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Tight immersions of highly connectée! manifolds1

GUDLAUGUR THORBERGSSON

1. Introduction

One expects that most compact manifolds do not admit any tight immersions
into a Euchdean space We will support this in the case of highly connected
manifolds More precisely, we will give restrictions on the topology of (k - 1)-
connected 2A&gt;dimensional manifolds that admit tight immersions into Euchdean

spaces We will also détermine the possible codimensions of such immersions
Known examples of highly connected manifolds that admit tight immersions

are (5* x 5*) # • • # (5* x Sk), the projective planes P2F where F M, C, H or
O and ail surfaces with the exception of the Klein bottle and the projective plane
with one handle for which no tight immersions hâve yet been found, see section
2 It îs not unhkely that thèse manifolds and their connected sums with copies of
P2¥ and -P2F are the only examples

Notice that the A&gt;th Stiefel-Whitney class wk(M2k) vanishes if M2k (5* x
Sk) # • • # (Sk x S*) We hâve wk(M2k) ± 0 if M2k P2¥ # N2k, where k

dimRF and N2k îs (k - l)-connected In gênerai one can show that wk(M2k) 0

for a (k — l)-connected 2A&gt;dimensional mamfold with k ^ 1, 2, 4 or 8, î e if 2/c îs

not the dimension of a projective plane, see section 4 A géométrie interprétation
of the condition &quot;wk(M2k) 0&quot; for highly connected manifolds îs that no
homology class has self-intersection number 1 mod 2

The followmg theorem together with results of Wall [Wa] show that there are

many examples of highly connected manifolds which do not admit a tight
immersion

THEOREM A Let M2k be a (k - ï)-connected compact mamfold with
wk(M2k) — 0 which admits a tight immersion into a Euchdean space and assume
that k&gt;2 Then M2k has the same cohomology ring as (Sk x 5*) # • • • #
(S* x Sk) over the integers

1 Work partially done at IMPA in Rio de Janeiro and supported by the exchange program of
GMD (Fédéral Repubhc of Germany) and CNPq (Brazil) It was completed at the University of
Bonn
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Tight immersions of highly connectée! manifolds 103

We can prove much more if the dimension of the manifold îs 4/

THEOREM B Let M41 be a (21 - iyconnected compact manifold with
w2i(M41) 0 which admits a tight immersion into a Euclidean space and assume
that / &gt; 1 Then M41 is diffeomorphic to the connected sum

(S21 x 52/) # # (52/ x S21) # I
where 2 is a sphère with some differentiable structure (The same conclusion is true

for k 3 and 7 where k is as in Theorem A

We believe that Z in Theorem B can be proved to hâve the standard
differentiable structure and hence be deleted from the connected sum This would
complète the classification of 4/-dimensional (/&gt;1) highly connected manifolds
with w2l(M41) 0 which admit tight immersions The proof of Theorem B is based

on the methods of the paper [KW] by Kulkarni and Wood
One expects that a P2¥ can be decomposed off a highly connected manifold

M2k with wk(M2k) =jt 0 which admits a tight immersion into a Euclidean space It
can be proved that at ieast the cohomology ring is no obstruction, see Theorem D
below

We had to exclude four-dimensional manifolds in the above theorems The

following theorem is sufficient to prove that there are infinitely many four-
dimensional manifolds which do not admit tight immersions

THEOREM C Let f M4 —» E4+l be a substantial tight immersion of a simply
connected compact manifold Then, after a suitable choice of orientation

(î) 1 2 implies that M4 can be decomposed diffeomorphically as M4 (S2 x
S2) # N4 and the Betti number /52(M4, Z) is even In particular, if the Stiefel-

Whitney class w2(M) =£ 0, then j52(M, Z) &gt; 4

(n) / &gt; 3 implies that M4 can be decomposed diffeomorphically as M4 P2C #

The proof of Theorem C is much more difficult than that of Theorem B and
relies in a more essential way on tightness

As an application of Theorem C we will prove

COROLLARY There are infinitely many simply connected compact four-
dimensional manifolds, among them the Kummer surface, which do not admit any
tight immersions into a Euclidean space
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The Kummer surface is defined as

K {[z0,.. z3]e P,C\ zt+ • • • + zt O}.

It is the simplest algebraic surface which cannot be obtained as a connected sum
of copies of S2 x S2, P2C and -P2C. It is a conjecture in differential topology that
ail simply connected compact four-manifolds can be written as a connected sum
of copies of S4, S2 x S2, P2C, -P2C and K.

The non-existence of a tight immersion of the Kummer surface follows
immediately from Theorem C and a récent resuit of Donaldson [Do 2] which says
that the Kummer surface cannot be decomposed diffeomorphically.

The other four-dimensional manifolds not admitting tight immersions are not
explicitly given in the proof of the Corollary. They arise from algebraic surfaces

of even degree in P3C by splitting off copies of S2 x S2 if the algebraic surface

itself allows a tight immersion. It is only for the Kummer surface that we use
Donaldson&apos;s results. The rest of the proof of the Corollary only uses the theory
developed in this paper and some facts about characteristic numbers of algebraic
surfaces.

We believe that the décomposition resuit in Theorem C can be generalized to
higher dimensions. The next theorem, which refines a resuit of Kuiper, shows
that the cohomology ring does not give an obstruction to such a generalization.
We will also détermine ail possible codimensions of tight immersions of
2/c-dimensional (k - l)-connected manifolds, although one case remains open if
one distinguishes the cases of vanishing and non-vanishing k-th Stiefel-Whitney
class. Theorem D will be used in the proofs of Theorems A, B and C.

THEOREM D. Let f\M2k-*E2k+l be a substantial tight immersion of a

compact {k — \)-connected manifold.
(i) Assume that the k-th Stiefel-Whitney class wk(M2k) vanishes. Then the

codimension l is 1 or 2.

(ii) Assume that the k-th Stiefel-Whitney class wk(M2k) does not vanish. Then

k 1, 2, 4 or 8.

// k 1 or 2, then the codimension l is k, k + 1 or k + 2.

If k 4 or 8, then the codimension l is k + 1 or k + 2.

Furthermore, the intersection form décomposes as (±1) © /3 over the integers if
k&gt;l: (We exclude the case k l since the intersection form of a non-orientable
surface is not defined over the integers.)

Remarks, (a) This theorem refines a resuit of Kuiper [Ku2], p. 231. In
particular, (i) is équivalent to a part of his resuit. In (ii) the estimate / ^ k + 2 is
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due to Kuiper. Notice that it follows from the assumption wk(M2k)j= 0 without
using tightness that k 1, 2, 4 or 8 and that the codimension / cannot be smaller
than k. In part (ii) arguments involving tightness are therefore only needed to
exclude the case / k and to décompose the intersection form.

(b) Using Theorems A and C, we can add the following conclusions to part
(i): The Betti number pk(M2k;Z) is even and, if k&gt;2, the intersection form is

équivalent to

q) ® &quot; • ® (i n) + if k jS eVen&apos; ~ if k is Odd)
0 ±1\_ _/0 ±1
1

over the integers. For k 2 we use that the intersection form is indefinite. By the
classification of indefinite inner product spaces of type II in [MH] (hère type II is

équivalent to w2(M4) 0) we therefore see that the intersection form for k 2 is

équivalent to

over the integers. We believe that m can be proved to be 0. We hâve m —2 and

n 3 for the Kummer surface which does not admit a tight immersion as we saw
in the Corollary to Theorem C.

If one compares Theorem D with the examples in section 2, then one sees that
ail allowed codimensions actually occur in the examples with the exception of the

following case which we formulate as a problem.

PROBLEM. Does there exist a tight immersion f:M4-*E6 of a simply
connected compact manifold with non-vanishing second Stiefel-Whitney class?

{There are such examples with vanishing Stiefel-Whitney class \ e.g. the product
embedding S2 x S2 c E&quot; x E&quot; E6).

Theorem C gives as an obstruction that j32(M4; Z) &gt; 4. M. Hirsch gave in [Hi],
p. 271, a necessary and sufficient condition for a compact four-dimensional
manifold to admit a smooth immersion into £6. This condition can be expressed
as follows: w2(M4) is the réduction modulo 2 of a class oc e H2(M4; Z) such that
{a2} [M]) -3(j(A/), where a(M) is the signature of M4. An immédiate

corollary is that P2C cannot be immersed into E6. It also follows at once that
P2C # (-AC) can be immersed into £6, but not tightly by Theorem C. A
candidate for a simply connected compact four-dimensional manifold with
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non-vanishing second Stiefel-Whitney class which could be tightly immersed into
£6 is P2C # P2C # (-P2C) # (~P2C).

The paper is organized so that examples are given in section 2, définitions and
technical results in section 3 and the proofs of the Theorems in section 4.

The paper is fairly self-contained. The book [CR3] and the survey articles

[Ku2] and [Ku3] are good introductions to the subject.

2. Examples

In this section we discuss systematically the 2/c-dimensional (k - l)-connected
manifolds which are known to admit tight immersions and which codimensions of
such immersions are known to occur.

(i) Kuiper has shown that ail compact surfaces can be tightly immersed except
maybe the Klein bottle and the projective plane with one handle for which no
such immersions are yet known; see the papers [Ku 1, 2, 3]. The oriented surfaces

(i.e. wx(M2) 0) can be tightly immersed with substantial codimensions 1 and 2

and there are tight immersions of non-orientable surfaces (i.e. Wi(M2)j*Q) with
substantial codimensions 1, 2 and 3; see Theorem D.

(ii) Hère we discuss examples of tight immersions of highly connected
manifolds with wk{M2k) 0. The only such manifolds known to admit tight
immersions are the connected sums (5* x 5^) # • • • # (5* x 5*) (see Theorems
B and A) and the occurring substantial codimensions are 1 and 2 (see Theorem

D).
A tube of constant radius in E2k+l around Sk aEk+l a E2k+l is a tight

hypersurface homeomorphic to S* x S*. Hebda [He] has shown that one can also

realize the connected sum of arbitrarily many copies of 5* x S* as a tight
hypersurface by taking a tube in E2kJrX around a bail in Ek+l which has

sufficiently many spherical holes. This example is not C~ but it can be smoothed.
The product embedding of two convex hypersurfaces in Ek*1 is tight,

homeomorphic to 5* x S* and has substantial codimension two. To obtain a tight
embedding of the connected sum of arbitrarily many copies of Sk x S* with
codimension two we imitate the above construction of Hebda and the examples of
tight surfaces in E4 in [Ku2], p. 213. We choose two convex hypersurfaces in
Ek*1 such that one of them has an open planar set A and the other has a set B

which.is congruent to IxSk~\ where / is an open interval and Sk~l is a

(k - l)-sphere of radius e. The product Ax B lies in a (2k + l)-dimensional
subspace and has a subset congruent to /*+1 x Sk~\ Now we can &quot;make holes&quot; in

A x B ^lk+l x Sk~l as in Hebda&apos;s example above to get a tight embedding of
(Sk x Sk) # • • • #(Sk xSk) with substantial codimension two.
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(m) Examples of tight immersions of highly connectée manifolds with
wk(M2k) =f 0 are the standard embeddings of the projective planes P2M, P2C, P2H

and P2O, see [Ta] and [Ku 3] Their substantial codimension îs k + 2 They lie m

sphères and can therefore be stereographically projected into a E^k+] where they
are also tight, see Theorem D

There are therefore two main questions Do there exist tight immersions of
connected sums of copies of P2¥ and -P2F9 and the question already mentioned
in the introduction about tight immersions of A/4 into E6

3. Convex cycles

This section consists of basic définitions and some technical results which will
be used in the proofs of the Theorems in the introduction Particularly important
îs Lemma (3 6) on the existence of convex cycles

3 1 DEFINITION An immersion of a compact manifold into a Euchdean

space îs said to be tight if there îs a field such that ail singular cycles with
coefficients in that field which bound in the manifold also bound in the
intersection of the manifold with almost every halfspace containing the cycle

This définition îs the latest m a séries of équivalent définitions of tightness
which we will review for the sake of motivation Finally we wiil give a new
définition in terms of Cech cohomology which will be useful for technical reasons

Chern and Lashof [CL] proved that the total absolute curvature of an

immersion of a compact manifold into a Euchdean space îs greater or equal to the
sum of the Betti numbers for any field Immersions satisfymg equahty for some
field are now called tight, but they had other names in the beginning Inspection
of the proof of the Chern-Lashof theorem immediately leads to the following
équivalent définition An immersion îs tight îff every height function which îs a

Morse function has the minimal number of cntical points required by the Morse
inequahties for some field (Notice that almost every height function îs a Morse
function The proof of the Morse inequahties shows that this îs équivalent to the

following An immersion / M —? E of a compact manifold into a Euchdean space
îs tight îff the induced homomorphism of singular homology groups with respect
to some field F

îs mjective for every * and almost every halfspace 5, or equivalently îff there îs a
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field F such that

is surjective for every * and almost every halfspace 5. It is possible to go to limits
and replace &quot;almost every halfspace&quot; by &quot;every halfspace&quot; if the singular theory
is replaced by Cech theory. We will not use Cech homology in this paper since it
is not a standard theory. Cech cohomology on the other hand is well-known and

can be found in the standard textbooks on topology. It is also used in the Duality
Theorem which we will apply in the proof of (3.6). The symbol H* will refer to
Cech cohomology and H* and H* to the singular theory.

It is important to define tightness for topological spaces for use with Kuiper&apos;s

top sets which are the central technical tool of the theory. Their définition is given
below.

3.2. DEFINITION. A continuous map f\X-*E of a compact connected
topological space into a Euclidean space is called tight if there is a field F such
that the induced homomorphisms in Cech cohomology

are surjective for every * and every halfspace S. We will also say that / is tight
with respect to F or f-tight. We will not refer explicitly to the field in the notation
when the meaning is obvious from the context.

The convex hull of a subset X in E will be denoted by W(X). The boundary of
the convex hull 33€(X) will be called the convex envelope of X.

A top set is the preimage of the maximal value of a height function, i.e. a

function of the type £ •/:X-* M where £ is a unit vector in E. A top2 set is a top
set of a top set. A top*set is inductively defined as the top set of a top*&quot;1 set. A
top*map is / restricted to a top*set. It is proved in [Ku3], p. 102, that top*maps
of tight maps are tight.

It is not true in gênerai that top maps are injective. A nice counterexample for
closed surfaces in £3 due to Banchoff can be found in [CR2]. A somewhat less

natural such example can be obtained as follows: Take the product immersion

/ x c : M2 x S1 —» E5 where / is a tight surface in E3 with self-intersections and c a

convex curve in E2. Then for a fixed toeSl the top map / x c(t0) is not injective.
The following lemma about injectivity of top maps will be important in the proof
of (3.6).

3.3. LEMMA. A top*map of an ¥-tight immersion is injective and its image is

convex if the corresponding top*set is a Ùech cohomology point with respect to F.
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Remark Kuiper proved in [Ku 3], p 120, that the image under a tight map of
a set which îs a Cech homology point îs convex if tightness îs defined m terms of
Cech homology Lastufka proved in [La], p 382, that a top*map îs injective if îts

image îs convex We will use this resuit of Lastufka in the proof

Proof We prove the lemma by induction Assuming (//) we will prove (//+0
where the induction hypothesis (/,) îs defined as

(/,) top*maps are injective and their image îs convex if the corresponding
top*sets are Cech cohomology points and their images lie in affine

subspaces of dimension &lt;/

(/o) îs of course trivial and (/]) follows easily We therefore assume that (/,) îs

proved up to / for / ^ 1

Let X be a top*set which îs a cohomology point and such that dim (f(X))
/ 4-1 We know by (//) that / îs injective on any top*set of X and hence that / îs

injective on the preimage of the convex envelope 33€(f(X)) of f(X) It also

follows from (//) that dd€(f(X)) c:f(X) Dénote the inverse image of the convex
envelope d%(f(X)) by Y

We first prove that f(X) îs convex Assume that f(X) îs not convex Then
there îs a point x in the interior of 3€(f(X)) which does not lie in f(X) The point
x can be used to define a retraction r of X on Y as follows A point p e X îs

mapped by r onto the preimage of the point of dffî(f(X)) which lies on the ray
from x through /(/?) The map r îs well defined since / îs injective on Y and it îs

obviously a retraction The set Y îs homeomorphic to 5&apos; and hence it cannot be a

retract of a space which îs a cohomology point Thus f(X) must be convex
Now it follows from the theorem of Lastufka that we quoted m the remark

before the proof that / îs injective ¦
The next two lemmas are prehminary for the more important lemma (3 6)

3 4 LEMMA Assume that f M -» E is a tight immersion with respect to the

field F If the height function | f has a non-degenerate cntical point p of index k,
then Hk(f~l(S), F) ^ 0, where S is the halfspace {x e E | £ (jc -/(/?)) =£ 0}

Proof We first remark that the définition of tightness immediately implies
that the cohomology séquence of the pair (/&quot;&apos;(S]), /~1(52)), where SluS2 are

halfspaces, sphts mto short exact séquences

0- friT^Si), r!(4)) -+ Ù*(Tx(Sy)) -&gt; H*(f~](S2)) -+ 0

This proves the lemma since it follows from Morse theory that there is an e&gt; 0

such that #*(T&apos;(S),/-&apos;($_,))M where S_,= {jce£ |§ (x
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Let /: M —» E be an immersion. We dénote the second fundamental form of /
by a and its normal bundle by NM. It is easy to show that p e M is a critical point
of the height function £ •/ iff § e NPM. The Hessian of the critical point is £ • a.
A convex point of /is a point whose image lies in the convex envelope dW(f(M))
of /(M). A non-degenerate convex point is a convex point which is a non-
degenerate minimum of some height function. M p e M is a non-degenerate
convex point, then a(X, X)j=0 for every non-zero X e TPM and the set

{a(X, X) | X e TPM) is contained in a halfspace of NPM. We dénote the convex
hull of {a(X, X) | Xe TPM) by Kp. It is easy to see that Kp spans NPM at a

non-degenerate convex point if /is tight.

3.5 LEMMA. Lef p be a non-degenerate convex point of the tight immersion

f:M-*E. Let h c NPM be a hyperplane of support of Kp and let % e NPM be

orthogonal to h with £ • a(Xt X) &gt; 0 for every X eTpM.
(i) Then %h {Xe TPM | a(X, X)eh) is a linear subspace and a(%h, TPM) a

h.

(ii) Let Ç(t) be a curve in NPM such that £(0) § and Ç(t) • a(X, X)&lt;0 for
every non-zero Xe^h and f=/=0. Then there is an e&gt;0 such that the height
function %{t) •/ has a non-degenerate critical point in p of index equal to the

dimension of %h for every 0 &lt; t ^ e.

Proof (i) The quadratic form £ • a(Xf X) is positive semi-definite. Hence its

nullspace is %h which is therefore a linear subspace. We hâve oc(%h, TPM) since %h

is the nullspace of § • a(X, Y).
(ii) Suppose there is a séquence tt —&gt; 0 such that the height functions £, • / are

degenerate where £, %(t,). The index of g, •/ is greater than or equal to dim %h

for every i since its Hessian is négative definite on %h by assumption. Therefore
there is for every / a subspace %t of dimension d &gt; dim %h such that
§, • a(Z, Z) &lt; 0 for every Xefy. Let (X,;, 0 &lt;j &lt; d) be an orthonormal basis of
%. There is a subsequence (/&apos;) of (/) such that (AVy) converges to a unit vector A&quot;y

for every j, 0&lt;j ^d. (X;) is an orthonormal basis of a space % of dimension d
such that | • a{Xy X) &lt;0 for every leg. This implies that a(X, X)eh for every
Je? since § • ar(Z, Z) &gt; 0 for every Z e TPM and § • h 0. Hence ?c?A which
is a contradiction since dim % d &gt; dim ^. ¦

The following lemma is of central importance for the proofs of our theorems.
It is intended to replace arguments involving integrable distributions in more
spécial situations, see [Ch], [CRI], and [Thl]. Notice that neither do we assume
that the dimension of the manifold M is 2k nor do we make assumptions on the
codimension. The notation used is introduced before and in lemma (3.5).
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3.6 LEMMA (Existence of convex cycles). Let f:M —&gt; E be a tight immersion

of a (k - lyconnected compact manifold. Let p e M be a non-degenerate
convex point. Assume that H is a hyperplane in E containing TPM such that
h H H NPM is a hyperplane of support of Kp that only meets Kp in a ray. Assume
that dim %h - k. Dénote the convex envelope off(M) D H by Q. Then

(i) H supports f(M)
(ii) Q czf(M) and f is injective on f~\Q)
(iii) Q spans a (k + lydimensional affine subspace of E
(iv) the fundamental cycle of f~\Q) is non-trivial in M, i.e. the homomorph-

ism Hk(f~l(Q))—&gt; Hk(M) in singular homology is injective with respect to the

same coefficient field as the tightness off
(v) there is a neighborhood U of p such that f(U) D Q f(U) (1H and

U nf~l(Q) is a differentiable submanifold with tangent space %h atp.

Remark. Notice that the (k + l)-dimensional affine subspace of E spanned by
Q does not in gênerai contain the ray hC\Kp. The cycle f~\Q) will be called a

{non-degenerate) convex cycle. We will sometimes write Q instead of f~l(Q)
although we mean a subset of M. We will also use the term convex cycle for Q as

a subset of E.
We first give an application of the lemma.

3.7 COROLLARY. Let f:M2k -&gt; E2k+\ /&gt;2, be a substantial tight immersion

of a (k - \)-connected compact manifold. Let p be a non-degenerate convex
point. Then there pass at least two différent (but possibly homologous) convex
cycles Qx and Q2 through p that only hâve the point p in common. Both Qx and
Q2 are differentiable around p and they intersect transversally.

Remark. More precisely, we hâve a family of différent convex cycles which
can be parameterized by S/-2, but we do not know whether the family is

continuous. For further détails on this, see the proof of Theorem D in section 4.

Proof. Hère we only prove the case / 2. The gênerai case will be proved in
the proof of Theorem D. The image of TPM under a, the set {a(X, X)\Xe
TPM), is a sector bounded by two rays on lines hx and h2. The sector do.es not
degenerate to a line, i.e. hx ±h2, since / is substantial and p a non-degenerate
convex point. It is an immédiate conséquence of (3.4) and (3.5) that dim %hx

dim %h, k. Thus we hâve two convex cycles Q{ and Q2 by (3.6) mapped into Hx

and H2 respectively, where //, is the affine span of h, and TPM. The tangent space
TPM only m^ef&quot; **;ri p by tightness. Thus it follows that Qx and Q2 only can meet
in p. They meet there transversally since their tangent planes %hx and %h, meet
there transversally, see (3.5). ¦
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Proof of (3.6). The proof will be divided into several steps to make the
exposition clearer. The steps do not correspond to the différent parts of the
lemma.

(i) Let 16 NPM be a non-zero vector orthogonal to h and such that

| • a(Xf X)&gt;0 for every X e TPM. This is possible since the set {a(X, X) \ X e

TPM) lies in a halfspace bounded by h. Then it follows from lemma (3.5) that
there is a séquence (§,) of vectors in Np which converges to Ç and has the

properties that p is a non-degenerate critical point of £, •/ of index k and
§, • a(X, X)&lt;0 for every non-zero Xe %h. Furthermore the séquence can be

chosen in such a way that § and (£,) lie in a two-dimensional subspace and £,+,
lies between § and £, for every /. We dénote the closed halfspace in E bounded by
the hyperplane orthogonal to §, and not containing §, by Sr We now show that

It follows from the choice of the séquence (£,) as lying in a two-dimensional
subspace and converging monotonically there to § that if the séquence (f~1(Sl))
would not be monotonically descending then there would be an /0 &gt; 0 and aq e M
such that f(q) were contained in the interior of 5, for every i &gt; i0 and f(q) and §

would lie on différent sides of H. Hence the height function Ç • / would be

négative in q. By turning § slightly in the two-dimensional space spanned by (£,)
and § we would obtain a vector §&apos; such that %&apos; - a(X, X)&gt;0 for non-zero
XeTpM and £&apos;•/(#)&lt;(). The point p would be a non-degenerate relative
minimum of §&apos; •/ with value 0. Hence there would be a height function g&quot; •/, g&quot;

close to |, which is a Morse function with at least two relative minima. This
contradicts the tightness of/. The séquence (/&quot;^(Si)) is therefore monotonically
descending and f~l(S()^f~l(H) for every i. It follows similarly that /&quot;1(//)

This argument also shows that f(M) must lie on one side of H which proves
part (i) of the theorem. In other words, f~l(H) is a top set.

The cohomology group Ék(f&apos;ï(Sl)) is non-trivial by lemma (3.4) since §, •/
has a non-degenerate critical point of index k in p. The homomorphisms
H^M^^Cf-^^))-^/?^&quot;1^)), i&lt;h are surjective by tightness. The fact
that Êk(M) is a finite dimensional vector space implies that /-^(/&quot;^(S,))-»

Hk(f^1(SJ)) is an isomorphism for every j&gt;i&gt;i0 for some i0. Hence Hk(f~l(H))

(ii) In this step we prove that there is an affine subspace G in H such that
Ë*(f~\G)) =£ 0 for some * &gt; 0, and the convex envelope Q&apos; of/(M) H G contains

f(p) and there is a neighborhood V of f(p) in Qf contained in/(M). Moreover,
f&quot;\G) is a top*set of M.
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We let Q dénote the convex envelope of f(M) n H as in the statement of the
theorem. Let Go dénote the affine hull of Q. We first show that f(p) e Q. Let
rjeNpM be such that rj - a(X, X)&gt;0 for every XeTpM. Then 77 •/ has a

non-degenerate relative minimum in p which is an absolute minimum by
tightness. Hence the hyperplane through/(/?) orthogonal to r\ only meets/(M) in

f(p) and f(p) is therefore in the convex envelope of f{M)DH, i.e. f(p)eQ.
Assume there is in every neighborhood V of/(p) in Q a point x e V —f(M). Let
(jc;) be a séquence of such points which converges to /(/?). Let Pt a G() be a

hyperplane of support of Q at xr We can assume that the séquence of
hyperplanes (P,) converges to a hyperplane P{) which is a hyperplane of support in

f(p). The plane P{ meets f(M) in some point for every i since Pt supports the

convex hull of/(M) n H. The map/ \f&apos;l(Pt) is a top map of the top set/&quot;1^) of
f~l{H) and hence tight. It follows that fi*(f-l(Pt))î0 for some * &gt;0 since

Pt Df(M) =f(f~l(Pl)) would otherwise be convex by (3.3) and consequently
x, e/(M), which is a contradiction. The homomorphisms H*{f~l(H)) —&gt;

H*(f~l(P{)) are surjective by tightness. Let (Ut) be a monotonically descending

séquence of closed neighborhoods of f~l(P0) in f~l(H) such that f~l(Po) Pi Un
obtained as the preimage of halfspaces with boundaries parallel to Po. By
tightness oif\f~\H) we hâve that Ù*{f-\H))^&gt; H*(Uj)-+ H*{Ut), i&gt;j, are

surjective homomorphisms. It follows at once that for every i there is a A: such

that f~l(Pj) a Ut for / &gt; k. Consequently H*(Ut) =f 0 for every / and since they are
ail finite dimensional vector spaces, the surjective homomorphisms H*(U})-+
H*{Ut) are isomorphisms for every *&quot;&gt;/&gt;some /0. Hence H*(f~l(P0)) liiru
H*(Ut) =f=0 by the continuity of Cech cohomology. Notice that the dimension of
the linear span of f(M) n P{) is smaller than the dimension of the linear span of
f(M)DH=f(M)r\G{). Let G, be the linear span of f(M)C\P0. If the convex
envelope Ql of/(M) D G} does not hâve a neighborhood V of f(p) contained in

/(M), then we can repeat the argument above and find a hyperplane Px c G\

supporting Qx at f(p) and satisfying H*{f~\Px))^Q for some * &gt;0. Inductively
we can continue this until we finally corne to a plane G such that the convex

envelope Q&apos; of/(M) D G has a neighborhood V of f(p) contained in f(M) and

H*(f~l(G) =f 0 for some * &gt; 0. We hâve by construction that f~\G) is a top set.

(iii) In this step we prove that dim G ^ k + 1. We also show that &lt;2 Q&apos; a G
if dimG /c + l. Finally the claim in part (v) will be proved under the

assumption Q Q&apos;.

Assume that dim G k&apos; 4-1 &gt; k + 1. We first prove that dim (G H TPM) k&apos;.

We can represent Q&apos; locally around /(/?) as the graph of a convex function. The
convex function is differentiable on a dense set 3) where its gradient is also

continuous. The hyperplane of support is unique in a point q above 3) and
identical with its tangent plane TqQf a TqM. We choose a séquence of points (q,)
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above 0) that converges to p and a convergent subsequence of (TqQf) with limit
P. The plane P supports Q&apos; at p and is contained in TPM since it is a limit of
planes in TM. It follows that P G D TPM since G is not contained in TPM. Let
G1 be the orthogonal complément of G in TPM + G. The space G1 is

(n - /c&apos;)-dimensional since dim (TPM + G) w + 1, where n d\mM. Let

(e,,... ,er_*0 be a basis of G1. The map F (F,, Fn.k.): M-* U&quot;-k&apos;

defined by F, e, •/ is of maximal rank in p since Gx Pi A^M 0. The set F&quot;&apos;(0)

is therefore a /r&apos;-dimensional manifold around /? which /maps locally homeomor-
phically onto a neighborhood V of/(/?) in Q&apos;. The Hessian of the height function
§, •/ is négative definite on the tangent space /* XP of F~](Q) at /? since f~](S,)
contains a neighborhood of F~l(0) around p. But this is a contradiction since the
index of £ • / is k &lt; dim P k&apos;.

The above argument also shows that if dim G k +1, then a neighborhood K
of f(p) in g&apos; is a &amp;-dimensional differentiable manifold and there is a

neighborhood U of p in M such that /((/) H Q&apos; =f(U) H G and U Df-\Q&apos;)

f~~l(V). The tangent space of f~l(Q&apos;) is %h since this is the only /c-dimensional

subspace of TPM on which the index form of every £, */is négative definite.
It also follows from dim G k +1 that Q Q&apos;. To prove this it suffices to

show that f(M) C\H czG. Assume that /(M) H H is not contained in G. Then

every neighborhood of p in M contains an élément q such that f{q) e H - G,
since otherwise there would be a hyperplane in H that cuts /(M) D H into more
than two pièces which is impossible by tightness. There is a neighborhood V of p
such that F(q) is a regular value for every q e V, where F (Fu F^_^) is

defined as above. There is a curve q(t), 0&lt;f&lt;l, in V such that g(0)=/?,
q{\) eH- G and such that F~1(F(^(r))) can for every t be parameterized locally
around q(t) by a map f/(r) : Dk -» M (D* is the unit /c&apos;-disk) which is continuous
in t and such that U(t)(dDk) c {§, •/&lt;()}. The map f/(0) is a non-
nullhomologous relative singular cycle of the pair ({£, •/&lt;()}, {§, •/&lt;()}). On
the other hand (7(0) is homologous to (7(1) with image in {§, •/&lt;()} and hence

nullhomologous which is a contradiction. Thus /(M) n H c G.

(iv) We first prove that dimG&gt;A: + l. We know that H*(f~l(G))^0 for
some * &gt; 0 and that H*(M) -* H*(f~l(G)) is surjective for every *. We will show
that H*(f~~l(G)) 0 for * &gt; dim G which by the assumptions on the topology of
M implies that dim G ^ k + 1. To this end we construct on open manifold M of
the same dimension as G and embed f~l(G) into M. It then follows from the

gênerai Duality Theorem that H*(f~l(G)) 0 if * &gt; dim G.

We define the manifold M and the embedding of f~l(G) into M as follows:
For every point q in f~\G) we choose a neighborhood Uq of q on which / is

injective. We choose thèse neighborhoods so small that/is injective on Uqi U Ug2

if UqxC\ Uq^0. We choose an open neighborhood Vq of f(q) such that the
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connectée! component off~l(Vq) which contains/? lies in Up. This is possible since

/ is locally injective. Now let M be the set of équivalence classes in the disjoint
union of the family {Vq \ q ef~\G)} defined such that x eVqx and y e Vqi are

équivalent iff x —y and Uqi C\ Uq2^0. M has a canonical structure as an open
manifold of the same dimension as G and/induces an embedding of f~l(G) into
M. We hâve thus proved that dim G &gt; k + 1 and hence that dim G k +1 by

(iii).
We use similar arguments to prove that Qaf(M) and that f\f l(Q) is

injective. If a point y e Q is not in /(M), then we choose a hyperpiane R in G

supporting Q at y. The top*map f\f~1(R) is tight and consequently
H*(f~l(R))j=0 for some *&gt;0 since f(M)HR would otherwise be convex by
(3.3) and hence contain y. But on the other hand by arguments as above we see

that this * must be smaller than dim R &lt; dim G k 4-1 which implies that

H*(M)-+ H*(f~l(R)) cannot be surjective which is a contradiction. Thus we
hâve proved that Q af(M). Notice that we hâve proved that the top sets of Q are

cohomology points. This implies by (3.3) that / \f~~\Q) is injective.
It is only left to prove that Q is not nullhomologous in M or equivalently that

Hk(M)-^ Hk(Q) is surjective. By tightness, this is the same as to prove that

Hk(f-\G))~* Hk(Q) is surjective. This follows since Q is a retract of f~l(G).
The retraction can be defined exactly as the retraction in the proof of (3.3) using
that we hâve already proved that/is injective on f~1(Q) and that there is a point
close to p in the convex body bounded by Q which does not lie in the image of /
by the already proved part (v) of the lemma. ¦

4. Proofs of the theorems

We begin with the proof of Theorem D.

Proof of Theorem D. We will use in the proof that wk(M2k)j= 0 iff the
self-intersection number mod 2 of some /c-dimensional Z2-homology class is one.
This one sees as follows:

The Poincaré dual cohomology class a in Hk(M;Z2) of a homology class in

Hk(M;Z2) with self-intersection number one has the property that al) a is the
fundamental cohomology class of M. We review that the Wu class vk is defined

implicitly by the condition ()8 Uj8, p.) (p Uvk, jl) for every PeHk(MyZ2)
where fi is the fundamental class of M, see [MS], p. 132. The Wu class vk of M is

clearly non-zero and hence by Wu&apos;s formula for the k-th Stiefel-Whitney class,
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see [MS], p. 132,

we hâve that wk(M) =f 0. Reversing the arguments proves the converse.

(i) We prove (i) by showing that there is a convex cycle with self-intersection
number one if the codimension is greater than two. Let p e M be a non-
degenerate convex point and let Kp be the cône in Np spanned by {a(X, X) \ X e

TPM) as in (3.6). Let h0 be a hyperplane in Np that supports Kp. We want to
show that h0 meets Kp in a ray. Let exp (Kp) be the set of such hyperplanes. Then

Kp is the closure of the convex hull of the rays h H Kp for h e exp (Kp); in symbols
Kp ^(U/ieexpCKp) h fl Kp), see [Le], p. 44. Thus there is for every hyperplane h0

a séquence {ht H Kp) of rays, ht e exp (Kp), that converges to a ray R in h0 H Kp.
It follows from (3.4) and (3.5) that %h is fc-dimensional for every h e exp (Kp).
Thus it follows that dim {X | a(X, X)eR}&gt;k. If R±hQnK, then we would
hâve that dim %ho&gt; k which is impossible by (3.4) and (3.5). It follows that every
hyperplane of support h of Kp satisfies the hypothèses of (3.6) and thèse

hyperplanes correspond continuously and one-to-one to the éléments of a sphère
S&apos;&quot;2. Thus for every such h we hâve a convex cycle Qh and any two only meet in p
and there they meet transversally which shows that they are représentatives of
non-trivial homology classes in Hk{M, Z2). (We hâve not claimed that Qh dépends

continuously on h, but this seems likely.) There are only finitely many such

classes, but an infinity of convex cycles, which shows that at least two of them
must be homologous. This proves part (i).

(ii) If wk(M2k) ± 0, then the A&gt;th Stiefel-Whitney class of the normal bundle
cannot vanish and the codimension loi fis at least k. On the other hand / &lt; k + 2

by a theorem of Kuiper [Ku2], p. 231. We will prove further below that /=f k if
k&gt;2.

Next we prove that k 1, 2, 4 or 8 if wk(M2k) =f 0. (Instead of using Lemma

(3.6) about the existence of convex cycles we could argue without using tightness
as in the proof of Theorem 3 in [Mi].) We will assume that k &gt; 3 and prove that it
is either 4 or 8. If k ^ 3, then we hâve proved that the codimension / &gt; /c &gt; 3 and

we can use the arguments in (i) to find a convex cycle Q with self-intersection
number one. If oc eHk(M2k, Z2) is the Poincaré dual of Qf then we hâve that

a U a is the fundamental cohomology class of M2k. Hence we see that

(vk, [Q]) (vk, orfl jû) (vk U a, p,) (aU &lt;xy fi) 1 and since wk(M) vk it
follows that wk(M) \ Q does not vanish. Thus we hâve proved that TM \ Q has

non-trivial k-th Stiefel-Whitney class. Theorem 1 in [Mi] says that if an

Om-bundle over a A&gt;sphere has non-vanishing A&gt;th Stiefel-Whitney class, then
k 1, 2, 4 or 8.
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Now assume that k &gt; 2 and k /. Then we hâve just proved that there is a

convex cycle Q such that TM \ Q has a non-trivial A&gt;th Stiefel-Whitney class. Any
neighborhood U of Q therefore satisfies wk(U)^Q. Let H be a supporting
hyperplane of/(M) that contains Q. Then H contains ail tangent planes TPM at

points p e Q. Thus there is a neighborhood U of Q such that jï °f: U -* H is an

immersion, where jï is the orthogonal projection. This is a contradiction since

wk(U) =f 0 and the codimension of jt °/is /: - 1.

Finally we prove that the intersection form décomposes as(±l)©/3if&amp;&gt;l.

If k 2, then this follows from Donaldson&apos;s theorem [Do 1] and the classification
of indefinite inner product spaces [MH]. If k &gt; 2, then / &gt; 2 and there is a convex
cycle with self-intersection number ±1. Hence the intersection form
décomposes. ¦

Proof of Theorem A. The cohomology ring of M2k is of course completely
determined if we know its intersection form. If k is odd, then the intersection
form is skew (symplectic). By the Corollary on p. 7 in [MH] there is a basis for
Hk(M2k; Z) such that the intersection form takes the form

0 -
1 0&gt;-&lt; ~l)

Thus M2k has the same cohomology ring as (Sk x 5*) # • • • # (5* x 5*) for k
odd.

If k is even, then the intersection form is symmetric. We first prove that the

Pontrjagin classes of M2k vanish. Let f:M2k-*E2k+l be a substantial tight
immersion of M2k. Then it follows from Theorem D that / 1 or 2. If / 1, then
the Pontrjagin classes of the normal bundle of course vanish. If / 2, then we caç
consider the normal bundle to be a complex Une bundle. The Chern classes of this
line bundle vanish since k &gt; 2, i.e. H2(M2k;Z) 0. Thus the Pontrjagin classes of
the normal bundle vanish also in this case since they are a product in the Chern
classes; see [MS], p. 177. Now it follows that the Pontrjagin classes of M2k ail
vanish since the cohomology of M2k does not hâve torsion; see [MS], p. 175. This
implies by the Signature Theorem that the signature of M2k is 0. The intersection
form of M2k is of type II since wk(M2k) - 0 and it is indefinite since its signature is

0. By the classification of indefinite symmetric bilinear forms we thus hâve that
the intersection form of M2k is équivalent to

(° l)
\1 0/ ¦¦¦&lt;

This is the intersection form of (S* x S*) # • • • # (5* x Sk) for k even.
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Proof of Theorem B. We use the methods of Kulkarni and Wood in [KW] to

prove the theorem. We only sketch the proof and refer to section 12 of [KW] for
more détails and références to the literature.

We set k 21.

Since k &gt; 2 we can by results of Whitney and Haefliger and Theorem A find
embeddings of sphères into M2k which represent a basis of Hk{M2k\ Z) and hâve

the property that each sphère only meets one another sphère and this one it only
meets once and transversally. Assume that the normal bundles of ail thèse

sphères are trivial. Let Sx and 52 be two such sphères with a common point. Then

^ U 52 has a neighborhood which is diffeomorphic to a neighborhood of the one
point union Sk v S* in 5* x Sk whose complément is a 2/c-dimensional bail. Hence

one can décompose M2k as claimed in the theorem.
Thus it is left to prove that the normal bundles are trivial. Let f:M2k —» E2k+I

be a substantial tight immersion. By Theorem D, /&lt;2. The normal bundle of /
restricted to the above embeddings of sphères are ail trivial since k &gt; 2. Thus one
sees that the normal bundles in M2k of the sphères are stably trivial. The Euler
characteristic of the normal bundles is 0 since the self-intersection numbers of the

sphères are 0. For k even (and k 1, 3, 7) stably trivial /c-plane bundles over Sk

are trivial if their Euler characteristic is 0. This finishes the proof of the
theorem. ¦

Proof of Theorem C. (i) We assume that the codimension / 2. Let p be a

non-degenerate convex point and let Qx and Q2 be the convex cycles through p
which exist by (3.7). One sees easily that p can be chosen so that the convex
cycles through neighboring points are homologous to Qx and Q2 respectively. (If
it turns out that the convex cycles dépend continuously on the supporting
hyperplane, then this is of course always the case; see also a remark in the proof
of Theorem D.) The self-intersection numbers of Qx and Q2 are 0 or 1 since two
différent convex cycles which meet intersect in a convex top set contained in the

tangent plane of any of the common points. The projection of a sufficiently small

neighborhood Ux of Qx into the supporting hyperplane containing Qx is a

codimension 1 immersion and hence it follows that w2(Ux) vanishes. Similarly one
sees that w2(U2) vanishes for a sufficiently small neighborhood U2 of Q2. By (3.7)
the cycles Qx and Q2 are smooth submanifolds around p. They can be smoothed

everywhere to give smooth submanifolds of M which are diffeomorphic to S* and

arbitrarily close to Qx and Q2. (This can e.g. be done as follows: One first notices
that no supporting hyperplane in (Qx) of Qx meets the normal space of/. Hence
&lt;2i can first be approximated in the Euclidean space (Qx) by a Cx convex
hypersurface and then regularly projected into f(Ux) — Ux. The same can be done
with Q2.) We dénote thèse submanifolds also by Qx and Q2. The second
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Stiefel-Whitney classes of the normal bundles of Qx and Q2 in M vanish since

h»2((/i), w2(C/2), w2(Qi) and w2(Q2) vanish. The Euler numbers of the normal
bundles which coincide with the self-intersection numbers of Q{ and Q2 are
therefore even. By the above we therefore see that the Euler numbers of the
bundles are 0. By the classification of 2-plane (circle) bundles over S2 in [St] we
see that Qx and Q2 hâve trivial normal bundles in M. By arguments as in the

proof of Theorem B we can therefore split off S2 x S2.

It follows from the resuit of Hirsch quoted in the introduction that a

four-manifold which admits a (not necessarily tight) immersion into Eb has even
second Betti number.

(ii) We assume now that / &gt; 2. With the methods in part (i) of this proof and

in part (i) of the proof of Theorem D we find an embedding q&gt; of S2 into M whose
normal bundle has Euler characteristic one (or minus one, but then we change
the orientation). By the classification of 2-plane (circle) bundles over S2 in [St] we
see that the boundary of a tubular neighborhood of q&gt;(S2), considered as a circle
bundle over S2, is équivalent to the Hopf fibration. One can now remove the

tubular neighborhood and glue a four-cell instead to obtain a manifold N such

that M

Proof of the Corollary. Let M be an algebraic surface of even degree d &gt; 4 in
F3C without singularities. Then the second Stiefel-Whitney class w2(M) vanishes.

(w2(M) is the mod 2 réduction of the first Chern class cx{M) (4 — d)g, where g is

the Kâhler class induced from fVC) If M admits a tight immersion into a

Euclidean space, then the codimension / is 1 or 2 by Theorem D. Codimension
/ 1 can be excluded for d &gt; 4 since the Pontrjagin class p\(M) =£ 0. Thus / 2

and we can use Theorem C to décompose M as (S2 x S2) # N{. The intersection
form of M is

ra&gt;0,

since w2(M) 0 and the signature of M does not vanish for d &gt; 4. Hence the

intersection form of ty is

/0 1\

\1 0/

Either Nx cannot be tightly immersed or it décomposes as (S2 x S2) # N2 where
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the intersection form of N2 is

(0

We can continue this until we arrive at a manifold N, which does not admit a tight
immersion. This cannot take more than n steps since a manifold Nn with
intersection form mEs cannot split as (S2 x S2) # Nn+l. (Of course we will stop after
at least n - 1 steps by Donaldson&apos;s Theorem, but we do not need this difficult
resuit.) The manifold N, which does not admit a tight immersion has the same
signature as the algebraic surface M of degree d that we began with, î.e.
o(Nt) (l/3)d(4 — d2). Two différent even degrees &gt;4 thus give two différent
examples of manifolds that cannot be tightly immersed.

Now assume that M is the Kummer surface, i.e. d 4. Then ît follows from
Donaldson&apos;s resuit in [Do 2] that M cannot be decomposed as (S2 x S2) # N4.

Hence there cannot exist a tight immersion of the Kummer surface. ¦
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