2x(c, x) + Bx Bl -B

It should be noted that the theorem is still true for the dimension n 2, yet for
this case the proof has to be modifled slightly.

The theorem shows that the operator Dz applied to vectorfields (i.e. to the
spherical harmonies of degree 1 on X) singles out exactly the Lie algebra of the
Môbius group GM(n -1).

The space of functions fe C°°(X) satisfying D±f 0 is an algebra, since Dz is a

fîrst order differential operator. If {v(l\ v(d)}, d =\n(n + \), is a basis of the
Lie algebra of GM(n -1) and if

£ (y. y\ _ /i _jY|2\-2 y 0)/ \£ ç- pi f — 1 AT]\X, ç) — 11 \X\ Z*vi KX/Çt^J-s y — 1, a
i

then any convergent power séries in /i,... ,/a will be a solution of Dz/= 0.

THEOREM 7. The operator

g))z (5.11)

maps Ek inîo Ek+1, and the operator

+fc-l))Dz (5.12)

maps Ek into Ek~\ k 1,2,3
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COROLLARY. The operators Dz and D(x, Y) on Ek take the form

1 1 (5.13)

2r1)S^ (5.14)

For the proof of the theorem the operator D(x,y)~^cDz, cgR, is applied to the
function

Pr I ttl lk(*K-&apos;tk
«1. *k

where t is a symmetric tensor with vanishing traces, reR and p(x) (l-|x|2)~1.
The summation convention will be applied (summation over indices which appear
twice). The derivatives of the components of t are denoted by

and thèse are no longer the components of a symmetric tensor. The resuit is as

follows:

k- pr~\ lk_im,mLx &apos; &apos; &apos; fU

+BPr-% lk_im€H •. • €^lXm+Cpr+% JH • - - (JLx | &amp;

(5.15)

with

The first observation is that C 0ifr 2fc. This motivâtes the normalizing factor
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(l-|x|2)~2k occurring in the description (5.4). Having fixed r 2fc, the operators
S* and Sk are now defined by the équations A 0 and B 0 respectively.

The constant c for the operator Sk is determined by the équations r 2k,B
0. It follows that

It remains to be shown that Sk/eEk+1. For this purpose set

(the symbol i, indicates that the index i, is omitted). q is a symmetric tensor and

tlt lkJH&apos;&quot;^ ^ lk+1^---^ (5.18)

However in gênerai the traces of q will not vanish:

2
4ii ik ijj ^pYfïi ik ij,j (5.19)

Consider the symmetric tensor z

z«i «k+i= ôni2&lt;ïjjt3 ik+1 + Sn.3flj.2iu «k+i +
&quot; &apos; &apos;+ 8«k«k+ifl«i «k-m (5.20)

Summation gives
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fc(fc + l)Since there are terms in the définition of z, the équations (5.19), (5.20)

and (5.21) show that

This implies

2)qli lk^zlx lkJ^ • • • £k+1 (5.23)

and it can now be shown that SJ is defined by a tensor with vanishing traces*

+ 0

(Observe that e.g. qJJl3 lk lH 0 if k&gt;3). This complètes the proof for the fact
that SJeEk+l iifsEk.

The constant c for the operator S* is determined by the équations r 2k, A
0. It follows that

(5.24)

+ 2k-2)P2k-\ _„,£, • • • ^_lXm

This clearly shows that StfeEk~\
The operator S* can be put into a différent form:

n+2fc-\ ,-,JI, • • • L (5-25)

The case fc 0 is spécial. The functions fe E° are identified with the functions on
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the hyperbolic space B. The operators Dz and D(x Y&gt; map E° into E1:

&apos;-~ir~ X /x,

and So can be defined by the formula

y)/ ^ £^z/ (5.26)

î /x,é =^(1-M2)&quot;2 î (l-\x\2)2fj&lt;

The operator S*S0 then takes the form

ZZ

(5.27)

This is (a multiple of) the Laplace operator for the hyperbolic space B.

Following Ahlfors [1] the invariant operator P mapping vectorfîelds v on B
into tensorfields &lt;p is defined by the équation

\^^j, t K (5.28)

The tensors Pv(x) are symmetric and hâve zéro trace. The operator P* mapping
such tensorfields into vectorfields is defined by the formula

(P*&lt;p). p-n-2Z&lt;P,M (5.29)
i=i

THEOREM 8. The operator Sx on El coïncides with the operator -(n/2)p&quot;nP
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on vectorfields and S* on E2 coïncides with P*pn provided the following identifications

are made:
(1) The vectorfield v on B is identified with the function

1=1

(2) The tensorfield &lt;p on B is identified with the function

In particular it follows that S*St is the same operator as — (n/2)P*P.

The operator S! is applied to the function V(x,^)eE1:

t;m,m-V

Z S(tvi+«i.m)--
fc l

This shows that S1 corresponds to -(n/2)p~nP.
Similarly, if S* is applied to $, it follows from (5.25) that

Z /-

This complètes the proof of Theorem 8.

Equation (5.7) gives the transformation behaviour of the vectorfields under
Môbiustransformations. The transformation of the tensorfields (&lt;pEJ(x)) is de-
scribed by (5.10). Thèse formulas coincide with formulas (1.5) and (1.7) in [1].

COROLLARY (Ahlfors [2], équation (2.1)). The solutions ofSJ 0, /(*, f)
(l-|x|2)-2ir=i t\(x)fi eE1 are of the form

x), AeR, a,ceRn, Bt -B.
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The solutions of SJ 0,feEl describe exactly the Lie algebra of the Môbius

group M(n) as a transformation group of Rn (see équation (2.19)).

THEOREM 9. For ail fe Ek, k 1, 2,... there is equality

CW+zw/ -(* + 2k - ir&apos;iSt^SJ-S^SÎf) (5.30)

COROLLARY. AK D\x\2+z2 and Ax D\x\*+z2-\y\2 map Ek into Ek, k

0,1,2,...

For the proof of the theorem let us calculate the commutator

£&gt;|X|2+|Y|2 t^(X, Yh ®z\

using équations (5.13) and (5.14). Assume that feEk, keN.

(n + 2fc-2)[D(x,Y),Dz]

If the expression

(n + 2fc-2)DZ2

is added, the formula of the theorem follows:

The case fc =0 reduces to the Laplace operator (5.27).
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