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Abelian normal subgroups of two-knot groups

Jonathan A. Hillman

Introduction

Using the algebraic classification of high dimensional knot groups, Hausmann
and Kervaire hâve shown that any finitely generated abelian group is the centre of
some n-knot group, for each n &gt; 3 [21]. On the other hand the only 1-knots
whose groups hâve nontrivial abelian normal subgroups are the torus knots. (For
the commutator subgroup can contain no nontrivial abelian normal subgroup [38:

Chapter IV.5], so any such subgroup must map 1-1 to the abelianization and be

central. Now use [8]). In [25] we considered the remaining case of 2-knots,
showing that the centre must hâve rank at most 2, but a gap was later found in
the key lemma of that paper. Hère we shall repair that gap and treat the more
gênerai question suggested by our title. We shall show that if a 2-knot group
contains a torsion free abelian normal subgroup of rank r &gt; 1 then the group is an
orientable Poincaré duality group of formai dimension 4 and so r &lt; 4. There are
only two such groups with r 4, while the groups with r 3 are just the groups of
the fibred 2-knots constructed by Cappell in [9]. Many examples may be

constructed with r 1 or 2 by twist spinning classical knots; our results in thèse

cases are less conclusive, but suggest that r 2 arises only by generalized twist
spinning [40] torus knots. However there are examples of 2-knot groups with rank
1 abelian normal subgroups which cannot be realized by fibred knots [15,52]. An
example due to Fox [15] has commutator subgroup the dyadic rationals; we show
that any virtually solvable 2-knot group must be either virtually poly-Z or Fox&apos;s

group or admit no nontrivial torsion free abelian normal subgroup. Ail the
virtually poly-Z groups allowed by our theorems may be realized by fibred 2-knots.

Our argument is based on the idea used in [24] and [25] of embedding the

group ring Z[G] into a larger ring R in which an annihilator for the augmentation
module becomes invertible and for which nontrivial stably free R -modules hâve
well-defined strictly positive rank, with rank Rn n. (Rings with the latter
property were called &quot;hopfian&quot; in [25]). Under suitable hypothèses on the group
G, Poincaré duality then implies that the equivariant homology of a 4-manifold
with fundamental group G is concentrated in degree 2 and is stably free as an
/{-module. Its rank may be computed by an Euler characteristic counting
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argument If the Euler charactenstic îs 0 the manifold îs asphencal and so G îs a

Poincaré duahty group The remainder of our argument rests upon properties of
groups with small cohomological dimension and large centre (pnncipally
Theorem 8 8 of [5]) and spécial features of certain matnx groups

There are six numbered sections The first gives some notation and terminol-

ogy from group theory and the second states some of the results on asphencity
from [25] that may be recovered in strengthened form by means of a resuit of
Rosset [43] The next three sections treat the cases when the maximal rank of an
abehan normal subgroup îs greater than 2, equal to 2 or 1 respectively In the last

section the preceding results are apphed to the considération of virtually solvable
2-knot groups and ît îs indicated how most such groups can be reahzed by (fibred)
2-knots

I am grateful to G P Scott, and to R Geoghegan and M Mihahk for their
help with Theorems 8 and 10 respectively

§1. Notation and terminology

We shall say that a torsion free abehan normal subgroup of a group G îs

maximal, if ît has maximal rank and îs not properly contained m any other such

subgroup Note that if G contams an abehan normal subgroup which îs either

finitely generated or central, then ît contams one of the same rank which îs

torsion free
The centralizer of a normal subgroup A of G îs the kernel of the

homomorphism from G to Aut (A) determined by the conjugation action of G on
A, and shall be denoted CG(A) (We shall wnte C(G) for CG(G), the centre of
G) If A îs abehan then ît îs a central subgroup of CG(A)

A group îs a PD(n+) group if ît îs a finitely présentable (orientable) Poincaré

duahty group of formai dimension n A group îs polycyclic if ît has a composition
séries with cychc factors, the number of infinité cychc factors îs then independent
of the composition séries chosen, and îs called the Hirsch length of the group
[42 5 4 13] More generally we may define the Hirsch length of any solvable

group as the sum of the ranks of the factors of îts denved séries A group îs a

solvable PDn group if and only if ît îs a torsion free polycyclic group of Hirsch
length n [5 Theorem 9 23]

An automorphism &lt;f) of a group K îs méridional if the normal closure in K of
{k~](p(k) | A: in AT} îs K, and then the abehanization of the HNN extension K%

presented by (K, 11 tkt~l &lt;p(k) for k in K) îs infinité cychc The automorphism
of an w-knot commutator subgroup induced by conjugation by a mendian îs

méridional Two méridional automorphisms (p and \\) détermine isomorphic HNN
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extensions (K% « K^) if and only if &lt;f&gt; is conjugate to \p±l in Out(/C), the group of
outer automorphisms of K.

A weight class for a group is a conjugacy class whose normal closure is the
whole group. The group is then said to hâve weight 1. A group G is a high
dimensional knot group if it is finitely présentable, has weight 1, //i(G;Z)~Z
and H2(G; Z) 0 [32]. Two éléments of the same weight class of such a group G
détermine méridional automorphisms of G&apos; which are conjugate in Aut(G&apos;) by
an inner automorphism of G&apos;.

The subquotient G7G&quot; may be considered as a (G/G&apos;)-module, via the

conjugation action of G on G&apos;. If G is a knot group, a choice of meridians for the
knot détermines an isomorphism Z[G/G&apos;]^A-Z[t91~1]. The module G7G&quot; is

then a finitely generated A-torsion module on which t — 1 acts invertibly. In
particular the annihilator idéal Ann(G7G&quot;) is nonzero. The Alexander polyno-
mial of G is the characteristic polynomial of the meridian acting on //,(G&apos;;Q)

and is an élément A of A such that |A(1)| 1. It générâtes a proper idéal in A
(i.e. is not of the form ±tn) if and only if G&apos;IG&quot; is infinité. The highest common
factor of the annihilator idéal divides the Alexander polynomial. (See Chapters
III and IV of [26]).

§2. Rosset&apos;s lemma and asphericity

The proof of the key lemma of [25] was fallacious, as pointed out by M. N.
Dyer (cf. [25 bis]), and the results became moot for several years. Fortunately,
however, Rosset has since provided a correct proof of a closely related resuit that

may be used instead. We shall restate Rosset&apos;s resuit as:

ROSSET&apos;S LEMMA [43]. Let G be a group which contains a nontrivial
torsion free abelian normal subgroup A. Let S be the multiplicative system

Z[A]\{0} in Z[G]. Then the (noncentrall) localization R S~lZ[G] exists and has
the property that nontrivial finitely generated stably free R-modules hâve welU

defined strictly positive rank, with rank Rn n. Furthermore R is flat as a

Z[G]-module and R®Z{G]Z 0.

The prototype of such a resuit was given by Kaplansky who showed that for
any group G the group ring Z[G] has this &quot;hopfian&quot; property [31: page 122]. By
means of this lemma we may redeem the results of [25] and restate some of them
in the following strengthened forms. (We shall not repeat the proofs as, apart
from using Rosset&apos;s lemma instead of the key lemma of [25], they are otherwise
unchanged).
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THEOREM 1. Let X be a finite 2-dimensional cell complex with fundamental
group containing a nontrivial torsion free abelian normal subgroup. Then

X(X) &gt; 0, and x(X) 0 if and only if X is aspherical.

The assumption that X be 2-dimensional is not needed in order to show that X
aspherical implies x(AT) 0; this is in fact Rosset&apos;s application of his lemma.
Gottlieb obtained the first such resuit under the further assumption that

C(jïi(X)) =f 1 [19]. Kaplansky&apos;s lemma has been used several times in a related

way in connection with the Whitehead conjecture on the asphericity of
subcomplexes of 2-dimensional K(jt, 1) complexes. (See [7], for instance).

COROLLARY. If afinitely présentable group G contains a nontrivial torsion
free abelian normal subgroup then it has deficiency at most 1. //def G 1 and G is

neither Z nor Z2 then G has cohomological dimension 2 and the centre of G is

infinité cyclic or trivial.

This partially settles (and goes beyond) a conjecture of Murasugi, that the
centre of a finitely présentable group of deficiency &gt;1 other than Z2 be infinité
cyclic or tirival, and be trivial if the group has deficiency &gt;2 [37]. Some of the

arguments of this paper can be seen in microcosm in the foliowing discussion. If
c.d. G 2 and G has an abelian normal subgroup A =f 1, either A « Z and so

[G:CG(A)]&lt;2 or c.d.A c.d.CG(A) 2 and so CG(A) is abelian, by [5:
Theorem 8.8]. If A has rank 1 then Aut (A) is abelian so Gf œCg(A) and G is

solvable. (Such groups hâve been classified by Gildenhuys [18]). Otherwise
A^Z2^CG(A). As CG(A) with an élément of infinité order modulo CG(A)
would generate a subgroup of cohomological dimension 3, which is impossible,
G/CG(A) must be a torsion group, and so finite, as it is a subgroup of
Aut (A) « GL(2, Z), by [31 : page 105]. Since G is torsion free it must be Z2 or the
Klein bottle group.

THEOREM 2. Let M be a closed 4-manifold with fundamental group G such

that G contains a nontrivial torsion free abelian normal subgroup and

HS{G\ Z[G]) 0 for s &lt; 2. Then M is aspherical if and only if x(M) 0.

§3. Rank greater than 2

Let K:S2-*S4 be a 2-knot with group G =n1(S4\K(S2)), and let M be the
closed orientable 4-manifold obtained from S4 by surgery on K. Then nx{M) G
and x(M) 0. We shall show that if G contains a torsion free abelian normal
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subgroup of sufficiently large rank then the cohomological hypothèses of
Theorem 2 also hold, and so M is aspherical.

LEMMA. Let A be a torsion free abelian group of rank r and M a free
A-module, M Z[A](l) say. Then H&apos;(A;M) 0 ifi&lt;r. If A is finitely generated
then Hr{A\M) « Z(/). If&gt;&lt; oo but A is not finitely generated then Hr(A\ M) 0.

Proof Let N be a free abelian subgroup of A of finite rank s ^ r. If r &lt; oo we

may assume rank iV r and if A is finitely generated we may take N — A. Let
Q -AIN. Since N is an FP group and M is free as an Af-module, Hl(N;M)^
//&apos;(JV; Z[N]) ®Z[N]M for ail i [5 : Proposition 2.4]. Therefore Hl(N; M) 0 if i &lt; s

and HS(N;M)~Z®Z[N]M~Z[Q]{1). If A is not finitely generated then Q is

infinité and so H°(Q;Z[Q]{1)) 0 [5:Lemma 8.1]. The lemma now follows on
applying the LHS spectral séquence HP(Q; Hq(N; M))=&gt; Hp+q(A; M).

THEOREM 3. Let G be a 2-knot group with a torsion free abelian normal
subgroup A of rank r &gt; 2. Then G is a finitely présentable PD% group, and so
r&lt;4.

Proof Consider the LHS spectral séquence Ep2q= Hp(G/A;Hq(A;Z[G]))=&gt;
Hp+q(G; Z[G]). By the lemma, if r &gt; 3 or if r 2 and A is not finitely generated then
Ep2q 0foiq&lt;2.lfA~Z2 then Ep2q 0 for q ^ 1 and Ep22 HP(G/A;Z[G/A]).
But no group containing Z2 as a subgroup of finite index can hâve infinité
cyclic abelianization (as a knot group must hâve) and so G/A must be infinité.
Therefore Ef H°Ig/A,Z[G/A]) 0. In ail cases we conclude that
Hs(G,Z[G]) 0 for s&lt;2 and so G is a PDÎ group by Theorem 2 and the
remarks at the beginning of this section. In particular rank A &lt; c.d. A &lt; 4.

In our next resuit we shall détermine the 2-knot groups with such subgroups A
of rank ^3. (We shall consider the case r 2 in §4).

THEOREM 4. Let G be a 2-knot group with a maximal torsion free abelian
normal subgroup A of rank r&gt;2. Then either

(i) A CG(A) ~G&apos;~Z3 and the méridional map is given by a matrix C in

SL(3, Z) such that |det(C - /)| 1; or
(ii) &gt;4 ^Z4 and Gs5sG(+l) or G(-l), where G(e) is presented by

(x, y, 11 xy2x~vy2 1, m&quot;1 (xy)~ey tyt~l x£), for e ±1.

Proof. By Theorem 3, the manifold M obtained by surgery on a knot with

group G is aspherical. Therefore the covering space MA determined by the
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subgroup A îs also asphencal Hence cdv4&lt;4, with equahty if and only if the

4-manifold MA îs also closed, if and only if [G A] &lt; ^, m which case A îs finitely
generated Moreover r&lt;cd A, with equahty if and only if A îs finitely
generated, and so isomorphic to Zr, by [5 Theorem 7 14] Therefore r&lt;4, and

r 4 implies that A ~ Z4 and [G A] &lt; x
If r 3 thèse conditions imply that /l ~ I? The quotient CM must contain an

élément of infinité order For otherwise the image of G in Aut(/1) ~ GL(3, Z)
under the map determined by conjugation îs a finitely generated torsion group,
and so fimte by [31 page 105] Since the kernel of this map îs CG(A), we then
hâve [G C(,(A)]&lt;*, so cd CC,(A) 4 By [5 Theorem 8 8], CG(A)&apos; must be

free By assumption r 3, so CG(A)f j= 1 If CG(A)f~Z then G îs solvable-by-
finite, therefore polycychc-by-finite and so must contain a normal subgroup B of
fimte index which îs a poly-Z group [42,5 4 15] Then BHCG(A) îs a normal

poly-Z subgroup of fimte index in G, and so of Hirsch length 4, which contains
BOA as a central subgroup Smce [A BHA]&lt;[G B] Oc, we must hâve

Z?n,4~Z\ from which ît follows that B must be abelian, contrary to the

assumption that r 3 If CG(A)&apos; îs a nonabehan free group then A D CG(A)f l
and so CG(A)&apos; maps injectively to G/A Thus there îs an élément g in G whose

image in G/A has infinité order, and so the subgroup of G generated by A U {g}
has cohomological dimension 4, and therefore îs of fimte index in G

Thus if r 3 or 4 the group G îs a solvable-by-finite PDj-group, hence

(poly-Z)-by-fimte of Hirsch length 4 Therefore G&apos; îs (poly-Z)-by-fimte of Hirsch

length 3 We claim that G&apos; îs virtually abelian This îs clear if A D G&apos; ^Z3, so

suppose that A H G&apos; ^ Z2 Then A H G&apos; îs normal in G, and G/CG(v4 flC) isa
solvable-by-finite subgroup of GL(2, Z) with cychc abehanization Therefore ît îs

either fimte (cychc or S?) or infinité cychc In either case [G&apos; CG (A D G&apos;)] &lt; ^
Since CG(AHG&apos;) then has Hirsch length 3, and contains Z2 as a central

subgroup, ît must be virtually abelian, and so the same îs true of G&apos;

Now a torsion free group which contains Z3 as a normal subgroup of fimte
index îs the fundamental group of a flat 3-mamfold On examining the hsts in [50,

pages 117,120] we see that only the groups G^Z3 and G6 can occur as knot
commutator subgroups (For the other groups admit no méridional automorph-
îsms, as they hâve abehamzations of the form Z © (fimte) or (free) © (Z/2Z))

If G&apos; « Z3 and r 4, then some power of a mendian would commute with G&apos;

But the charactenstic polynomial of an automorphism of Z3 of fimte order must
be a product of cyclotomic polynomials, of total degree 3, and therefore must
hâve t — 1 as a factor Since such an automorphism cannot be méridional, we
must hâve r 3 when G&apos;^Z3 The further détails m this case are taken from
[24]

Thus to détermine the possibilités for G when r 4 we must find the
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conjugacy classes in Out(G6) which contain méridional automorphisms. The

group G6 has a présentation (x, y, z \xy2x~ly2 yx2y~lx2 1, z=xy). The
subgroup A6 generated by {x2, y2, z2} is a maximal abelian normal subgroup,
isomorphic to Z3, with G6/A6 « (Z/2Z)2. Define automorphisms i and y of G6

by *(*)=.)&gt;&gt; i(y) x (hence 1(2) =jc~2y2z&quot;1 and i2 id) and j(x)=xy, j(y) x
(hence j(z) xyx z2y~l and y&apos;6=l). Then the images of i and y generate
Aut (G6/i46) « GL(2, F2) « 53. Let // be the subgroup of Aut (G6) generated by
the automorphisms listed in the following table.

Automorphism

a

y
ô

€

X

x~l
X

X

X

y2x
z2x

y

y
y~l
z2y

x2y

y
z2y

Effect on
2

jc&quot;2z

y2*
z

&apos;

x2z

y2z

Z

x2

-1
1

1

1

1

T-H

y2

î
-î

î
î
î
î

z2

1

1

-1
1

1

1

(Note that thèse automorphisms act on A6 Z • x2 © Z • y2 © Z • z2 via diagonal
matrices; the last three columns of the table give the diagonal entries of the

matrices). Then H ker (:Aut (G6)—» Aut (GJA6)). For an automorphism induc-

ing the identity on G6/A6 must send x to x2py2qz2rx, y to x^y^z^y and hence z to
x2(p+s)y2(q-t)z2(r-u)Zt The squares of these éléments are x*p+2, /r+2 and 24&lt;&apos;-«&gt;+2,

which generate A6 if and only if p -1 or 0, f -1 or 0 and r m - 1 or u.

Composing such an automorphism appropriately with a, /3 and y we may achieve

p t 0 and r w. Then by composing with powers of ô, e and (f&gt; we may obtain
the identity automorphism. These automorphisms satisfy &lt;*2 /?2=y2=l and
each pair commutes except for aô ô~lay fie e~xfi and y&lt;p ^&apos;V- The inner
automorphisms are contained in //, and are generated by /3yô (conjugation by x)
and aye&lt;f&gt; (conjugation by y). Therefore H H/lnn (G6) is a group of exponent 2

generated by the images of a, j3, y and e. Since the images of these

éléments in Aut (G6/G&apos;6) - GL(2, Z/4Z) are (&quot;J J), (J _J), (J _^

and 1 respectively (with respect to the basis {xG&apos;6, yGf6} for GJGf6) and

these matrices generate a group of order 16, we must hâve H « (Z/2Z)4. Since in
Aut (G6) we hâve y3 otfiye, yïyï ô, iar j3i, &lt;^)/y yi, joc yy, yj3 &lt;5ay, yy jSey
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and je &lt;5y, we find that Out (G6) is a group of order 96, with a présentation
(i, j&gt; oc, fi, y, e | a2 fi1 y2 £2 i2 y6 1, or, /?, y, e commute, ioc 0i,
iy cra, y a y/, y/? ar/3yy, y y pej, je /3y/, p ocfiye and yïyï )3y). There is

an exact séquence

1-»(Z/2Z)4-+Out (G6)-&gt;S,-&gt; 1.

If ip is a méridional automorphism of G6, then it must induce a méridional
automorphism of GJA6, and so we must hâve ip =y or y&quot;1 modulo H. Conversely
any such automorphism is méridional, for it implies that G6 modulo the normal
closure of {g~ltp(g) \ g in G6} is a perfect group, and therefore trivial, since G6 is

solvable. There are 32 éléments in the cosets jHUj~lH of Out(G6). The
centralizer of y in Out (G6) is generated by afi and y, and has order 12. The
distinct cosets of this centralizer in Out (G6) are represented by
{1, a, y, ay, i, ia, iy, iay}. Conjugating y and y&quot;1 by thèse éléments we get 16

distinct éléments of jH Uj~lH, whichall give rise to the group with présentation

(x, y, 11 xy2x~ly2= 1, txt~l =xy, tyt~l -x)

However this group cannot be a PD% group, as already the subgroup generated
by {x2, y2, z2y t) is nonorientable. The éléments ja and j/3 also hâve centralizers
of order 12 and their conjugates exhaust the remaining 16 éléments of jH Uj~lH.
Each of ja and y/? is conjugate to its inverse (via /), and so the groups G(-hl) and

G(—1) that they give rise to are distinct. Moreover thèse automorphisms are
orientation preserving on A6 and hence on G6 (in fact ja (hxy/you)2) and so

G(+1) and G(-l) are PDt groups.
Finally in both cases the subgroup generated by A6U {t6} is an abelian normal

subgroup of rank 4.

As the characteristic polynomial of a méridional automorphism of Z3 must be

irreducible and not cyclotomic the only nontrivial abelian normal subgroup of a

knot group G with G&apos; «Z3 is G&apos; itself. In each of the groups G(+l) and G(-l)
the subgroup A6 is an abelian normal subgroup of rank 3. Since the characteristic

polynomial of t acting on the subgroup A6 of G(e) is X3 - 1, the only candidates

for normal subgroups of rank &lt;3 contained in A6 are (essentially) (t - l)A6,
generated by {x2y2y x2z~2} and (t2 +1 4- l)Aby generated by {x2y~2z2}. It is easily

seen that neither of thèse groups is even normal in G&apos;. Therefore any abelian

normal subgroup B of G(e) such that BnAà has rank less than 3 must map
injectively to GIG&apos; and so hâve rank 1. Such a subgroup must be central.
However the centre of G (e) is trivial. For if tkg (with g in G(e)f « G6) is central,
then g commutes with t, and so g2 in &gt;46 is invariant under y/?. Hence
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g2 (x2y~2z2)m for some m in Z. Since t6kgb (tkg)6 is also central, the

automorphism (jp)6k must be conjugation by g6, i.e. by a power of x2y~2z2. But
(jp)6(x) y~2z4x, (jp)6(y) x4z4y and (/0)6(z) =y-2jc&quot;4z. Therefore (/W6&quot;*

y&quot;2&quot;z4njt, etc. Since (jc2y~2z2fjc(jc2y~2z2)~p =y-4pz4/&gt;jc, etc., no nontrivial power
of jp can be conjugation by a power of x2y~2z2. Hence A; 0. But then g is

central in G(e)f ~ G6, and so g 1. Thus G(e) has trivial centre.
Each of the groups allowed by Theorem 4 is the group of some fibred 2-knot,

as we shall now show. (Recall that the groups Z3 and G6 are the fundamental

groups of flat 3-manifolds, which are in particular Seifert fibred. Note also that
the assumption in Theorem 5 that G be a PDt group is redundant, except
perhaps when Hl(G&apos;;Z/2Z) 0 [24]).

THEOREM 5. Let G be a 2-knot group which is a PDÎ group such that G&apos; is

the fundamental group of a closed aspherical 3-manifold M(G&apos;) which is either
Seifert fibred or sufficiently large. Then G is the group of a fibred 2-knot.

Proof The manifold M (G&apos;) must be orientable and the méridional
automorphism orientation preserving, since G is a PD^ group. The méridional (outer)
automorphism may be realized by a self homotopy équivalence of the aspherical
manifold M(G&apos;) and therefore by a self homeomorphism, cç say (by [13] or [48]).
We may assume that &lt;p fixes a point of M{Gf). A fibred knot with group G can

now be constructeM by surgery on a cross section of the mapping torus of q&gt;&gt; using
[16] to recognize the resulting homotopy sphère as S4.

§4. Rank 2

We shall now suppose that the maximal rank of a torsion free abelian normal
subgroup is 2. Although we hâve not been able to eliminate the possibilities that
i4cG&apos;or that A be not finitely generated, our results suggest that G must be the

group of a generalized twist spun torus knot. We shall use repeatedly in this
section the fact that the subgroup 5L(2, Z)&apos; of GL(2, Z) is a finitely generated
free normal subgroup and the quotient group GL(2, Z)/5L(2, Z)&apos; is £&gt;12, the
dihedral group of order 24. (See [42: Section 6.2]).

THEOREM 6. Let G be a 2-knot group with a torsion free abelian normal
subgroup A of rank 2, such that AfeG&apos;. Then G is a PDt group, [G : CG(A)] &lt; 2

and G&apos; is a PD$ group with non-trivial centre. If G&apos;IG&quot; is infinité then A^Z2 and
G is the group of a fibred 2-knot.
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Proof The group G îs a PDÎ group by Theorem 3 The intersection A n G&apos;

îs a rank 1 abelian normal subgroup of G The automorphisms of A preserving
such a subgroup form a group isomorphic to a subgroup of lower tnangular 2x2
matrices with rational coefficients, which must be metabehan Therefore G&quot;ç

CO(A), and if CG(A) îs solvable, G îs solvable and so polycychc If A ^Z2 then

G/CG(A) îs a metabehan subgroup of GL(2, Z) with finite cychc abehanization,
and so finite The group G/Ca(A) îs also finite if A îs not finitely generated, for
otherwise c d Q,(v4) 3 c d A, so CG(A) îs abelian by [5 Theorem 8 8], hence

G would be polycychc and so A finitely generated, contrary to assumption But a

finite lower tnangular subgroup of 5L(2, Q) with cychc abehanization must hâve

order at most 2 Thus [G CG(A)]&lt;2, so G&apos;çQ^) and A il G&apos; îs central in
G&apos; The subgroup H of G generated by A U G&apos; has finite index in G and so îs a

PDt group Smce A îs central in this group and maps onto HIGf «Z, we hâve

H ~ G&apos; x Z, and so G&apos; îs a PDt group Now a PD3 group with nontnvial centre
and infinité abehanization îs the fundamental group of a Seifert fibred 3-mamfold
[27] In particular îts central subgroups are finitely generated Therefore A « Z2,

since A H G &apos; has rank 1 The final assertion follows from Theorem 5

We do not know whether A need be central m G, nor whether ît need be

finitely generated However Theorem 6 apphes whenever C(G) has rank greater
than 1

THEOREM 7 The centre of a 2-knot group has rank &lt;2 // rank C(G) 2

then C(G)£G&apos;, so the conclusions of Theorem 6 hold for A C(G), while
C(G&apos;) Gf H C(G) and is contained in G&quot;

Proof The centre of G contains a torsion free subgroup of the same rank,
which is necessanly normal m G Suppose that rank C(G) &gt; 1 Then G is a PDf
group by Theorem 3 Since the groups in Theorem 4 hâve trivial centre, we must
hâve rank C(G) 2 Now G&apos; H C(G) is nontnvial and is contained in G&quot; smce
G/G&apos; -Z In particular G&apos; is nonabehan Since G&apos; is the fundamental group of
an open asphencal 4-manifold (the infinité cychc covenng of the mamfold M of
§3), we hâve cdG&apos;&lt;3 Since 4 cd G&lt;cdG&apos; + cd (G/Gf)&lt;3 + l, we hâve

c d G&apos; 3 But if c d G&apos; 3 and G&apos; contains a central subgroup isomorphic to
Z2 then either G&apos; is abelian or G&quot; is free [5 Theorem 8 8] Thus C(G) cannot be

contained in G&apos;, and so Theorem 6 apphes
Now c d C(G&apos;)^2 so either C(G&apos;)«Z2 or C{G&apos;) has rank 1 [5 Theorem

8 8] !n the former case G&quot; must be free, since G&apos; is nonabehan [îbid] Since
G&apos; nC(G)ŒG&quot;, we must then hâve G&quot;«Z and hence G&quot; is central in G&apos;

Therefore G1 is nilpotent and so a nonabehan poly-Z group of Hirsch number 3
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But such groups hâve centre Z. Thus C(Gf) is a rank 1 torsion free abelian group.
Since C(G&apos;) contains G&apos; D C(G) (which also has rank 1) and is characteristic in

G, it follows that C(G&apos;) is central in G; in other words C(G&apos;) G&apos; fl C(G) and

so must be contained in G&quot;.

The simplest example of a 2-knot whose group has centre Z2 is the

6-twist-spun trefoil [51]. The r-twist-spun (/?, #)-torus knot (for/? and q relatively
prime) is fibred with fibre the Brieskorn manifold M(p, q, r), and the rth power of
some meridian is central in the group G of this knot. If p~l + q&apos;1 + r~l &lt;l then

M(p, q&gt; r) is aspherical and G&apos; nx{M{py q, r)) has centre Z; if also r is odd the

conjugation action of G/G&apos; on Z C(G&apos;) must be trivial, and so C(G)«Z2.
(Can the assumption that r be odd be lifted?) Note that if p, q and r are pairwise
relatively prime then M(p, q, r) is an homology sphère and G « G&apos; x Z, for there
is then a central élément mapping to a generator of G/G&apos;.

More gênerai constructions based on torus knots lead to similar examples [40].
Does every 2-knot whose group has centre Z2 dérive thus from a torus knot? If
the 2-knot is already known to be a twist-spun 1-knot, then this is usually so. (I
am indebted to Scott for explaining how the manifold M in the next theorem
admits a Seifert fibration invariant under the group action).

THEOREM 8. Let G be the group of the q-twist spin of a l-knot K, and

suppose that G1 IG&quot; is infinité and C{G&apos;) « Z. Then K is a torus knot.

Proof. The subquotient G&apos;IG&quot; is the first homology of the q4old branched

cyclic cover M of S3, branched over K, which has order |rii&lt;i&lt;&lt;?^i(A&apos;)(£l)|,

where £ is a primitive qih root of unity [26:Chapter VIII]. Therefore G7G&quot;

infinité implies that q is not a prime power, and so q &gt; 6. If the manifold M were
a connected sum Mx# M2, then one of the summands, M2 say, would hâve to be

a homotopy sphère, since C{nx{M)) =£ 1. The knot K would décompose accord-

ingly, so that M2 would be a branched cyclic cover of S3, branched over a knot
summand of K [34]. But any such homotopy sphère must be standard, by the
Smith conjecture. Therefore M is irreducible, and also sufficiently large, and so

must be Seifert-fibred, of type H2xR, 5L(2, R), Nil, E3 or S2 x M. Now Meeks
and Scott hâve shown that any finite group action on a closed 3-manifold
admitting a géométrie structure of one of the first four of thèse types (or of type
Sol) may be assumed to préserve such a structure [33]; as none of Z, Z © (Z/2Z)
or (Z/2Z) * (Z/2Z) can be the commutator subgroup of a knot group the case
S2 x R does not arise hère. Préservation of such a structure implies that M admits

a Seifert fibration invariant under the action. (When M is flat, i.e. of type E3, one
must observe that the orbifold fundamental group of the orbifold M/(Z/qZ) sits
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in an exact séquence l-»Z3-*;r—»(?--&gt;l where Q is a finite subgroup of
5L(3, Z) mapping onto Z/qZ. Since q &gt; 4 the group Q must be cyclic or dihedral,
and so leaves fixed some nonzero vector in Z3, corresponding to an invariant
Seifert fibration on a 3-torus covering M, which passes to an invariant fibration on
M. Note that in fact we would hâve q 6).

Since q &gt; 2 the fixed circle (the branch set in M) must be a fibre of the Seifert
fibration which therefore passes to a Seifert fibration on the knot complément
S3\K. Thus the knot K must be a torus knot [8].

Remark. The condition C(G&apos;)«Z alone implies that q &gt; 1. Bedient [4] has

shown that when q 2 the knot is not uniquely determined by the associated
2-fold branched cyclic cover being a particular Seifert fibre space, and need not
be a torus knot. Can the condition &quot;G7G&quot; is infinité&quot; be relaxed to &quot;#&gt;3&quot;?

(Note that the examples of Bedient do not give counter-examples to the question
preceding Theorem 8, as the branch involution acts nontrivially on the centre of
the fundamental group of the branched cyclic cover).

There are no known examples of the types allowed by the next theorem,
which considers the remaining possibilities in the rank 2 case.

THEOREM 9. Let G be a 2-knot group with a maximal torsion free abelian
normal subgroup A of rank 2 such that AœG&apos;. Then G is a PD% group. IfA^Z2
then either

(i) CG{A) G&apos;, G&quot; is a nonabelian free group and Ann (G7G&quot;) is divisible
byoneoft2 + t-l,t2-t-lort2-3t + l; or

(ii) G/CG(A)~Z/6Z, G&quot; is a nonabelian free group and Ann(G7G&quot;) is

divisible by the cyclotomic polynomial &lt;f&gt;6 t2 — t + 1\ or
(iii) G/CG(A) D3;or
(iv) c.d. CG (A) c.d. CG(A) 3 but CG(A) &lt;£ G&apos;.

IfA is notfinitely gênerated then A CG(A).

Proof The group G is a finitely présentable PDf group by Theorem 3. If
A « Z2 then GICG{A) is isomorphic to a subgroup of GL(2, Z) and so has virtual
cohomological dimension &lt;1. Therefore c.d. CG{A) 3 or 4. If A is not finitely
generated then c.d. A - 3 so again c.d. CG(A) 3 or 4.

If A^G1 and A^Z2, then 2 c.d.^ &lt;c.d.CG-(^)&lt;c.d.G&apos;= 3. If
c.d.CG (A) 2 then CG (A) =A. Since CG(A)&apos; ç CG (A) this implies that CG(A)
is nilpotent. Since A is maximal and c.d.C^^) &gt;3, CG(A) cannot be abelian.
But nonabelian nilpotent groups of cohomological dimension 3 hâve infinité cyclic
centre, so c.d.CG(/*) 4. Therefore [G&apos; :CG(A)]&lt; [G:CG(A)] &lt;oc and so

c.d.CG(A) c.d.G&apos; 3, contradiction. Thus c.d.CG.(i4) 3 and so CG(Ay is a
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free group. If CG(A)f is abelian then the subgroup generated by A U CG{A)&apos; is

an abelian normal subgroup of G, so CG(A)f œA (by maximality of A). This
leads to a similar contradiction. Therefore CG(A)&apos; is a nonabelian free group,
and AnCG(Ay 1. (Similarly, if c.d.CG(^) 3 then CG(A)f is nonabelian

free).
If A~Z2 and Cg(A)œG&apos; then G/CG(A) is a subgroup of GL(2, Z) with

infinité cyclic abelianization. Such a group must be infinité cyclic. For any
subgroup of GL(2, Z) contains a free subgroup with quotient a subgroup of D12.

If the abelianization is cyclic then this quotient must be either cyclic (of order
dividing 12) or D3 53. But an extension of Z/nZ by a free group F(r) which has

infinité cyclic abelianization must be torsion free, and so free by [45.5.B.3]. If an
extension H of D3 by a free group F(s) has infinité cyclic abelianization, then we

may assume s &gt; 1 and that the only finite subgroups of H are isomorphic to Z/3Z.
Since F(s) has infinitely many ends, so does //, and therefore H^B*D or
B *c D or B *c, where C « Z/3Z, by [45:5.A. 10]. But if H « B * D then either B
or D would be perfect, which is clearly impossible for nontrivial subgroups of H.
If H B *c D or B *c then S (say) would hâve abelianization Z/3Z. Furthermore
S=fZ/3Z and fi&apos; would be free. But then M B7B&quot; would be a finitely
generated Z-torsion free module over the ring Z[C] Z[jc]/(jc3 - 1) such that
M (x - \)M. Such a module must be 0, contradicting B =£Z/3Z. Thus there is

no such group H, so CG(A) G&apos; and G&quot; CG{A)&apos; is a nonabelian free group.
Therefore A n G&quot; 1, so we may regard A as a sub-A-module of G&apos;/G&quot;. Since &gt;4

is Z-torsion free, Ann A is principal, generated by À say. Since A « Z2, the lowest
and highest coefficients of À are ±1, and the degree of A is at most 2. Since
G/G&apos; « Z, we must hâve |A(1)| 1. Therefore A t2 - 3t + 1, f2 + f - 1, f2 -1 - 1

or r2 - f H-1. But if A f2 -14-1, then f6 - 1 would annihilate A, and hence (since
G&apos; g CG(,4)) G/CG(,4) « Z/6Z.

If c.d.CG(A) 4 then G/CG(v4) is a finite subgroup of GL(2, Z) with cyclic
abelianization, and so GICG{A) ~ D3 or Z/nZ with n dividing 12. But if G/CG(A)
is cyclic then A is central in G&apos;. Arguing as before we hâve G&quot; is free and

A H G&quot; 1, and Ann A is generated by one of the four quadratic polynomials
given above. Since G/CG(A) has order dividing 12, A must divide t12 — 1.

Therefore A &lt;p6 f2 - t + 1 and hence G/CG(A) « Z/6Z.
If AçC and A&apos; is not finitely generated then c.d.^4 3 c.d.CG(^4) so

Co.(i4) i4 as before. If c.d.CG(v4) 4 then [G&apos;:A] [G:CG.(A)]&lt;
[G:CG(A)]&lt;*&gt; so G would be virtually metabelian, hence poly (Z or finite),
contradicting the assumption that A be not finitely generated. Thus c.d.CG(A) 3

and so A CG(A).

We remark finally that none of the cases of Theorem 9 can occur when G&apos; is a
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PD^ group, for otherwise CG (A) would hâve finite index in G&apos; by [46] and so

would also be a PD^ group, and therefore abehan, contradicting the maximahty
of A In particular thèse cases cannot occur for any fibred 2-knot (We expect that
in fact thèse cases do not occur at ail)

§5. Rank 1

In the rank 1 case G need not be a PD$ group Nor îs A necessanly finitely
generated For instance, Fox found a 2-knot with group 0 presented by
(a, t\tat~l a2) This group îs metabehan, with commutator subgroup &lt;P&apos;

Z[\], the dyadic rationals, and has cohomological dimension 2 However
considération of how the cohomological hypothèses of Theorem 2 might fail
suggests a useful séparation of subcases Recall that a finitely generated group K
has 0, 1, 2 or infinitely many ends, and that if K îs infinité H°(K, I[K]) 0 while
if K has 1 end then H\K, 1[K]) 0 also [49] I am indebted to Geoghegan and
Mihahk for their help with case (n)

THEOREM 10 Let G be a 2-knot group with a maximal torsion free abehan

normal subgroup A of rank 1 Then either

(î) G/A is finite, hence G&apos; is finite, or
(n) G/A has one end and G is a PDf group, or

(m) G/A has two ends and there is a finite normal subgroup N in G with

G/N~&lt;P, or
(îv) G!A has infinitely many ends

Proof If G/A is finite then A is finitely generated, so A ^Z and G has two
ends But then G must be a finite extension of Z or (Z/2Z) * (Z/2Z) by
[45 4A6 5], since G/G&apos;^Z case (î) follows If G!A has one end then G is

simply connected at ^, by [35 Theorem 1], and then HS(G, Z[G]) 0 for s &lt; 2,

by [17], so G is a PD$ group, by Theorem 2 Thus the only case we need

consider at length is when GIA has two ends

Since G is a knot group, the abehamzation of GIA is cychc Therefore if ît has

two ends ît must hâve a finite normal subgroup No with infinité cychc quotient, so
there is an exact séquence 1—»i4 —»G&apos;—&gt;iVo—» 1 Since A is torsion free abelian
of rank 1, îts group of automorphisms is abelian, since A is normal in G, ît must
be central in G&apos;, and ît has finite index there Therefore the commutator
subgroup of G&apos; is finite [42 Theorem 10 1 4] Hence the set N of éléments of G&apos;

of finite order is a finite subgroup which is charactenstic in G and A maps

monomorphically to H-GIN The group H is thus finitely présentable with
HIH&apos; « Z and H&apos; is torsion free abelian of rank 1 Accordmg to Trotter [47] the
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A-module H&apos; H&apos;IH&quot; must hâve a présentation matrix of the form iA + (/ — A)
where A is a d x d intégral matrix (with d rank H&apos; 1) and where at least one

of A, I -A is unimodular. This implies that (up to inversion of the meridian)
H&apos; ~ A/(t - 2) and so H « &lt;&amp;. (This resuit can also be derived from [20]).

The 2-knot groups in case (i) were determined in [23,41,51]. Twist spun
non-torus knots usually hâve groups in case (ii). We shall see that &lt;P is the only
example in case (iii). The group of a (0-twist) spun (py #)-torus knot has centre Z
with quotient (Z/pZ) * (Z/pZ) and so is in case (iv).

We shall now examine case (iii) more closely and show that N must be trivial.
For m &gt; 1 let &lt;P(m) be the group presented by (t, a \ tat~l - a2&quot;). Then every
subgroup of finite index in &lt;P(l) 4&gt; is isomorphic to &lt;P(m) for some m. (For if W

is such a subgroup then WH&amp;&apos;^k- Z[\\ for some odd À &gt; 1, so W is generated
by ak and tma^ (for some m ^ 1 and pi in Z[\\) with a single relation

(tV^itVy1 aA2m). Let &lt;P(m)(~Z[i]) be the kernel of the homomorphism
from &lt;P(m) onto Z sending no 1 and a to 0.

LEMMA. Let Y be a closed orientable 4-manifold with /(F) 0 and such that
there is an epimorphism f\n tzx(Y)-* &lt;P(m) for some m, with finite kernel. Let
Y be the infinité cyclic covering space of Y determined by ft =f~l(&lt;ï&gt;(m)). Then

the intégral homology groups of Y are finitely generated A-torsion modules, and

//2(ir; Z) is finite cyclic of odd order.

Proof Since Y is a covering space of a compact manifold and since

A is noetherian, the groups HXY\Z) //,(y; A) are finitely generated
as A-modules. Since Y is orientable, x(Y) 0 and Hi(Y;Q)~Q, we have

H2(Y; Q) 0 and the rest of the first assertion now follows from the Wang

séquence for the projection Y—&gt; Y (cf. [36]). By Hopfs Theorem H2{n\Z) is a

quotient of H2(Y\Z) //2(Y; A), even as a A-module. By equivariant Poincaré

duality H2{Y; A) « H2(Y; A). Since H2(Y;A) is a torsion module, the Universal
Coefficient spectral séquence gives an isomorphism H2( Y; A) « Ext\(Hx(Y; A), A).
Now //i(Y; A) » ji/ft&apos; and so there is an exact séquence

0.^ T^H^Y; A)-+ ê(m) A/(t - 2m)-~*0

where T is a finite module. Therefore ExtlA(Hx(Y; A), A)~ A/(f- 2W) and so

/£2(Y; A) «(A/(f-2m)« A/(2mf - 1) « Z[|] as an abelian group. Now

**Z[\] also, and //2(Z[|];Z) Z[è] aZ[|] (by [42:page 334]) 0, and so by the
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LHS spectral séquence for the extension

we hâve that H2(n\ Z) is finite. But a finite quotient of Z[^] is cyclic of odd order.

We shall apply this lemma to certain irregular finite covering spaces of the
4-manifold obtained by surgery on a knot with group as in Theorem 10 (iii).

THEOREM 11. Let G be a 2-knot group with a finite normal subgroup N such

that G/N ~&lt;P. ThenN=l.

Proof. Let M be the closed orientable 4-manifold obtained by surgery on a

2-knot with group G (as in §3), so nx{M) G and #(M) 0. Choose once and for
ail a méridional élément t in G.

Let H be the (normal) subgroup of G generated by NU CG(N). Then H has

finite index in G and H/N « &amp;(m) where tm générâtes HG&apos; modG&apos;. Let H be

the inverse image of &lt;f&gt;(m) in H. Then H&apos; is finite and C(H) has finite index in H.
Since C(N) - C{H) C\ N is a finite abelian group and C(H)IC{N) is isomorphic to
0(m), we must hâve C{H) ~ C(N) x &lt;£&gt;(m) by [42: page 106], and so there is a

central complément B « &lt;P(m) for N in H. Hence H « N x Ô(m). The complément

B may not be invariant under conjugation by tm, but 6(b) b~2mtmbt~m

defines a homomorphism from B into C(N) (since B and hence tmBt~m are
central in H) which must hâve image finite of odd order. Therefore if D is any
subgroup of N containing U, the odd part of C(N), then BD («# x D) is

invariant under conjugation by tm. Now let p be an odd prime and let N(p) be the

p-Sylow subgroup of N. Then N(p) and so U{p) t/ • N{p) are invariant under

conjugation by tm and U(p)U BU (tm) générâtes a (non-normal) subgroup jt
(=U(p) - B - (tm)) of finite index in //. The quotient n/U(p) is isomorphic to
&lt;P{m), and ft^ U(p)x B. Let y(p) be the (irregular) covering space of M
determined by n. Then we may apply the lemma to conclude that H2{n\T) is

finite cyclic of odd order. By the Kùnneth theorem, (U(p)IU(py) &lt;8) B is a direct
summand of //2(ir;Z). Since U(p) has odd order and B^I\\\, it follows that

U(p)/U(py is cyclic. Hence [(/(/?), U(p)&apos;] U(p)&apos;. Therefore also [jr, ir&apos;] ir&apos;

and so if F F,&gt; the homomorphism from H\tz\F) a H\jx\F) to H2(jt;F)
determined by cup product is injective [28]. Now let Y(p) be the infinité cyclic
covering space of Y(p) determined by n. Then the classifying map from Y{p) to

K(ji; 1) is 2-connected, so H\n\ F) - H\Y(p)\ F) and H\n\ F) c H2(Y(p); F).
By Milnor duality [36] cup product gives a perfect pairing of H\Y(p)\ F) with

H\Y{p)\ F) into H\Y{p)\ F). If Af(p) =£ 1 then H\U{p)\ F)~F (since
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~N(p) and U(p)/U(p)&apos; is cyclic). Then H\n\F)~F2 so the image of
H\jï; F) a Hl(jt\ F) in H2{Y(p),F) is 1-dimensional (by injectivity of cup
product) and must be non-trivially paired with some élément of H](ft;F). But
there can be no nontrivial alternating trilinear form on a 2-dimensional vector

space. So N(p) - 1, and thus N must be a 2-group.
Now let A be any abelian subgroup of N. Appealing once more to the lemma

with x A - B - {t and x ~ A x B we find that H2(A; Z) is cyclic of odd order,
as it is a direct summand of H2(x; Z). But H2(A; Z) ^A a Aby [42:page 334] and

so A must be cyclic. It follows that N must be cyclic (Z/2&quot;Z) or Q(n), a

generalized quaternion group, presented by (x, y \ x2 y2&quot;, jc4= 1) for some
»&gt;1. (See [42:5.3.6] or [50: page 161]). Suppose that N± Q Q(l). Then N has

no automorphism of odd order and so, returning to the knot group G, the
extension 1—»Af~*G&apos;—» 0&apos;-» 1 must split. Hence G&apos; ^ &lt;Pf x N, and N must
admit a méridional automorphism. But this is impossible if N is cyclic of even
order, or if N Q(n) for some n &gt; 2. Thus N 1 or

Suppose that there is an exact séquence

where Q is the quaternion group. We shall use equivariant Poincaré duality with
coefficients *f =F2[4&gt;] to deduce a contradiction. We shall first describe some of
the properties of this noncommutative ring. Since &lt;P is a torsion free 1-relator

group other than Z, it has cohomological dimension 2, and so the ring W has

global dimension 2. A présentation for the augmentation module F2 may be

obtained by means of the free differential calculus: there is an exact séquence of
left ^-modules

0^ W -^ W2 -^U W -^-» F2^0

where e(g) - 1 for ail g in &lt;P, dx(d, 0) 6{a - 1) + &lt;/&gt;(f - 1) and 5&gt;2(î//) (t//(f +
a + 1), xp(a2 4-1)). As a group ring ^has a natural involution, defined by g g&quot;1

for ail g in 0. Moreover ^ is a twisted polynomial ring. Let E F2[a2 *]

F2[aw | n e Z]/(£!„+! — a^ | n e Z). This is a commutative (Bezout) domain and its
field of fractions K F2(a2 is perfect, i.e. the squaring map a is onto. Then
W= E[a~l][t, t~l;o]: each élément may be expressed uniquely as a sum
E ^Pm(^) over m in a finite subset of Z, where each pm(a) is in E[a~l], while the

multiplication is determined by an+xt — tan for ail n, i.e. t • p{a) o(p{a)) • f for
p(tf) in £[a-1]. The ring y7 has a skew field of fractions L, which as a right
^-module is the direct limit of the System {We \ 0 =f 6 in W} where each We *P,

the index set is ordered by right divisibility (6 &lt; 00) and the map from We to
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Wçe sends ip to 0t//, and so L is flat. (Note also that L contains the ring
K[t, t~l\ o] which is a skew Euclidean domain. See [12] for a discussion of fields

of fractions of twisted polynomial rings).
Let M0 be the covering space of M with jt^M0) ~ Q and let Hp dénote

HP(M; V) HP{M0\ F2) considered as a ^-module via the action of &lt;P through
covering translations. If M has been triangulated, we may lift the triangulation to
M0 and obtain thereby a (cellular) chain complex C* of finitely generated free
«^-modules such that HP(C*) - Hp. Since M0 is a connected open 4-manifold,
#o F2 ^e augmentation module) and H4 0. The ^-module structure on
//i(M*;F2) (?/(?&apos;«F| is determined by a homomorphism &lt;P-+ Aut (Q/Q&apos;)^

GL(2j 2) « S3. Since the abeiianization of the knot group G must be infinité
cyclic, the image of &lt;P cannot be trivial or of order 2, and there are essentially just
two possibilities. In the first case the image of &lt;P is cyclic of order 3, so a - 1 and
t3 — 1 act as 0, but t^\. It follows that t — 1 is an automorphism, and that Hx with
this module structure, which we shall dénote Hcy is simple, and the annihilator of
a generator is the left idéal generated by a — 1 and t2 +1 + 1. There is an exact

séquence

where 3\{d, (p) 8(a - 1) + &lt;p(t2 + t + 1) and dc2(ip) (\p(t2 + t(a - 1) + (a -
l)3), xp(a4-l)). Exactness at three of the modules, and d\dc2 Q are easily
verified. We may show that ker d\ Im dc2 as follows. Suppose d\(dy (p) 0. Then

0(a-l) tf&gt;(f2 + f + l). We may write &lt;p as 0 ÇLmeFtmPm{a)){a - l)4d for

some d &gt; 0 in Z[|] and where pm(l) =jt 0 for some m. Then

Since ^ is a domain we may cancel factors from an équation. Thus if d &lt; 1 we

hâve

S tmPm{a))(t2 + t(a - \)d + (a - \f) 6(a - l)1&quot;&quot;,

so on substituting a 1 we get Em€F^mPm(l) 0 in F2[r, r &apos;]. This contradicts the

assumption on the pm{aYs. Thus d &gt; 1, so we may write 0 r/ • (a - l)4, and it
follows that 0 rç(f2 + &apos;(« - 1) + (« - l)3)-

Otherwise 4&gt; maps onto Aut (£&gt;/(?&apos;), so t maps to an automorphism of order 2
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and a maps to a generator of Aut (Q/Q&apos;Y, of order 3, and the module (now
denoted Hf) is again simple. There is an exact séquence

where 3{(d9 0) 6{t 4-a) + &lt;()(a2 + a + 1) and &amp;2{q) {\l&gt;(aA + a2+ 1), t//(f +
a3 4- a2 + a)). (Exactness of this séquence is proved in a similar fashion).

Some information about H2 and H3 is given by the Universal Coefficient
spectral séquence, which, in conjunction with equivariant Poincaré duality, takes
the form Ep2q eqHp^&gt;H^p.qy with differential of bidegree (-1,2). Hère
eqH Ext1p(H, ^0 and H is the right ^-module with the conjugate action,
determined by h • t/&gt; \p • h, for h in H and tp in W. Now from the three
resolutions given above we may compute that el¥2 e°Hc e°/// 0, and so

H3 0 in either case. (Note that in fact e°¥2 e*F2 0, which is équivalent to the
fact that the group &lt;P has one end). The spectral séquence then gives an exact

séquence

Now since the skew field of fractions L is flat as a right module, HP(L 0^ C*) ~
L ®ip Hpy and so is nonzero only if p =2. But since M has Euler characteristic 0,
which is also the Euler characteristic of L &lt;8&gt;w C* and therefore of L &lt;8&gt;^ //*, we

may concude that L&lt;8&gt;WH2 Q also. Therefore e°H2 0 (since e°H2

Hom (//2, tf) c Hom (L ®^//2, £)) and we hâve a short exact séquence

in which the middle term has order 4 (as an abelian group). But this is absurd as

e2Hc « W/Ic Wl\t2 + t(a - 1) 4- (a - l)3, a4 - 1) W and e2/^ « Wllf Vf (a4 +
a2 4-1, r + a3 4- a2 + a)lP are each infinité right ^-modules. (To see this note that
for instance e2Hf contains £/£&quot; fi/y £/(a4-h a2 + 1) as a sub £-module). Thus
there can be no such 2-knot.

The modules Hc and Hf are realized by the extensions of 4&gt; by Q presented by
(a, x, y, 11 tat~l a2, txt~l -y, tyt~l =xy, ax=xa, ay =ya, jc2 (xy)2 y2) and

(a, x,y, 11 rar&quot;1 a2, txrx=y, tyt~l=x, axa~l =y, aya~l =xy, x2 (xy)2 y2)
respectively. Thçse are in fact high dimensional knot groups.

THEOREM 12. Let G be a 2-knot group with a maximal torsion free abelian

normal subgroup A of rank 1.
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(1) If A H G&apos; 1, then A~Z,Aœ C(G) (with equality if C(G) is torsion free)
and G&apos; is finitely présentable. Moreover G is a PD% group if and only if G&apos; is a

PD3 group if and only if e(G&apos;) 1.

(2) If A c G&apos; then A c C(G&apos;) (with equality if C(G&apos;) is torsion free). If G1 is

finitely generated then G is a PDf group. If furthermore G&apos; is finitely présentable
then G&apos; is a PD$ group.

Proof Since r l, Aut(&gt;4) is abelian, so G&apos;œCg(A). If A&lt;^G&apos;, then
A H G&apos; 1 and A maps injectively to G/G&apos; « Z, so ^4 ~ Z. Since conjugation by
an élément of G induces the identity automorphism of G/G&apos;, it follows that A is

central in G, and therefore A C(G) if C(G) is torsion free (by maximality of
A). The subgroup of G generated by AU G&apos; has finite index in G, and is

isomorphic io Ax G&apos;, so G&apos; is finitely présentable. If G is a PD^-group (which
need not be the case when r 1) then Ax G&apos; is also a PD^-group, so G&apos; is a

PDjt-group and hence e(G&apos;) 1. Since ADG&apos; \, (G/A)&apos; « G&apos; and has finite
index in G/A, so e(G&apos;) 1 implies that e(GIA) 1, and so G is a PD^-group by
Theorem 10 (ii).

If A^G&apos;y then A^C(G&apos;) (with equality if C(G&apos;) is torsion free, by
maximality of ^4). If G&apos; is finitely generated then G&apos;/A must be infinité and so

e(G/A) 1. Thus G is a PDÎ-group, by Theorem 10 (ii). Suppose now that G&apos; is

finitely présentable and Z is an infinité cyclic subgroup of C(G&apos;). Then c.d.G&apos; 3

and there is an exact séquence

0-» P3-&gt; P2-^ Pi -* P(,-* Z^&gt; 0

where the Pt are projective Z[G&apos;]-modules, and are finitely generated for i&lt;2,
since G&apos; is FP2. For the same reason the natural map from HS{G&apos;\ Z[G&apos;]) ® Z[Z]
to //S(G&apos;;Z[G]) is an isomorphism for s&lt;2. (Cf [5: Theorem 5.3]). This is also

true for 5 3. For the spectral séquence for the extension 1—&gt;Z—*G&apos;—&gt;/—*1

gives an isomorphism H\Gt\Z[Gt\)^H\J\H\Z\Z[Gt\))^H\J\Z[J\) since Z
is finitely generated. Likewise, writing Z[G] Z[G&apos;](Z\ we hâve //3(G&apos;; Z[G]) «
H2(J;Z[J](Z))~H2(J;Z[J])(I\ since / is FP2. Therefore //3(G&apos;;Z[G])-
//3(G&apos;; Z[G&apos;])(Z). On keeping track of the direct sum décompositions, we see that
in fact //3(G&apos;;Z[G])-//3(G&apos;;Z[G&apos;])0 Z[Z] as a Z[Z]-module.

The LHS spectral séquence for the extension 1—*G&apos;—*G-»Z—»1, with
coefficients Z[G]f reduces to a Wang séquence

&gt;//«(G&apos;;Z[G]) -^U //«(G&apos;^GD-^/f&apos;-&apos;^ZtG])-^

Using the above information on Hq(G&apos;;Z[G]) we find that //*(G&apos;;Z[G&apos;])~

//*+1(G;Z[G]) 0 for q + S and //\G&apos;;Z[G&apos;])-//4(G;Z[G])-Z. Thus if we
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dualize the above Z[G&apos;]-resolution of Z by means of P* — Hom (P, Z[G&apos;]) we get
an exact séquence

The dual P* of a projective module P is finitely generated if and only if P is.

Therefore P* and hence P^ are finitely generated. Thus G&apos; is FP. As
Hq{G&apos;\ Z[G&apos;]) « Z if &lt;? 3 and 0 otherwise, this implies that G&apos; is a PD^-group.

The group G of a (0-twist) spun torus knot has C(G) « Z, C(G) H G&apos; 1 and
G&apos; free of even rank (so e(G&apos;) î 1). The group of a twist spun prime knot (other
than a torus knot or certain rational knots) is usually a PDÎ-group with C(G) ~ Z
and C(G) flG&apos; l. The groups of Theorem 14(iii) below are PD^-groupS with
G&apos; finitely présentable and (excepting the group of the 6-twist spun trefoil knot)
hâve centre Z contained in G&apos;. Yoshikawa has constructed a 2-knot whose group
has centre Z contained in G&apos; and such that GIC{G) has infinitely many ends [46].

Note finally that Theorem 12(2) applies if we assume only that G&apos; has a

central élément z of infinité order. For the normal closure of (z) in G is then a

cyclic module over Z[G/G&apos;]«A, and so its Z-torsion subgroup has finite

exponent, e say. The normal closure of (ze) in G is then a torsion free abelian
normal subgroup of G of positive rank.

§6. Virtually solvable 2-knot groups

We shall apply the above results to the détermination of the virtually solvable
2-knot groups which contain nontrivial torsion free abelian normal subgroups. AH

except for Fox&apos;s group 4&gt; are virtually poly-Z. If we assume further that G&apos; be

nilpotent, we need make no assumption about torsion free abelian normal
subgroups. Let /* SL(2, F5) and for each k &gt; 1 let T(k) be the extension of
Z/3*Z by Q with présentation

(x, y, z | x2- (xy)2 y2, zxz~x =&gt;&gt;, zyz~l =xy, z3* 1).

THEOREM 13. Let G be a virtually solvable 2-knot group which has a

nontrivial torsion free abelian normal subgroup A. Then either

(i) G is a torsion free virtually poly-Z group of Hirsch length 4 and of
orientable type, and G&apos; is virtually nilpotent; or

(ii) G&apos; (Z/nZ) x P where P 1, Q, /* or T(k) and («, 2 |P|) 1, and we

may assume that the méridional map multiplies the cyclic factor by — 1, is
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the identity on /*, and sends x, y in Q to y, xy and x, y, z in T(k) to y~\
x &apos;, z

x

respectwely, or
(m) G &lt;P

Proof We may assume A maximal and apply Theorems 3, 10 and 11 (Note
that smce G/A \s à finitely generated virtually solvable group ît cannot hâve

infinitely many ends)
If G îs a virtually solvable PDj group then ît îs torsion free and virtually

polycychc, by [5 Theorem 9 23], and hence virtually poly-Z, by [42 5 4 15] The
commutator subgroup then has a nontnvial maximal (free) abelian normal
subgroup, B say, of rank at most 3, the Hirsch length of G&apos; If B has rank 2, then
G&apos;IB has Hirsch length 1 and so îs two-ended It follows that G&apos; has a
charactenstic subgroup with quotient either (Z/2Z) * (Z/2Z) or Z But no such

group can be the commutator subgroup of a knot group Thus B has rank 1 or 3

and G&apos; îs then easily seen to be virtually mlpotent
Otherwise G &lt;P or G&apos; îs finite, the further détail in the latter case follows

from [14,23]

There are finitely generated infinité solvable groups that contam no nontnvial
torsion free abelian normal subgroups, but we do not know whether such can

anse as high dimensional knot groups (Very hkely there are such) However a

solvable group which îs constructable in the sensé of Baumslag and Bien [3] must

contain such a subgroup, for every subgroup of a constructable group îs (torsion
free)-by-finite In particular polycychc groups and finitely présentable groups
which are nilpotent-by-(mfinite cychc) (for instance &lt;P) are constructable [3,6]
We can be much more spécifie about 2-knot groups of the latter type

THEOREM 14 Let G be a 2-knot group with G&apos; mlpotent Then either

(î) G&apos; ~ I? and the méridional map is gwen by a matnx C in 5L(3, Z) such
that det (C - /) 1, or

(n) G ~F(2)/F(2)^, the free mlpotent group of class 2 on two generatorsy
presented by (x, y \ [x, [xy y]] [y, [x, y]] 1) and the méridional map is

gwen by jc—&gt;xayb and \-~j&gt;xcyd where is one of\c d) M 2/

-i oMi oM i ohor
(ni) G&apos; has a présentation (x, y, z \ [x, y] zq, [x, z] [y, z] 1) for some

odd q&gt;\ and the méridional map is gwen by x-*xayb &gt; y-*xcyd, z—*z~l

where (ac d)ls{\ l)or{~\ J)&apos;
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(iv) G has a présentation (a, t \ a&quot; 1, tat~x a~x) for some odd aï &gt; 1; or
(v) G has a présentation (a, x, y, t \ an 1, x2 (xy)2 y2, ax xa, ay ya,

tat~l =a~1, txt~x =&gt;&gt;, fyf&quot;1 xy) for some odd n^l; or
(vi) G &lt;f&gt;.

Proof By the remark on page 265 of [6], G is constructable. Since every
subgroup of a constructable solvable group is (torsion free)-by-finite [3], G must
hâve a nontrivial torsion free abelian normal subgroup. Moreover G is a virtual
duality group and //*(G;Z[G]) 0 for kj=h(G), the Hirsch length of G, by
[3 :Theorem B]. Thus if h{G) &gt; 2 Theorem 2 applies so G is a PDj group, hence

polycyclic. Therefore G&apos; is a nilpotent poly-Z group of Hirsch length 3, by
[42:5.2.20], and thus is an extension of Z2 by Z; the further détails in cases (i),
(ii) and (iii) are taken from [24]. If h(G) 1 then G&apos; is a torsion group, so finite
by [3 : Proposition 1], and cases (iv) and (v) follow from Theorem 13. Finally if
h(G) 2 then the éléments of finite order of G&apos; form a (characteristic) subgroup
T [42:5.2.7] which is again finite by [3] and the torsion free nilpotent group G&apos;/T

must be abelian of rank 1, since it has Hirsch length 1. Therefore GIT ^ &lt;P by
Theorem 10 (iii), and case (vi) follows from Theorem 11.

COROLLARY. If G is a metabelian 2-knot group then either G&apos; « Z3 or Z/«Z
for some odd n, or G « &lt;P.

The détermination of the abelian 2-knot commutator subgroups is essentially
due to Yoshikawa [53], who however did not exclude the possibility that

Each of the groups allowed by Theorem 13 is the group of some 2-knot.
Examples of type (i) were first given by Cappell [9] for the case G&apos; ~ Z3. Cappell
and Shaneson used such knots to give examples of distinct 2-knots with
homeomorphic exteriors [10]. Thèse knots hâve been examined in further détail

by Aitchison and Rubinstein [1]. If G&apos; is poly-Z, then it is either Z3 or nilpotent
of class 2. In the latter case G&apos; is a discrète uniform subgroup of the
3-dimensional Lie group of upper triangular 3x3 matrices over R [24]. (The
6-twist spun trefoil is such a knot). In gênerai the commutator subgroup of a

group of type (i) is the fundamental group of an aspherical closed Seifert fibred
3-manifold, by [2] and [44], and so G is the group of a fibred 2-knot, by Theorem
5.

In another paper we shall show that the exterior of a 2-knot whose group is

torsion free virtually poly-Z is determined up to homeomorphism by the group
together with a weight class [29]. If G&apos; Z3 the weight class for G is unique up to
inversion, and the knot is determined up to a finite ambiguity by its Alexander
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polynomial [24]. (The corresponding assertion in [24] for the other poly-Z groups
is not justified, as the rôle of the weight class was overlooked there). No 2-knot
with G&apos; Z3 can be a twist spun 1-knot, for a méridional automorphism of Z3

cannot hâve finite order (cf. the proof of Theorem 3).
Fox constructed 2-knots with commutator subgroup Z/(2n + 1)Z, for any

n ^ 1 [15: Examples 12 and 15]. Thèse hâve been shown to be the 2-twist-spins of
certain twist knots by Litherland (for the case n 1, which is the 2-twist-spun
trefoil) and Kanenobu [30] (for ail n ^ 1). Thus thèse knots are ail fibred, with
fibre a punctured lens space [54]. (See also Section 6 of [39]). Ail the other
possibilities for G&apos; finite allowed by [23] hâve been realised, most as twist-spun
classical knots, by Yoshikawa [51]. Plotnick [39] and Gonzales-Acuna hâve shown
that no outer automorphism of /* 5L(2, 5) can be realized as conjugation by a

meridian in a 2-knot group, thus resolving the one uncertainty about 2-knot

groups with G&apos; finite remaining in [23]. The method is essentially to show that an

outer automorphism induces the identity on f/3(S(3);Z)s:sZ/3Z while it induces

-1 on //3(S(5);Z)«Z/5Z, where S(p) is the p-Sylow subgroup. If it were
geometrically realizable, thèse calculations would lead to an inconsistency when

considering the effect on the universal cover of the manifold obtained by surgery
on the knot. Plotnick and Suciu [41] hâve determined ail the fibred 2-knots with
fibre a punctured spherical space form, and hâve found représentatives for the

weight classes when G&apos; is finite.
Fox&apos;s Example 10, with group &lt;P, is not fibred, as its commutator subgroup is

not finitely generated, and so cannot be twist spun. However it is a ribbon knot,
as can be seen by &quot;thickening&quot; a suitable immersed ribbon D2 in S3 for the
stevedore knot 62 (the equatorial cross-section of Example 10) to get an
immersed ribbon D3 in S4. Alternatively, we may construct a ribbon 2-knot with

group &lt;2&gt; by using the équivalent (Wirtinger) présentation (u,v,w\ vuv~l w,
wuw~l u) and the method of [26; Chapter II]. (The présentations are related

by u-^ta, v-^&gt;t2at~l and w—&gt;t). Are ail 2-knots with group &lt;P topologically
équivalent?

It is well-known that ail 2-knots are slice knots [32]. However knots with

groups of type (i) or (ii) cannot be homotopy ribbon, let alone ribbon. For the
manifold obtained by surgery on a homotopy ribbon knot bounds a 5-manifold
(the complément of some slicing 3-disc in the 5-disc) with Euler characteristic 0

and built out of 0, 1 and 2-handles [11]. Considering the dual handle décomposition

relative to the boundary, we see that the fundamental group of this

5-manifold, which has deficiency 1, is the knot group. Thus if Theorem 1 applies
this group must hâve cohomological dimension 2 (and in fact the 5-manifold is

aspherical) and so (i) cannot hold, while HX{G&apos;\ Z) must be Z-torsion free by [26;
Theorem III. 10] and so (ii) cannot hold. (In fact Cochran has shown that the
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resuit of surgery on a homotopy nbbon 2-knot îs never asphencal He also raises
the question as to whether the group of every nbbon 2-knot has a 2-dimensional

Eilenberg-Mac Lane space [11]).
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