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On the évolution of harmonie mappings
of Riemannian surfaces

MlCHAEL STRUWE(1)

Let (M, y) be a Riemann surface with metric tensor y (ya&amp;)i^ot,(ï^2 and (Jf, g) an

n-manifold with metric tensor g (glJ)i^l,J^n. For difïerentiable mappings u:M-&gt;

Jf an energy density e(u) is defined, which in local coordinates x (x\x2),
u (u\...,un) on M,Jf is given by (with (y&quot;3) (y^)&apos;1)

e(u) h^(x)glJ(u) ~ u^uK (1.1)
oX oX

Hère and in the sequel we adopt the usual summation convention. The energy
E(u) of u then equals the intégral

-LE(u)= e(u)dM. (1.2)

By définition harmonie mappings from M onto JV are the (regular) stationary
points of E. They necessarily satisfy the Euler-Lagrange équations

ha\hkM~ul~u\ l&lt;fc&lt;n, (1.3)
ax oX dX

where y det (y&quot;3) and glhk (d/du^g^ as usual. If we carry out the differentia-
tion in the first term and dénote

4.
&apos;

1 This research was supported by the Forschungsinstitut fur Mathematik at the ETH Zurich
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On the évolution of harmonie mappings 559

the Laplace-Beltrami operator we obtain after multiplying by g&apos;k(u):

u&apos;^ u

Using the symmetry of y&quot;3 y3&quot; and the définition of the Christofïel symbols of
the metric g:

the right hand side simplifies and we obtain the well-known équation for
harmonie maps

In the following we will use the short-hand notation

-AMu r(u)(Vu, Vu)M. (1.5)

Note that formally for any function &lt;p on M

-AMu • &lt;p-r(u)(Vu,Vu)M&lt;çdM=—- E(uk + egkl(u)&lt;pl)\e=0
)M de

J (dE(u)kgkl(u)&lt;pl)dM, (1.6)

i.e. the expression (1.5) is the L2-gradient of the functional E with respect to the

scalar product induced by the metric (glk(u)).
In this way the solutions of the évolution problem associated with (1.4) or

(1.5)

tM ; u(-,0) «io (1-7)

may be naturally interprétée as the trajectories of a gradient-like vector field
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related to the functional E. The study of thèse solution curves &quot;in the large&quot;

hence will provide a complète description of the set of harmonie mappings from
M to Jf as in Morse theory.

Indeed, the first existence results for harmonie mappings of manifolds by Eells
and Sampson [2] were obtained from asymptotic estimâtes on the solutions of
(1.7). Eells and Sampson however had to assume that the sectional curvature of
the target manifold Jf was non-positive. Similar results later were given in [5],
[10] under the assumption that the range of u0 was small in terms of a bound for
the sectional curvature of Jf. Thèse methods were not able to produce e.g.
non-constant minimal immersions of the sphère S2 into another manifold. The
existence of such mappings was established in 1981 by Sacks and Uhlenbeck [8]
using Ljusternik-Schnirelman theory for a suitable séquence of functionals ap-
proximating E. The approximation was necessary because the functional E does

not satisfy the Palais-Smale condition (globally).
In this paper our aim is twofold. First we establish the existence of a unique

global solution to (1.7) for finite initial energy E(mo)&lt;°°, which is regular with
exception of at most finitely many singular points where non-constant harmonie
mappings of S2 R2 into Jf separate (Theorems 4.2, 4.3). No restriction on the

range of u0 is needed. For small initial énergies the solutions to (1.7) are globally
regular and asymptotically converge to constant mappings as t—&gt;&lt;». Hence the
flow (1.7) induces a retraction of the space of mappings u:M-&gt;Jf with small

energy onto the space of constant mappings.
Although the évolution problem (1.7) is our main point of interest we also

présent a local Palais-Smale type compaetness resuit (Proposition 5.1) for the
functional E which permits a direct proof of the Sacks-Uhlenbeck results. It may
be interesting to note that instead of working in the &quot;natural&quot; H12(M, Jf)-
topology for this compaetness resuit it is essential to consider E on the dense

subspace H2&apos;2(M, Jf) and évaluate its L2-gradient (cp. the next section for
notations).

For technical reasons in the following we assume that M and Jf are compact
and that Jf is isometrically embedded in UN for some NgN. (If Jf is compact this
can always be achieved by the Nash embedding theorem.)

It seems that the Dirichlet problem for (1.7) on a manifold with boundary and

prescribed (regular) boundary data may be handled in the same way, using e.g.
the estimâtes of Ladyzenskaya-Solonnikov-Ural&apos;ceva [7, IV. Theorem 9.1, p.
341f] for the Cauchy-Dirichlet problem. Moreover, our methods carry over to
évolution problems for gênerai second order difïerential équations on plane
domains with a variational structure. For such problems a resuit similar to our
Theorem 4.1 has independently been obtained by Wieser [11]. For further
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références on harmonie mappings of manifolds we refer to the survey papers by
Eells-Lemaire [1], Hildebrandt [4], and Jost [6].

2. Notation

Lp, Hwp, Cmot, etc. dénote the usual Lebesgue-, Sobolev-, and Hôlder spaces.
Domain and range may be specified like L?(O;Un). For manifolds M, ^V*cz{RN e.g.
the space Hrn&gt;p(M, Jf) may be introduced as the space of functions u.M^&gt; N such
that u\neHm&apos;p(O;UN) for any coordinate chart O on M.

Finally

V(juJl Jf) • [ &quot; : M x [t, T] -» jf | u measurable,

esssupf |Vu(-,f)|2d^-hf f |V2u|2 + |dtu|2d^df&lt;oo|.

Let \-\M dénote géodésie distance on M, and for R &lt; iM, a global lower bound for
the injectivity radius of the exponential map on M, let

Br(x) {y e^||x-yU&lt;R}.

For brevity Bgn(x) #r(*) BR(x), BR(0) BR. Also dénote UR(fl
Ux€flBR(x). For a domain Ù and -oo&lt;s&lt;t&lt;oo let Ù\ n x[s, t]. If s or t 0,
Ûo n\ O° QS. In addition to the notation

E(u)= f ^m)^^

introduced earlier we also define local énergies

ER(u;x)= f e(u)dM,

f e(u)dM.

Occasionally, a superscript will indicate the space of departure like EM.

The letter c will designate a generic constant possibly depending on Jt, Jf, and
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other data but independent of a particular solution of (1.7) unless specified
explicitly like c(E(u0)), etc. For clarity individual constants may be numbered.

3. Estimâtes

The right class of functions in which to consider System (1.7) turns out to be

the space V(MT;Jf). To motivate this choice we drive a-priori estimâtes and

uniqueness for solutions belonging to this class.

First we need an estimate of the L4-norm of the spatial gradient of a function
u g V(MT; Jf) in terms of its norm in V which is based upon a Sobolev inequality
taken from [7; IL Theorem 2.2 and Remark 2.1, p. 63f].

LEMMA 3.1. There exist constants c, Ro&gt;0 such that for any u g V(Mt; Jf),
any R e ]0, JR0] there holds the estimate

dMf |Vw|4d^dt&lt;c-esssup f \Vu(-9t)\2
JMT (x,t)€^T JB£(x)

•(f \V2u\2dMdt + R~2[ \Vu\2dMdt).

This lemma will be a conséquence of a more refined local resuit:

LEMMA 3.2. There exist constants c, Ro&gt;0 such that for any u g V(Mt; Jf),
any R e ]0, Ro], any xeM, any function &lt;p g L°°(Br(x)) depending only on the

distance from x :&lt;p(y)^ &lt;p(\y -x\M) and non-increasing as a function of this
distance there holds the estimate

f \Vu\4&lt;pdMdt^c -esssupf |Vu(-, t)\2dJi •

•(f \V2u\2&lt;pdMdt + R-2[ \Vu\2&lt;pdMdt).

Proof of Lemma 3.2: i) Suppose &lt;p ss const^ 1, and let Vu(t) (meas Br(x))&quot;1.

Vu(*, t) dM be the mean value of Vu. By [7, IL Theorem 2.2, Remark 2.1,
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p. 63f, and (3.2), p. 74]

f f

&lt;cesssupf \Vu(&apos;,t)-Wû(t)\2dJi
0&lt;t&lt;T JB£(x)

dMdt + c\ (meas (B^n\V2u\
b£(x)

Ub^(x)
Vu(-,t)dM dt

with a constant c independent of T, R, and u. Since q Vu(-,t) minimizes
-, t)-q\2dM we hâve for a.e. te[0, T]

I \Vu(*,t)-Vu(t)\2dM&lt;\ \Vu(-,t)\2dM

Moreover, by Hôlder&apos;s inequality

If 4 o/f V
Vu(-, r) dM &lt;(meas (B%(x)))2\ |Vm(-, t)|2 di(

&apos; *B d(x) \#g*(x) /

&lt; (meas (Br(x)))2 ess sup | |Vu(-, t)|2 &lt;LW •

•j |Vu(-,ï)l2|2d^,

which concludes the proof in case &lt;p const.
ii) By linearity and i) the assertion remains true for step functions &lt;p which are

non-increasing in the radial distance. Finally, the gênerai case follows by density
of step functions in L°°(Br(x)) in measure. q.e.d.

Lemma 3.1 may now be derived from Lemma 3.2 via the foliowing covering
argument.

LEMMA 3.3. There exist constants K, Ko&gt;0 depending only on M such that
for any R e ]0, Ro] there exists a cover of M by balls B^2M with the property that
at any point xeM at most K of the balls Br(x,) meet.
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Proof. We may assume that M c(RM is isometrically embedded. There exists a

neighborhood US(M) in IRM such that any xeU8(M) has a unique nearest
neighbor xeM satisfying |x -x| inf {\x - y\ \ y eM}. Choose Ro&lt;min {8, ijJ2}
and such that for R &lt; Ro any (Euclidean) bail B^(x0) H M with center at x0 e M
satisfies

Now for any R &gt; 0 there is a cover of UM by balls BR^4(xl) with at most K K(M)
of the balls B^r(x,) intersecting at any given point. Suppose 0&lt;R&lt;Ro, and let
{x,}lsisl be those points belonging to the cover corresponding to R that lie within
Ur/4(M). Projecting x, to M we obtain the cover {Br(x,)}1:SisI of M that we seek.

Indeed,iiilc|J B%4{xx)nM a (J B%2{xx) DM c (J
1=1 1=1 t=i

while for any xeM

for at most K indices i. q.e.d.

Proof of Lemma 3.1. Choose a cover {Br(x,)} of ^ with the properties in
Lemma 3.3. Apply Lemma 3.2 with cp 1 on each BrCxJ and add, using the finite
intersection property of the cover. q.e.d.

We may now state the following simple a-priori estimate:

LEMMA 3.4. There exists a constant c c{N) such that for any solution

ueV(MT;Jf) of (1.7) there holds the estimate

f \dtu\

Moreover, E(u(-, t)) is absolutely continuous on [0, T] and non-increasing.

Proof. By Lemma 3.1 we may multiply (1.7) by gt,(w)dtuJ and integrate. On
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account of (1.6) this gives for any s, te[0, T]:

f V d
g.,(M)3tW&apos; dtu&gt;dMdt+\ —E(u(&apos;,t))dt 0,

&apos;M\ h dt

and the claim follows. q.e.d.

Remark 3.5. Combining Lemmata 3.1, 3.4 we obtain the estimate

f \Vu\4dMdt&lt;c sup ER(u(,t);x)(\ \V2u\
W (x,t)6^T XjMT

for any solution ueV(MT;Jf) of (1.7) and any Rg]0, Ro]. This makes it
important to control energy locally.

LEMMA 3.6. There exists a constant cx c^M, Jf) such that for any solution
u e V(MT; Jf) of (1.7), any R e ]0, Roi and any (x, t)eMT there holds the estimate

R7

Proof. Let &lt;p g Co(BfR(x)) satisfy 0 &lt;
&lt;p

&lt; 1, &lt;p 1 on BR(x), |V&lt;p| &lt; c/R. Multi-
ply équation (1.7) by g,,(u) dtu}&lt;p2 and use Young&apos;s inequality to obtain

I gu(w) àtul dtuJ(p2 dMdt+\ — {e(u)&lt;p2) dM dt
jMt

J }Mt dt

\Vu\\dtu\\V&lt;p\&lt;pdJtdt

^ I gi,(w) dtU1 dtu&apos;(p2 dM dt + cR~21 |Vu|2 d/« dt.

Hence by Lemma 3.4

(uo)&lt;p2 dM + cR~2\ E(u(-,t))dt

q.e.d.
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For a solution u e V(MT; J{) of (1.7) and R e ]0, Ro] let

e(R)=e(R;u, T)= sup ER(u(-,t);x).
(x, t)eMT

In the sequel we give a-priori bounds for the V-norm and Hôlder norms of u in
terms of initial energy E(u0), T, and the number

R sup {R &gt;0 | e(R; u, T)&lt; ej

measuring distribution of energy along the flow. Hère ^X) is a parameter
depending only on M and N which will be determined in Lemmata 3.7, 3.7&apos;, 3.10,
3.10&apos;. (We agrée to let ex equal the smallest of the numbers ex occurring in thèse

lemmata.)

LEMMA 3.7. There exists a constant et&gt;0 such that for any solution ue
V(MT; Jf) of (1.7) and any number R e ]0, Ro] there holds the estimate

f |V2u|2 dM dt &lt; cE(mo)(1 -h TR~2\

provided e(R)&lt;e1.

Proof. Multiply (1.7) by AMu and integrate over MT to obtain

\\ ^-(Vu,Vu)MdMdt+\ \AMu\2dMdt
2 JMr dt JMr

&lt;cj \AMu\\Vu\2dMdt

&lt;^f \âMu\2cLMdt + c[ \Vu\4dMdt,
2I J

by Young&apos;s inequality. Hère, of course (Vu, Vu)M y&quot;3 daul d&amp;u\ By Remark 3.5

and définition of e(R) we may estimate

f \Vu\4dJldt&lt;ce(R)(\ |V2u|
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Moreover, intégration by parts yields the estimate

f \AMu\2dMdt&gt; f \V2u\2dJtdt-c\ \Vu\2dMdt, (3.1)
Jmt Jmt Jmt

the second term on the right resulting from difïerentiating the coefficients of the
metric y.

Therefore, if e(R)&lt;e1 for some e1 e1(M;Jf)&gt;0 we obtain that

f |V2u| dM dt &lt; cE(uo)(l

as claimed. q.e.d.

In order to be able to state pointwise a-priori estimâtes we now dérive uniform
local estimâtes for j\Vu\4dMdt in terms of the data.

LEMMA 3.8. For any numbers e, t, Eo&gt;0, R±e ]0, Ro] there exists a number
8&gt;0 such that for any solution ue V{MT\N) of (1.7) and any Jc[T, T] with
measure \I\ &lt; 8 there holds the estimate

f (f \Vu\4dJi) dt&lt;e,

provided eiR^^Ei, E(uo)&lt;Eo.

Proof. For any solution ueV(MT;Jf) by Lemma 3.1 \Vu\eL4(MT) and
KJ^c \Vu\4 dM) dt is absolutely continuous.

To show uniformity let umeV(MTm,Jf) be solutions of (1.7) satisfying the
conditions of the lemma. By Lemmata 3.4, 3.7 we hâve

f |atum|

provided e(Rx; i^, T)&lt; e1? Vm gN. Moreover

\/te[0, T], Vm eN.

Hence there exists a subsequence {i^} (relabelled) such that um —&gt; u a.e., d^ —*

dtw, V2Mm~-V2M weakly in L2(MT) and Vi^-^Vu strongly in L2(J(T). This
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permits passing to the limit m -» &lt;*&gt; in (1.7) and we find that also u e V(MT; Jf) is

a solution to the équation (1.7). The results of Lemma 3.4 therefore apply to u. In
particular, Vu(% t) is continuous in te[0,T] with respect to the L2-norm. By
compactness of [0, T] for any given e &gt;0 we can thus find a number R R(e)&gt;0

such that

e(2R;u, T)&lt;e.

Moreover, we may assume that Vi^O, r)—&gt; Vw(-, t) in L2(M) for a.e. te[0, T].
Hence we may détermine numbers 0&lt;r1&lt;T&lt;r2&lt;*&lt;t^T :rL+1 having
distance

eR2\Ut\^€1L
and an index m0 nto(e, t) such that for m ^ m0

I |VMm(-,^)-Vw(-,r€)|2d^&lt;e, ^=1,...,L. (3.2)

Hère, cx is the constant of Lemma 3.6. By Lemma 3.6 then we may estimate

R2 °

uniformly for (x, t)eJtJ, m^m0, where f€ max{^ | r;&lt;r}. Finally, Remark 3.5

gives the estimate

f f

2with a constant c* c*(^, jV, Eo, Rl9 T), for any I&lt;=[t, T], provided |I|&lt;K
m &gt; m0. This proves uniformity and the lemma. q.e.d.

Remark 3.9. The preceding proof also shows compactness in V(MT;Jf) of
solutions i^ g V(MT; J{) to équation (1.7) issuing from a set of initial data which
is compact in Hlr2(M, Jf), 1^(0)—? u0 (m-^oo), provided e(R; i^, T)&lt;et for
some R g ]0, Ro]. Indeed, in this case we may choose tt 0 in (3.2). The proof of
Lemma 3.8 then shows that $(jM (Vi^)4 dM) dt is uniformly absolutely continuous
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on [0, T]. We may suppose um-+ u a.e., and à^ —&gt; dtu, V2^ —* Vu weakly in
L2(MT), Vum-^Vu strongly in L2(MT). Let vm:=um-u; |Vl/J:=
Then

Hence, multiplying by ^um and integrating gives

Rearranging, and using (3.1)

sup f \Vvm(&apos;,t)\2dM+\ \V2vJ2dMdt

&lt;cf |VUm(.,O)|2d^ +

-^0 (m -* oo),

by Vitali&apos;s theorem and since Vt)m(*,O)—&gt;0 in L2(M). Similarly,

f \ètvm\2dMdt^c\ (|^Um|2 + |Um|2|VL/m|4 + |VUm|2|Vl/m|2)d^dt

—&gt; 0 (m —&gt; oo),

i.e. i^ —&gt; w strongly in V(MT; J{).

LEMMA 3.10. Let uzV(MT\X)Ç\r&gt;0C2(Mî\N) be a regular solution to

(1.7). Then for any t &gt; 0 the Hôlder norms of u and its derivatives may be estimated

uniformly on JiJ by quantities involving only E(u0), t, T and R, provided

Remark. Replacing dtu by différence quotients our proof below may be

modified to establish interior regularity of V(MT; Jf)—solutions to (1.7).

Proof. First note that (1.7) implies

(3.3)
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at a.e. time te[0, T]. To bound the right hand side differentiate (1.7) with respect
to t, multiply with dtu, and integrate over M[, T&lt;s&lt;f&lt;T, to obtain

i I dt \dtu\2 àM dt + f |V dtu\2 àM dt

&lt;c f (|dtu|2 |Vm|2+ |dtu| |Vw| |V dtu|) dM dt

(3.4)

Estimate like Lemma 3.1 for |f-s|&lt;l:

\dtu\2\Vu\2 dMdt&lt;( \dtu\4dMdt\ \Vu\4 dMdt)
t \ J t Jt y

&lt;c( \Vu\4dMdt) -(esssup |dt(n(-, 6))\2 dJt

-h |vatu|2d^

By Lemma 3.8, if t-s &lt;8 is sufficiently small, the right-hand-side of (3.4) may be
absorbed in the left, yielding

f \dtu(&apos;,t)\2dM&lt;c inf f |ôtu(-, s)\2 dM

with a constant c depending only on the modulus of continuity of
I(J^|Vu|4d^)dt, i.e. on E(u0), t, T, R, providing e(R)^ei. Estimating the
infimum by the mean value now gives

esssup
2-r

f .9 -1 f ,-&gt;

sup |dtM(-, r)| dJ£&lt;c(H-T |atw| dMdt
t^T Jji Jjil

(3.5)

with another such constant. In order to bound \M |Vu(«, 0|4 &lt;i^ apply Lemma 3.1
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to the constant function u=Vu(-, t) to obtain the estimate

f |Vu(-,f)|4&lt;i^&lt;c-esssupf |Vu(-, t)\2 dM • f \V2u(-,t)\2 dM

+ R~2f \Vu(&apos;,t)\2dJt)

&lt;c -esssupER(u(-,s),x)( |V2u(-, t)\2 dM

(3.6)

Hence, if e(R)^e1 is sufficiently small (3.1), (3.3), (3.5) and (3.6) yield the
uniform estimate for fe[r, T]:

J |V2w(-,t)|2d^&lt;cE(M0)(l + T-1 + R-2) (3.7)

with a constant depending only on M9Jf, E(u0), t, T, and R, provided e(R)&lt;e1.

By the embedding H2&apos;2(M) —&gt; HltP(M) for any p &lt;o° (3.7) now yields a bound for
\dtu - AMu\ € LP(MJ) of the same type. Using [7, IV. Theorem 9.1, p. 341f, and II.
Lemma 3.3, p. 80] we thus obtain Hôlder estimâtes for u in terms of the

quantities listed in the assertion of the lemma. Higher regularity is

standard, q.e.d.

Remark 3.11. If w0 is regular we may improve estimate (3.5) using Lemma
3.1 and Remark 3.9 to obtain with a constant c depending on u0, T, and R, where

esssup \dtu(&apos;,t)\2dJL&lt;cE(u0)(l+\ \V2u0\2dJt). (3.5)&apos;

0=st=sT Jjit \ JjU I

Hence for regular u0 we obtain global a-priori bounds of Hôlder norms of u and
its derivatives on MT in terms of the data and any number jR s ]0, Ro] such that

We also need local versions of the preceding results. For any M&apos;&lt;^M, R e ]0,

Rol any u g V((Ur(JO)t; JT) let

e(R;M&apos;) e(R;M&apos;;u9T)= sup ER(w(-, t), x).
(x,t)&lt;=(M&apos;)T
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LEMMA 3.7&apos;. There existe a constant ex&gt;0 such that for any R e ]0, Ro], any
M&apos;a M, and any solution ue V((UR(Mf))T; JT) flr^x V(Mt&apos;; Jf) there holds the

estimate

f \V2u\2dMdt&lt;cE(u0)

provided e(R,M&apos;)

Proof. Let {B^2M} be a cover of M as constructed in Lemma 3.3 and for
each i let &lt;p€ CqCBrCxJ) satisfying 0&lt;cp&lt;l, &lt;p lon B^M, |V&lt;p|&lt;cR1 be a

non-increasing fonction of the distance from x». For each i we now multiply (1.7)
by âMU(p2 and integrate. Note that e.g.

-f dtu-AMu&lt;p2dMdt&gt;l f ^[&lt;$u,
Jmt 2 J^t at

-cl \dtu\\Vu\\V&lt;p\&lt;pdMdt,

and the latter may be estimated

f |3tu||Vu||V(p|&lt;pdiedf&lt; f \dtu\2 &lt;P2 AM dt

+ cR~2\ \Vu\2dMdt.

Also

c- f \AMu\2&lt;p2dMdt&gt;{ \V2u\2cp2dMdt-cR-2\ \Vu\2dMdt

while Ç^Vu]4 &lt;p2 dMdt may be estimated using Lemma 3.2 instead of Lemma
3.1.

As in the proof of Lemma 3.7 we then obtain

f \V2u\2&lt;p2dMdt^c\ \Vuo\2&lt;p2dM + c\ \dtu\2&lt;p2&lt;Uidt

\Vu\2dMdt
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provided e(R;xl)&lt;el is sufficiently small. Summing over those indices i with
0 the claim follows. q.e.d.

LEMMA 3.8&apos;. For any e, t, Eo&gt;0, Re]0,Ro] there exists a number 8&gt;0

such that for any M&apos;^M and any solution u € V((UR(M&apos;))T; Jf) fV&lt;T V(Mt\ Jf)
of (1.7) on any J&lt;=[t, T] with measure \I\&lt;8 there holds the estimate

dJi)dt&lt;e,
/

provided e(R)^£i, E(wo)&lt;Eo.

Proof. To show the contended uniformity again let {i^} be a séquence of
solutions of (1.7) satisfying the hypothèses of Lemma 3.8&apos;. By the estimâtes

f \dtum\2 dMdt&lt;c; f |V2u|

that are implied by Lemmata 3.4, 3.7&apos; we may assume that um —» u a.e.,
dtum -^ dtu9 V2^ -^ V2m weakly and Vu^-^Vu strongly in L2 on (t/R/2(^&apos;))T as

m —&gt; oo. Hence u solves (1.7) on (UR/2(M&apos;))T. Moreover, by weak lower semi-

continuity and Lemma 3.4

-, t))&lt;liminf

for a.e. fe[O, T]. Now let ^€CJ(l/^(i(&apos;)) satisfy 0&lt;ç&lt;l, &lt;p l on M&apos;,

|Vcp|&lt;c/R Upon &quot;testing&quot; the équation (1.7) for u by the function gl}(u) dtuJ&lt;p2 as

in Lemma 3.6 there results

f
T&quot; [«(&quot;(s 0)&lt;P2] d^ dt &lt;cR~2 f |Vm|2

Jmt dt JMT

&apos;

dM dt

Hence Vu(-, t) is continuous in L2(M&apos;) as a function of t. The remainder of the

proof now proceeds exactly as in Lemma 3.8, using Lemma 3.2 and a partition
covering M&apos;, q.e.d.

Remark 3.9&apos;. If i^e V(UR(JOT; M) fV&lt;T V(^T&apos;; JV) are solutions to (1.7)
for initial data Umo-* u0 in HU2(M; jV), and if e(JR;^&apos;; um, T)&lt;et uniformly for
some R e ]0, Ro], then i^ -&gt; u in V((Jé&apos;)T; jV) as m -^ ».
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LEMMA 3.10&apos;. Let ueV(([/R(l&apos;))T; Jf)Plr&gt;o C2((UR(M&apos;))J,

V{MT&apos;\ Jf) be a (locally) regular solution to (1.7). Then for any r&gt;0 the Hôlder
norms of u and its derivatives may be estimated uniformly on (Mf)J by quantifies
involving only E(u0), r, T, and R, provided e(R;M&apos;)^Ei.

Proof. The proof may be carried out exactly as in the case of Lemma 3.10,
localizing the estimâtes on balls B-£(xt) of a suitable partition and using functions
like dtuç2 as testing functions, where 0&lt;&lt;p&lt;l, |V&lt;p|&lt;c/JR, &lt;p l on B^2(xt) and
&lt;p dépends only on the distance from x,, and applying Lemma 3.2. q.e.d.

Remark 3.11&apos;. If u0 is regular on UR(M&apos;) we obtain a-priori bounds of Hôlder
norms of u and its derivatives on (M&apos;)T in terms of u0, T, and R, provided
e(K;.&gt;r)^ei.

We conclude this section by showing uniqueness of solutions to (1.7) in
theclass V{MT\Jf).

LEMMA 3.12. Suppose uu u2e V(MT; J{) are solutions to (1.7) with u^-, 0)
W2(*&gt; 0) u0. Then u1 u2 in MT.

Proof. Let v ut-u2 and dénote |V17|:=|Vm1| + |Vu2|. From (1.7) we obtain

whence if we multiply by v and integrate there results

\[ \v(;t)\2dM+\ (Vv,Vv)MdMdt

&lt;cf (\v\2\VU\2 + \v\\Vv\\VU\)dMdt

\v\2\VU\2dMdt, (3.8)

by Young&apos;s inequality. Now

f \v\2\VU\2dMdt&lt;(\ \v\4dMdt\

and like Lemma 3.1 we obtain from [7, II. Theorem 2.2, Remark 2.1, p. 63f and
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(3.2), p. 74] that for t&lt;min{l, T}

f \v\4dMdt&lt;c sup f \v(%s)\2dJt&apos;(\ \v\2dMdt+i \Vv\2dMdt)

&lt;cJ
sup f \v(-,s)\2dM+ f (Vv,Vv)MdMdt\

In this last estimate we hâve again used Young&apos;s inequality. By Lemma 3.1 there
exists Se ]0, T] such that

c3j s\VU\4dMdt&lt;(2c2r2.

Now, let te[O, S] satisfy

(3.8) then implies that

|u(-,f)|2d/^+ \Vv\2dMdt 0,

and u^Oon Ms. Iterating we obtain the lemma. q.e.d.

4. Résulte

The estimâtes of the preceding section imply the following local existence
resuit.

THEOREM 4.1. For any initial value u0eHu2(M;J{) there exists a number

T T(k0)&gt;0 and a solution ueHt^t V(^t&apos;;N) of (1.7) with w(-, 0) u0. T(n0)
is characterized by the condition

lim sup s(jR, T&apos;)&gt; ei for ail Re]0;Ro].

The solution u is unique and regular on M x ]0, T] with exception of finitely many
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points (x€,T), 1&lt;^&lt;L, characterized by the condition

limsupER(u(-,T&apos;);x0&gt;ei for all Re]0,JRo]. (4.1)
T&apos;-+T

If u0 is regular (on M&apos;^M) u is regular at t 0 (on M&apos;^M). Finally, E(u(-, t)) is

finite for te[O, T] and non-increasing.

Proof. Approximate u0 in Hia(M;J{) by regular (e.g. C2-) initial data um0.

(Remark that density of smooth functions in H12(M, Jf) has been shown by
Schoen and Uhlenbeck [9].) By local existence results (cf. e.g. [3, Theorem p.
122]) there exists a local regular solution wm of (1.7) for which the estimâtes of
Lemmata 3.7, 3.7&apos;, 3.10, 3.10&apos; are valid. Since u^o-* u0 in H12 there exists R&gt;0

such that

E2R(urn0,x)&lt;e1l2

for all xeM.By Lemma 3.6 this estimate (with et instead of eJ2 is conserved on
balls of radius R for at least a time 7\ of order ^R2. Hence for large m we
obtain uniform estimâtes of u^ in V(MTl; Jf) and uniform pointwise estimâtes of
um and its derivatives on any Mj\ t&gt;0. It follows from Remark 3.9 that um —» u
in V(MTl;Jf)9 and u solves (1.7) with initial value u0.

Also Un-^u uniformly on Mj1, for any t&gt;0, and u is regular. If u0 is regular
(on i&apos;cl) we may take um0=u0 (on M^ exhausting M&apos;) to obtain (local)
regularity at f 0 from Remark 3.11, 3.11&apos;. Uniqueness follows from Lemma
3.12.

To obtain the characterization of T= T(w0), the maximal time of existence of
u as a smooth solution to (1.7), we may argue indirectly. If for some R &gt; 0 and all
xeM

limsupER(M(-,T&apos;),x)&lt;e1,
T&apos;-»T

by the regularity estimâtes of Lemma 3.10 m may be continuously extended to the
closed interval [0, T] and u(-, T) is smooth. Hence u may be continued to a larger
time interval, contradicting the maximality of T(w0).

Finiteness of the singular set follows from additivity of the energy, Lemma
3.4 and Lemma 3.6. Moreover, if M&apos; is compactly contained in
there exists R&gt;0 such that UR(M&apos;)^MWx1,..., xL} and

sup ER(u(-,t),x)&lt;e1.
(x, t)eMOT
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By Lemma 3.10&apos; u therefore is regular on (M&apos;)Jfor any t&gt;0. Finally, the energy
estimate follows from Lemma 3.4 and since

Vw(-, T) -* Vw(-, T) weakly in L2 (T&apos; -&gt; T). q.e.d.

By itération we obtain global solutions to (1.7) for any initial value uoe

THEOREM 4.2. For any initial value u0eHly2{M\Jf) there exists a unique
solution u of (1.7) on dix [0, o°[ which is regular on Mx ]0, o°[ with exception of at
most finitely many points (x€, T€), 1&lt;/&lt;L, characterized by the condition that

limsupER(u(-,T), x€)&gt; et for ail Re]0,Ro].

Proof. By Theorem 4.1 for any u0sHh2(M, Jf) there exists a unique local
solution on some MT1 which is regular on M x ]0, T1] with exception of at most
finitely many points (x€, T1), 1 &lt; €&lt;Lx. Let ux w(-, T1) e HU2(M, Jf). Note that

E{ux, M&apos;)&lt;lim inf E(u{-, T), M&apos;)

T,&lt;Ti

f E(u(-,T&apos;))-I ER(u(-, T),x*)
T&apos;-^T1 ^ 1

for any Re]09 R0i M&apos;cMWJt^i Br(x€). Passing to the limit R-+0, M&apos;-^M:

(4.2)

By Theorem 4.1 we may continue u to some larger interval [0, T2] by solving
(1.7) with initial value u(-, T1) ux on [T1, T2] and piecing together the solutions
at T. Since an isolated point (xé, T1) has (Hia(M)~) capacity zéro, u will be a

distribution solution to (1.7) on ail of M72. Iterating, we obtain a global solution u

of (1.7) which is regular with exception of points (x*, Tk)1&lt;k&lt;K. i^^. Finiteness
of the singular set follows from (4.2) and since E(uo)&lt;oo. q.e.d.

A more detailed description of the behaviour of our solution u near a singular
point can be given as follows. Suppose xoeM, toeU, and let u be a solution to
(1.7) on M™0. Representing a neighborhood of x0 by a coordinate chart û &lt;=|R2 we
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may introduce the rescaled fonctions for R&gt;0;

uR(x, t) uRXxotto)(x, t) s u(Rx + x0, R2t +t0).

Note that as R —» 0 the domain of wR will exhaust ail of R2x [0, oo[. Moreover, uR

will solve an équation similar to (1.7) on its domain with coefficients locally
tending to the coefficients that correspond to the standard metric on M2 as R —» 0.
We may now state:

THEOREM 4.3. Let u be the solution to (1.7) constructed in Theorem 4.2, and

suppose (x0, T), T^o°, is a point where

lim sup ER(u(-, r), xo)&gt;eu VJR e ]0, Ro]

t&lt;T

Then there exist séquences xm -» x0, tm &lt; T, tm -» T, Rm g ]0, Rq], Km -^ 0 and a
regular harmonie mapping ïï^: M2-*J{ such that as m-*™

Wr^JsO)^^ Jocaf/y in H2&apos;2(R2;^).

w0 ^ias /inite energy and extends to a smooth harmonie map S2 —» M.

Proof. Let x1,..., xL enumerate ail singular points of u at time T, charac-
terized by the condition (4.1), and let p g ]0, RoI2] be chosen such that Bf(xk) H

Bf(x€)=0 for ail €± k. By Theorem 4.2 there exists Tx&lt;T such that ne
V(Mt\;N) for ail T2&lt;T. Therefore, for any € there exist séquences xm -&gt; x^,

tm -* T, rm &lt; T, Km -^ 0, i^m g ]0, Ro], such that

e1 ERm(w(-,tm),xm)= sup ERm(w(-,f),x).
T

Note that by Lemma 3.6 this implies that for some constant c4 \—- and any2cE(uù

Moreover, by Lemma 3.7

f \V2u\2dMdt&lt;cE(u0).
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Hence after scaling the family um uRm5(Xm)tm) satisfies the estimâtes on
{(x, 0 | JRmx + xm €Bf(xO; R

,t), 0)^/2, Vte[-c4,0]

sup

-c4=st&lt;0

|dti&lt;|2&lt;L0A-»O

by absolute continuity of l\dtu\2 dJl dt. In particular, for some number rm6
[—c4, 0] we can achieve that as m —» &lt;»

:Sc; \

while

uniformly in m. (Rescaling fm —&gt; ^ - TmR^ we may assume rm 0.) Hence there
is a séquence m—»o° such that um(•,()) converges weakly(1) to some function
~û~oe Hj^flR1; J{) and strongly in H12((2; Jf) for any 12 c c(R2. Passing to the limit
m —&gt; oo in the équation (1.7) it follows that u0 is harmonie map from R2 onto Jf.

Moreover, since

EU2(ÏTO)&lt;limsup EM(u(; tm))^EM(u0)

w0 has finite energy. Thus by conformai équivalence (R2 S2\{p} and [8, Theorem
3.6] u0 extends to a smooth harmonie map of S2 into N. q.e.d.

Remark 4.4. Let e(Jf) inf{E(u) \u:S2-*Jf is a non-constant, regular
harmonie map}&gt;0. By Theorem 4.3 for any initial value u0eHlf2(M,J{) with

1 Even strongly locally m H2 2(1R2, Jf)
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E(uo)&lt;e(Jf) our solution u of (1.7) will be globally regular onlx ]0, &lt;»[, and at
t - oo in the sensé that

limsupER(w(-, t), x)&lt;ex,
t~*oo

for some R e ]0, Ro] and ail x e M. Using the estimate dtu e L2(JO, the proof of
Theorem 4.3 shows that for some séquence f™ -»00 u(-, tm) converges weakly in
H2&apos;2 (and hence strongly in H1&apos;2) to a harmonie mapping u^ from M into Jf.

Likewise, for arbitrary initial data we may conclude that u(-, fm)-^ ux weakly in
HU2(M ; Jf) for some séquence tm -» oo5 where u^ is a harmonie map from M into
^V* with E(Woc)&lt;E(mo) and regular on M with exception of at most finitely many
points. By [8, Theorem 3.6] therefore u^ extends to a smooth harmonie map
M-&gt;Jf. The proof proceeds as that of Theorem 4.3 in conjunction with our local
estimâtes Lemma 3.7&apos; and can be omitted.

For référence we note the following corollary of our results in the stationary
case. The proof is analogous to that of Theorem 4.3 and hence can be left to the
reader.

PROPOSITION 5.1. Suppose {u.n} is a séquence in H2a(MyJf) satisfying the

conditions

E(um) &lt; c, dE(um) -&gt; 0 in L2(M)(m -» «).

Then either the séquence {um} is relatively weakly compacti2) in H22(M; Jf) and a
subsequence converges weakly to a harmonie map u\M^&gt; Jf in H22, or there exist
(at most finitely many) points x1, ...,xL such that {um} is relatively weakly
compact®* in H^iMXix1,..., xL};Jf) and accumulâtes at a smooth harmonie

map uo:M-&gt;Jf, while for € 1,..., L there exist séquences x€m —&gt; x€, R€m —&gt; 0 and
smooth harmonie mappings ~û^:M2-*J{ such that

+ xfn)-*V€ weakly™ in

as m —» oo. Moreover,

EM(TT0)+ t
Le. a local Palais-Smale condition is satisfied for E and its L2-gradient.

2 Again, one can easily show strong H2&apos;2-compactness (locally).
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