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Cyclic homology of groups and the Bass conjecture

BeEno EckMANN

0. Introduction

0.1. The cyclic homology HC,(QG) of a group algebra QG decomposes into a
direct sum indexed by the conjugacy classes [x] in G, as shown by Burghelea [7]
(see Section 1.3 below). We will consider certain classes of groups of finite
homology dimension over Q, hdgG = n, and show that for i =n the terms in
HC,(QG) corresponding to conjugacy classes [x] of elements of infinite order
vanish. The groups G with hdgG = n < = for which this will be done are

(a) Nilpotent groups G,

(b) Torsion-free solvable groups,

(c) Linear groups G = GL,(F) where F is a field of characteristic 0,
(d) Groups of cohomology dimension cdqG =<2 (here n <2).

We recall (Serre [10]) that if in (c) F is a number field and G finitely generated,
then G is always of finite virtual cohomology dimension, whence hdgG =n <,
The case (b) actually falls under (c), but we prefer to give a simple direct
argument, cf. Remark 2.3’ below.

As an immediate consequence of that vanishing result it follows that the
character maps from K-theory of QG to HC,.(QG), see Karoubi [8], have
vanishing components in the summands indexed by [x] with x of infinite
order—for all the groups listed above.

In particular, the character map Ch): Ko(QG)— HCy(QG) can easily be seen
to be the ‘“Hattori—Stallings rank” rp of finitely generated projective QG-modules
P (representing elements of Ko(QG)), see Section 3.2. For the groups above it
thus follows that r» is concentrated on the conjugacy classes [x] of elements x of
finite order; hence on [1] if G is torsion-free. This is a contribution towards the
strong Bass conjecture [3, p. 156]. Note that the case (c) yields a weaker
statement than Bass’ result on linear groups [3, p. 156/57]; but our method is
entirely different and stems from a result more general in another direction. The
result establishing the Bass conjecture over QG in the other cases seems to be
new.
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194 BENO ECKMANN

1. Cyclic homology of groups

1.1. Let G be a group, QG its rational group algebra, and HC,(QG), i€ Z,
the cyclic homology of QG in the sense of Connes; we will call it here in short the
cyclic homology of G. It is related to the Hochschild homology HH;(QG) of QG,
with bimodule-coefficients in QG by left and right multiplication, through the
“Connes—Gysin exact sequence”

-+ +— HH(QG)— HC(QG)—- HC,_,(QG)— HH,_,(QG)— - - - . (1.1)

It is a standard fact (see [9]) that Hochschild homology of QG with bimodule
coefficients can be expressed as homology of G with the same coefficient module
turned into a right G-module; in the present case this is QG with G-action by
conjugation in G. It thus follows that for groups G of finite homology dimension
hdqG = n <= over Q (i.e., for all QG-module coefficients) the cyclic homology
of G stabilized above n:

HC, % (QG) = HC,(QG),
HCn+2k+1(QG) = HCn+1(@G)

fork=0,1,2,....

1.2. The conjugation module QG obviously decomposes into a direct sum of
right QG-module indexed by the conjugacy classes [x] of G; x is an arbitrary but
fixed representative of [x]:

QG=® D,
{x]

where D, is the @-module over the elements x’ € [x] as basis, and with QG-action
by x'—y~'x'y, yeG. If C, is the centralizer of x in G, D, is isomorphic to
Q(G/C,), the right QG-module generated by the right cosets modulo C,; the
isomorphism is given by x'— C,z where z € G is such that 27 xz =x'. Thus

QG =® Q(G/C,) =D (QA®, QG),
Ix] |x1
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and finally

HH/(QG)=®D H(G;Q®,QG)=D H/(C,;Q) (1.2)
[x] Ix1

with trivial G-module coefficients Q.

Remark 1.1. HHy(QG) is the Q-module having the conjugacy classes [x] in G
as basis. This can also be seen directly from the well-known fact that HH,(QG) is
QG/{Au — uA}, where {Au —ui} denotes the Q-submodule generated by all
Au —ui, A, ueQG; i.e., the Q-submodule generated by all xy —yx, x, y € G.
We write @E for this factor-Q-module of QG, T:QG — QG for the canonical
map, with T(Au) = T(ulA), A, u € QG.

1.3. A direct sum decomposition of HC(QG), with terms indexed by the
conjugacy classes [x] in G, has been given by Burghelea [7] using topological
(simplicial) constructions:

HC(QG)= D' [H.(C,/(x); Q) ® H.(CP*; Q)] ® D" H(C./{x); Q). (1.3)
[x] tx1

Here (x) denotes the cyclic subgroup of G generated by x, and @’ is summation
over all [x] with finite (x), @” over all [x] with infinite (x).

The methods of [7] also yield the @©-decomposition (1.2) of HH;(QG) and
shows that the Connes—Gysin sequence (1.1) decomposes into exact sequences of
the same type, one for each [x] in G.

We will consider in Section 2 groups of finite dimension hdqG =n <~ and

show that, for certain classes of such groups, one has €” =0 in the stable value
[x]
HC,(QG) and HC, . (QG); in other words, the stable value is concentrated on the

conjugacy classes [x] of elements x of finite order — hence for torsion-free groups
on the conjugacy class [1]. This will be done for the classes (a)-(d) listed in the
introduction. Immediate consequences (Section 3) concern the character maps
from K-theory of QG to cyclic homology and, in particular, the Hattori—Stallings
rank as mentioned in the introduction.

2. Groups of finite dimension

2.1. “Finite dimension” for groups G will refer here, unless otherwise
specified, to the homology dimension hdgG over Q, i.e., with respect to
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QG-module coefficients. For any subgroup S < G, in particular for the centrali-
zers C,, we have hdgS = hdqG =n <o,

In our context we are thus interested in the homology of factor groups G/{x)
where hdyG = n < and x is a central element; actually in homology with trivial
Q-coefficients only, and in its vanishing above n. In other words, we are looking
at thdaG/{x), the trivial homology dimension over Q; i.e., defined exactly as
hdg but referring to trivial Q-module coefficients only. One always has
thdg = hdg. For that type of dimension we recall the following very simple but
useful sum formula (Bieri [6]):

LEMMA 2.1. Let U be a central subgroup of the group V, and W =V /U. If
both thdq U and thdoW are finite then

A further preliminary remark concerns the case where (x) is finite: then the
spectral sequence

H(G/{x); H({x); Q) > H.,;(G; Q)

shows that thdgG/{x) =thdgyG, hence =n. In all what follows we therefore
restrict attention to central elements x of infinite order. In that case the spectral
sequence does not imply that thdgG/(x) is finite; however, if it is finite then the
sum formula yields

thdoG/{x)=n—1.

2.2. Nilpotent groups. We recall (Stammbach [11]) that if G is nilpotent then
hdqG is equal to the Hirsch number 4G (the sum of the torsion-free ranks of the
factors of any normal series of G with Abelian factors); this holds, more
generally, for solvable groups. We thus assume hG =n <.

Let x€e G be a central element of infinite order, S a finitely generated
subgroup of G/{x), and T the preimage of S in G, T/(x) = S. Since S is finitely
generated nilpotent it is polycyclic, and therefore hdgS = hs is finite (equal to the
number of infinite cyclic factors in a normal series with cyclic factors). The sum
formula now yields

thdoS =thdgT —1<n—1.

G/(x) is the direct limit of its finitely generated subgroups S; and since homology
commutes with direct limits it follows that thd;G/(x) is <n — 1:
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THEOREM 2.2. Let G be a nilpotent group of finite dimension hdqG = n.
Then one has for any central element x € G of infinite order

H(G/{x);Q)=0 for i=n.

2.3. Torsion-free solvable groups. Let G be torsion-free solvable with
hdqG = hG = n < (or equivalently, solvable with hd;G < x). We consider the
Hirsch-Plotkin radical R of G, i.e., the maximal locally nilpotent normal
subgroup of G. For any Abelian subgroup S of G the torsion-free rank hS = hdgS
is =n. As G is torsion-free (actually a weaker condition would do) we can apply a
theorem of Baer—Heineken [2] which tells that

() R is nilpotent

(B) G/R is finitely generated

(y) G/R contains an Abelian subgroup A of finite index.

From (b) and (c) we infer that hdgG/R = hdgA is finite, say=m. If x € G is
central it must lie in R, and if it is of infinite order Theorem 2.2 tells that
thdgR/{(x) =thdgR —1=n —1. From the spectral sequence for G/R=G/{x)/
R/(x),

H(G/R; H(R/(x); @)= H,,(G/(x); Q)

we see that H,(G/{x);Q)=0 for k>m+n—1; i.e., thdgG/{x) is finite and
hence <n — 1.

THEOREM 2.3. Let G be a torsion-free solvable group of finite dimension
hdoG = n <. Then one has for any central element x € G of infinite order

H(G/(x);Q)=0 for i=n.

Remark 2.3'. The groups G above admit faithful linear representations over
Q (cf. [13], p. 25) and thus are included in 2.4 below. However, the proof of the
linear embedding starts precisely from the structure properties («), (B8), (y); thus
the simple direct argument seems preferable.

2.4. Linear groups. We now consider a linear group G < GL,(F), where F
is a field of characteristic 0, with hdgG =n<w. Let Z be the center of
G, 1:G— G/Z the canonical map. Since Z is closed in the Zariski topology,
G/Z is again a linear group over the same field F. We are going to apply the R.
Alperin—Shalen criterion [1] to finitely generated subgroups S of G/Z, in order to
prove that they are virtually of finite cohomology dimension.
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For this let first U be a finitely generated unipotent subgroup of G/Z and put
x# 'U=V, VIZ=U. Then U being torsion-free finitely generated nilpotent
(polycyclic), hdqU = thdgU = hU (Hirsch number, see 2.2). By Lemma 2.1,

tthZ + tthU = tthV.

Now hdgZ <n and hdqV =n; let m =thdqZ. Thus thdoU <n —m; i.e., we get
a uniform bound for all finitely generated unipotent subgroups of G/Z, the
Hirsch numbers AU being =n — m.

If S is any finitely generated subgroup of G/Z, it follows by [1] that its virtual
cohomology dimension, and hence hdgS, is finite. Putting n7'S=TcG,
T/Z =S, Lemma 2.1 tells that

thdgZ + thdgS = thdg T <n,
and thus thdgS = n — m. The direct limit argument then yields thdoG/Z <n —m.

THEOREM 2.4. Let G be a linear group of finite dimension hdqoG = n, over
a field of characteristic 0, Z is center and thdqZ = m. Then

H(G/Z;Q)=0 for i>n—-m.

We are looking for a similar result concerning G/(x) where x is a central
element of infinite order. Since G/Z =G/{x)/Z/{x) we can apply the spectral
sequence (with trivial Q-module coefficients) together with Theorem 2.2 on
Z/(x). This immediately yields H,(G/{x);Q)=0fori>(n - m)+ (m—1):

THEOREM 2.4'. Let G be as in Theorem 2.4. and x a central element of G of
infinite order. Then

H(G/{x);Q)=0 for i=n.

2.5. Groups of cohomology dimension <2. We write as usual cdqG for the
cohomology dimension of the group G over Q; i.e., with respect to all
QG -module coefficients. The assumption cdgG =2 includes all groups which are
virtually of cohomology dimension 2 (over Z), but is more general; it of course
implies hdgG = 2.

The case cdg =1 is easily dealt with: it means that G contains a free (normal)
subgroup F of finite index. If x is a central element of infinite order then
(x) NF+#1; hence F having non-trivial center must be cyclic = (c). Then both
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G/{x,F) and (x, F)/{(x)=F/FN(x) are finite, and so is G/{(x). Thus
hdyG/{x) =0. We thus restrict attention to the case cd,,G =2.

THEOREM 2.5. Let G be a group with cdy,G =2, and x a central element of
infinite order. Then

H(G/{x);Q)=0 for i=2.

This is a consequence of various known facts concerning group (co-)
homology, finiteness properties, and structure theorems (cf. Bieri [4], Corollary
8.7, and [S5]), We give a short outline of the proof for our somewhat more special
situation. It suffices to prove the claim for finitely generated G: If the subgroup
S = G/{x) is finitely generated so is its preimage T c G, and from the result for
S =T/(x) the direct limit argument yields the claim for G/{x).

As a first step one shows that G is of type FPg; i.e., that there exists a finitely
generated projective resolution over QG (of length 2 since cdgG = 2)

0“‘)P2_')P1‘—)P()—')@—'>0.

To prove this we use R. Strebel’s finiteness criterion [11]: G is of type FPg if and
only if cdgG is finite and the canonical map H'(G; ® QG)— @ H'(G;QG) is an
isomorphism for all i and all direct sums . In our case the spectral sequence for
G/{x) yields

H'(G;QG)=H*G/{x); H'({x); QG))
and

H*G;QG)=H'(G/{x); H'({x); QG))

(the action of G on H'({x); QG) is induced by the trivial conjugation of G on
(x)). For the infinite cyclic group (x) one has H'({x); Q{x))=0 for i+ 1, and
H'((x); Q(x))=Q with trivial action; and H'({(x);QG)=0 for i#1,
H'({(x); QG) = @®q(., QG = Q(G/(x)).

For A=®QG we get H'((x); A)=®H'((x); QG), and since G/{x) is
finitely generated, we see that G fulfills the Strebel criterion for i =1 and 2; in
dimensions i#1,2 this is trivially the case since H'(G;® QG)=0=®
H'(G; QG). Thus G is of type FP,.

As a second step one draws more conclusions from the above formula for
H*(G; QG). We note that

H%G;QG) = H'(G/{x); Q(G/{x))).
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As G is of type FPy with cdG =2, H*(G; QG) is #0 and finitely generated as
a right QG-module, and so is H'(G/{x); Q(G/(x))) over Q(G/{x)). This
implies that G/(x) has more than one end and is accessible; in other words,
G/(x) is the fundamental group of a finite graph of groups with finite edge
groups, and with vertex groups V satisfying H'(V;QV)=0 (1 or 0 ends). V is
finitely generated, and so is its preimage W in G, W/(x) = V. As before we get
H*(W;QW)=H'(V;QV); but now this is =0, whence cdoW = 1. The above
formula for H'(G; QG) applied to W and to W/{(x) =V yields H'(W; QW) =
H°(V;QV) # 0. This implies that V is finite.

We thus have proved that G/(x) is the fundamental group of a finite graph of
finite edge and vertex groups. Such a group is well-known to contain a (normal)
free subgroup of finite index; from the corresponding spectral sequence we obtain
the required result

H(G/{x):Q)=0
fori=2.

2.6. From Theorems 2.2, 2.3, 2.4', 2.5 we immediately obtain the result
claimed in 1.3 for cyclic group homology:

COROLLARY 2.6. Let G be a group with hdqG =n <= and belonging to
one of the classes (a), (b), (c), or (d), n=2 in the case (d). Then for i =n the
cyclic homology HC,(QG) vanishes on the conjugacy classes of elements of
infinite order.

3. Cyclic homology characters of QG

3.1. The Connes character Chj of QG (cf. Karoubi [8]) is a homomorphism of
Ko(QG) to HG(QG), 1 =0,1, 2, ... ; we will write Ch' for Chl, since we will not
consider here the higher characters Ch! (see however Remark 3.2). The Ch' are
compatible with the map S in the Connes—-Gysin sequence (1.1), i.e.,

HG,(QG)

Ch!
s

Ko(QG)—— Hsz—z(@G)

Ch!-1

is commutative. Corollary 2.6 immediately yields
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THEOREM 3.1. Let G be a group of finite dimension hdgG = n belonging to
one of the classes (a), (b), (c) or (d). Then the characters Ch',1=0,1,2, ... all

have 0-components in the summands D" corresponding to elements x of infinite
[x]

order. In particular, if G is torsion-free, the Ch' are concentrated on the
[1]-summand, i.e, lie in [H.(G; Q) @ H.(CP~; Q).

Remark 3.2. A similar result holds, of course, for the higher characters
Chi: K(QG)— HG,. (QG).

3.2. A look at the definitions shows that Ch?: Ky(QG)— HCy(Qg) is the same
as the Hattori—Stallings rank, as follows.

By (1.2) HG, is isomorphic to Hochschild homology HH,. For any QQ-algebra
A the latter, with A as bimodule by left- and right-multiplication for coefficients,
HHy(A) is well-known to be A/{Au — uA}, where {Au — uA} is the Q-sub-module
generated by all Au—puA, A4, ueA. In Remark 1.1 we have written QG for
HHy(QG) and T:QG—QG for the canonical map. Similarly, for the matrix
algebra M, (QG), we have HH,(M,(QG)) =M, (QG) with T:M,(QG)—
M, (QG). The trace of matrices tr:M,(QG)— QG induces an isomorphism
tr:M,(QG) = QG, and clearly T o tr=tr o T:M,(QG) — QG.

Now Ch° is defined, on a finitely generated projective QG-module P
representing an element of K, (QG), as follows: Let p be an idempotent
matrix € M, (QG), for suitable k, describing P as a direct summand of a free
QG-module M, and put Ch% =tro T(p)eQG, ie., =T otr(p). This is
precisely the definition of the Hattori-Stallings rank r, € QG, independent of
choices and of bases in M. We recall that QG is the Q-module having the
conjugacy classes [x] as basis.

THEOREM 3.3. For the groups G of finite dimension hdqG belonging to one
of the classes (), (b), (c), (d), the Hattori—Stallings rank rp of a finitely generated
projective QG-module P vanishes on the conjugacy classes of elements of infinite
order.

Remark 3.4. The vanishing of the character map Ch': K,(QG) — HC,(QG)
on the conjugacy classes of elements of infinite order, in particular of the
Hattori-Stallings rank Ch°, would of course follow from properties much weaker
than those established in Section 2 for certain classes of groups. Indeed it suffices
that, for a group G under consideration, some iteration S HCy 2k (QG) —
HC,(QG), 1=k ==, of Sin (1.1) is zero on the conjugacy classes of elements of
infinite order; k == refers to the inverc= limit. It has been conjectured, for
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example, that this is the case for k= and for all groups having a finite
Eilenberg—MacLane complex, cf. [7].

Note Added in Proof. The proof of Theorem 2.3, without assuming G to be
torsion-free (and hence also of Theorem 2.2), becomes much simpler if one uses
the fact that the Hirsch number of a factor group of G is less or equal to that of
G, combined with Stammbach’s theorem [11].
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