Reduction theory using semistability, II.

Autor(en): Grayson, Daniel R.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 61 (1986)

PDF erstellt am: 23.07.2024
Persistenter Link: https://doi.org/10.5169/seals-46952

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Reduction theory using semistability, II

Daniel R. Grayson ${ }^{1}$

In this paper we extend the result of [G] to include the case of an arithmetic subgroup Γ of a semisimple algebraic group G. We represent the symmetric space $X=G / K$ (where $K=$ a maximal compact subgroup of G) as a certain space of inner products H on the Lie algebra g of G, namely, those inner products that come from the Killing form via a Cartan involution.

If we assume that Γ is the stabilizer of a lattice $g_{\mathbb{Z}} \subset \mathfrak{g}$, then we may use the notions of semistability and of Harder-Narasimhan canonical filtration to study the action of Γ on X. Our main result is the explicit construction of a closed submanifold (with boundary) in X (of codimension zero) which is contractible, compact modulo Γ, and has boundary Γ-homotopy equivalent to the Tits building of G. Thus this subspace of X provides an alternate route toward the theorems of Borel-Serre [BS] about the homological properties of Γ.

The proof in [G] of contractibility for the intersections of the neighborhoods of the cusps [G, 7.18(c), 7.7] had the side effect of proving something already known, namely contractibility of the space X. In section 4 we use a simpler technique that makes use of the contractiblity of X.

We make essential use of the assumption that G is semisimple; it would have been nice to avoid it altogether, the way Borel-Serre do.

The idea of formulating the results of reduction theory in terms of functions which measure the distance to the cusps, here and in [G], is due to Harder [Ha1, Ha2]. Indeed, his function $\pi(P, \mathscr{R})$ of [Ha1, 2.4, p. 54] is presumably closely related to our vol $\left(L \cap W^{1}\right)$, where W^{1} is the nilpotent radical of a parabolic subalgebra of \mathfrak{g}. In a sense, we answer the question in the last sentence of [Ha1], hopefully by a method as direct and transparent as the one anticipated there by Harder, thereby completing the program he laid out.

Motivation for doing reduction theory via semistability of Lie algebra bundles comes from the paper of Atiyah and Bott [AB], where the canonical filtration for a principal G-bundle on a Riemann surface is introduced.

[^0]I thank Ranga Rao, Ofer Gabber, Hyman Bass, and David Kazhdan for valuable assistance.

1. Inner products on a Lie algebra

Let G be a connected semisimple algebraic group defined over \mathbb{Q}. Since we will be dealing with the adjoint representation of G, we will replace G by $G^{\prime}=G / Z(G)$, where $Z=$ "center of." Since G is semisimple, $Z(G)$ is finite, and G^{\prime} is also a semisimple linear algebraic group; its adjoint representation is now faithful, so $Z\left(G^{\prime}\right)=1$ [W, 3.50]. Any arithmetic subgroup $\Gamma \subset G(\mathbb{R})$ has a congruence subgroup $\Gamma^{\prime} \subset \Gamma$ of finite index which maps injectively to $G^{\prime}(\mathbb{R})$; its image in G^{\prime} is an arithmetic subgroup of $G^{\prime}[B, 7.13(2)]$. Since all theorems we intend to prove about Γ are (equivalent to a theorem) of the form " Γ has a subgroup Γ^{\prime} of finite index such that Γ^{\prime} satisfies ...," we may as well replace Γ by Γ^{\prime}.

Let \mathfrak{g} be the Lie algebra of the group of real points $G(\mathbb{R})$ of G; it is a semisimple Lie algebra, so the Cartan-Killing form B (induced from the canonical bilinear form $(X, Y) \mapsto \operatorname{tr}(X Y)$ on $\operatorname{End}_{\mathbb{R}^{2}}(\mathrm{~g})$ via ad $\left.: \mathrm{g} \rightarrow \operatorname{End}_{\mathbb{R}}(\mathrm{g})\right)$ is nondegenerate. The form B is characteristic (i.e. for all $\theta \in \operatorname{Aut}_{\text {Lie alg }}(\mathrm{g})$ we have $B(X, Y)=B(\theta X, \theta Y)$) and is invariant (i.e. $B([X, Y], Z)=B(X,[Y, Z]))$.

Let H be an inner product on g , i.e. a positive definite real symmetric bilinear form. If we think of a bilinear form also as a map $g \rightarrow g^{*}$ (or as a matrix formed with respect to a basis of g and its dual basis of g^{*}), then an expression like $H^{-1} B$ makes sense as an \mathbb{R}-linear endomorphism of g (and is independent of the choice of basis). We say that H is compatible (with the Lie bracket) if $-H^{-1} B$ is a Lie algebra automorphism of g . One consequence of compatibility is that $\theta:=$ $-H^{-1} B$ is a Cartan involution of g , as we see now. The fact that $\theta^{2}=1$ follows from ' $\theta B \theta=B$ (B is characteristic) and ${ }^{t} \theta B=-B H^{-1} B=B \theta$. Letting $k=(+1)-$ eigenspace of θ and $\mu=(-1)$-eigenspace, we see from $B \theta=-H<0$ that B is negative definite on k and positive definite on h. It follows from ${ }^{\prime} \theta B \theta=B$ that k and h are orthogonal with respect to B, and thus that θ is a Cartan involution.

Another consequence of compatibility is that H is compatible with B in the sense of [G, Definition 7.3]. For the equation $\theta^{2}=1$ may be rewritten as ${ }^{t} B H^{-1} B=H$, which says that B is an isometry $\mathfrak{g} \rightarrow \mathfrak{g}^{*}$ with respect to the inner products H on g and H^{-1} on g^{*}.

Now let X be the space of all compatible inner products on \mathfrak{g}; it is a closed subspace of the space of all inner products on \mathfrak{g}. Suppose F is any Lie algebra automorphism of g : then ' ${ }^{\prime} F B F=B$ because B is characteristic. For any $H \in X$ we
find that $H^{\prime}:=^{t} F H F \in X$, too. See that by computing $-H^{\prime-1} B=F^{-1} \theta F$. Thus we may let G act on X via the adjoint representation, i.e. $(H, g) \mapsto^{\prime}(\operatorname{Ad} g) H(\operatorname{Ad} g)$, $g \in \mathfrak{g}, H \in X$. In terms of θ, the action of G on X is expressed by $\theta \mapsto$ $(\operatorname{Ad} g)^{-1} \theta(\operatorname{Ad} g)$.

Now choose $\Theta: G(\mathbb{R}) \rightarrow G(\mathbb{R})$ a Cartan involution with $\theta=d \Theta$. We require Θ to extend to an algebraic map $G \rightarrow G$ as in [BS, 1.6]; this makes Θ unique even if $G(\mathbb{R})$ is not connected, because G is. It is known that $K:=\{g \in G(\mathbb{R}) \mid \Theta(g)=$ $g\}$ is a maximal compact subgroup of $G(\mathbb{R})$. We now prove that K is the stabilizer of θ (and thus is also the stabilizer of H). Let $C_{g}: G \rightarrow G$ denote conjugation by g, and let ()0 denote "connected component of the identity in." then $\quad \theta=(\mathrm{Ad} g)^{-1} \theta(\mathrm{Ad} g) \quad$ iff $\quad d\left(C_{g}^{-1} \Theta C_{g}\right)=d \Theta \quad$ iff \quad for \quad all $h \in G(\mathbb{R})^{0}$ $\Theta(h)=g^{-1} \Theta(g) \Theta(h) \Theta\left(g^{-1}\right) g$ iff $g^{-1} \Theta(g) \in Z\left(G(\mathbb{R})^{0}\right)=1$ iff $g \in K$. (We know $Z\left(G(\mathbb{R})^{0}\right)=1$ because $Z(G(\mathbb{C}))=1$ and $G(\mathbb{R})^{0}$ is Zariski dense in $\left.G\right)$. Since any two Cartan involutions are conjugate under $G(\mathbb{R})[\mathrm{V}$, Propositions $2 \& 9$, p. 193-195, Part II, Section 1], we have a diffeomorphism $X \approx G(\mathbb{R}) / K$. In particular, we now know that X is contractible [BHC, Lemma 1.7], [B, 9.10].

Since G is defined over \mathbb{Q}, its Lie algebra has a rational structure $\mathfrak{g}_{\mathbb{Q}} \subset \mathfrak{g}$. Moreover, the adjoint representation $G \rightarrow$ Aut ($\mathfrak{g}_{\mathbb{Q}}$) is rational (regular map with rational number coefficients). Let $\Gamma \subset G$ be any arithmetic subgroup. Then by [B, 7.13(1)] we may find an integral structure $\mathfrak{g}_{\mathbb{Z}} \subset \mathfrak{g}_{\mathbb{Q}}$ such that $(\operatorname{Ad} \Gamma) \mathfrak{g}_{\mathbb{Z}} \subset \mathfrak{g}_{\mathbb{Z}}$. Since $\mathfrak{g}_{\mathbb{Q}}$ is a Lie algebra, by clearing denominators (i.e. replacing $\mathfrak{g}_{\mathbb{Z}}$ by $N \mathfrak{g}_{\mathbb{Z}}$ for some large integer N) we can achieve $\left[\mathfrak{g}_{\mathbb{Z}}, \mathfrak{g}_{\mathbb{Z}}\right] \subset \mathfrak{g}_{\mathbb{Z}}$. Having done this, we see that the form B is integral (meaning $\left.B\left(\mathfrak{g}_{\mathbb{Z}}, \mathfrak{g}_{\mathbb{Z}}\right) \subset \mathbb{Z}\right)$. For any $H \in X$, the pair $L=\left(\mathfrak{g}_{\mathbb{Z}}, H\right)$ is an example of what we call a lattice in [G]. Henceforth $\mathfrak{g}_{\mathbb{Z}}$ remains fixed.

By a \mathbb{Q}-subspace W of g we mean an \mathbb{R}-subspace of the form $W=W_{\mathbb{Q}} \otimes \mathbb{R}$, with $W_{\mathbb{Q}} \subset \mathfrak{g}_{\mathbb{Q}}$. For any such W and any inner product H on \mathfrak{g} we defined a number $d_{W}(H)=d(W, H)>0$ in [G, 2.1] with the property that $d_{W}(H)>1$ iff W is in the canonical filtration of L.

For $t \geq 1$ we define $X_{W}(t):=X(W, t):=\left\{x \in X \mid d_{W}(H)>t\right\}$; this is an open subset of X because d_{W} is a continuous function of H, see [G, 3.1]. We will be interested mainly in the case where W is a parabolic \mathbb{Q}-subalgebra of \mathfrak{g}, because the other W 's will correspond to cusps for the larger group $\mathrm{Gl}(\mathrm{g})$ which are "uninhabited" by X (i.e. X does not approach the ends of these other cusps without also approaching the cusp corresponding to a \mathbb{Q}-parabolic). We make this precise as follows. Define $X_{s s}(t)=X-\bigcup_{W} X(W, t)$, where W runs over all parabolic \mathbb{Q}-subalgebras of \mathfrak{g}; this is a closed subspace of X.

If $g \in \Gamma$, then Ad g is a Lie algebra automorphism of $g_{\mathbb{Z}}$, and so we have $g \cdot X(W, t)=X((\operatorname{Ad} g) \cdot W, t)$ as in $[G, 2.2(b)]$. Thus $X_{s s}(t)$ is stable under Γ.

THEOREM 1.1 $X_{s s}(t)$ is compact modulo Γ.

The other properties of $X_{s s}(t)$ present fewer difficulties than compactness.
THEOREM 1.2. There is a constant $c>0$ such that for all $H \in X$ if some $v \in \mathfrak{g}_{\mathbb{Z}}-\{0\}$ has ${ }^{\prime} v H v<c$ then there is a parabloic \mathbb{Q}-subalgebra W of \mathfrak{g} such that $d_{W}(H)>t$.

Proof of 1.1 from 1.2. The set $X_{s s}(t)$ is closed in the space of all inner products on \mathfrak{g}, so we may apply Mahler's compactness criterion [M], [B, Prop. 8.2], [MT, I.1], or [G, 5.2]. From the equation ${ }^{t} B H^{-1} B=H$ we find $\operatorname{det} H=$ $|\operatorname{det} B|$, so $\operatorname{det} H$ is bounded as H ranges over X : this is one of the hypotheses required for Mahler's criterion. The other is a positive lower bound on the numbers ' $v H v$ with $v \in \mathfrak{g}_{\mathbb{Z}}-\{0\}$ and $H \in X_{s s}(t)$, which comes from 1.2. QED

For $H \in X$, let $0=L_{0} \subset L_{1} \subset \cdots \subset L_{s}=L=\left(\mathfrak{g}_{\mathbb{Z}}, H\right)$ be the canonical filtration of L, and let $\sigma_{i}=\operatorname{slope}\left(L_{i} / L_{i-1}\right)$. Notice that $\operatorname{vol} L=(\operatorname{det} H)^{1 / 2}=|\operatorname{det} B|^{1 / 2}$ is independent of H. As in [G, 1.23] we let $\min L=\sigma_{1}$ and $\max L=\sigma_{s}$. We will come back to the proof of 1.2 after some preliminaries.

2. Operations on lattices

Recall that a lattice L is a finitely generated free abelian group equipped with an inner product H on $V=L \otimes_{\mathbb{Z}} \mathbb{R}$. In [G, 7.1] we made the dual L^{*} into a lattice with inner product H^{-1}. We can also make $L_{1} \otimes_{\mathbb{Z}} L_{2}$ into a lattice by using $H_{1} \otimes H_{2}$ as inner product; alternatively, an orthonormal basis for $V_{1} \otimes V_{2}$ will be the tensor product $\left\{e_{i} \otimes f_{j}\right\}$ of orthonormal bases $\left\{e_{i}\right\}$ for V_{1} and $\left\{f_{j}\right\}$ for V_{2}.
We make $\operatorname{Hom}_{\mathbb{Z}}\left(L_{1}, L_{2}\right)=L_{1}^{*} \otimes L_{2}$ into a lattice by combining the previous two definitions. Alternatively, if $g \in \operatorname{Hom}_{\mathbb{Z}}\left(L_{1}, L_{2}\right)$ has matrix $g_{i j}$ with respect to orthonormal bases of V_{1} and V_{2}, then $\|g\|=\left(\sum_{i} \Sigma_{j} g_{i j}^{2}\right)^{1 / 2}$.

Given $f \in \operatorname{Hom}\left(L_{1}, L_{2}\right)$, we define lattices $\operatorname{im} f$ and $\operatorname{coim} f$; both have $f\left(L_{1}\right) \subset L_{2}$ as underlying abelian group, but the inner product on im f comes from L_{2} by restriction, whereas the inner product on coim f comes from L_{1} by orthogonal projection [cf. G, Section 1].

Minkowski's theorem about finding lattice vectors in bounded convex symmetric closed subsets of Euclidean space may be phrased as follows.

THEOREM 2.1 [Minkowski]. Given $n>0$, there is a constant c so that for any lattice L of dimension n some vector $v \in L-\{0\}$ has $\log \|v\|<$ slope $L+c$.

Proof. Let $B(r)$ be the closed ball of radius r in V. Then Minkowski proved that if $\operatorname{vol} B(r) \geq 2^{n} \cdot \operatorname{vol} L$, then $B(r) \cap L \neq\{0\}$. Now take $r=2((\operatorname{vol} L) /$
$(\operatorname{vol} B(1))^{1 / n}$ to fulfill the inequality, producing v. Then $\log \|v\| \leq \log r=\log 2+$ slope $L-1 / n \log \operatorname{vol} B(1)$. QED.

THEOREM 2.2. Suppose L and M are lattices. There is a number c, depending only on the ranks of L and M, so that $\min \operatorname{Hom}(L, M) \geq \min M$ $\max L-c$.

Proof. By 2.1 applied to the first member of the canonical filtration of $\operatorname{Hom}(L, M)$, it is enough to find c so for all nonzero $f \in \operatorname{Hom}(L, M)$ we have $\log \|f\| \geq \min M-\max L-c$. Consider such an f, and let $L^{\prime \prime}=\operatorname{coim} f, M^{\prime}=\operatorname{im} f$, and $f^{\prime} \in \operatorname{Hom}\left(L^{\prime \prime}, M^{\prime}\right)$ be the bijection induced by f. Now M^{\prime} is a sublattice of M and $L^{\prime \prime}$ is a quotient lattice of L, so
slope $M^{\prime} \geq \min M$,
and

$$
\text { slope } L^{\prime \prime} \leq \max L
$$

and thus

$$
\text { slope } M^{\prime}-\operatorname{slope} L^{\prime \prime} \geq \min M-\max L
$$

If we choose orthonormal bases for L and M compatibly with $L^{\prime \prime}$ and M^{\prime}, then the matrix of f has the form $f=\left(\begin{array}{ll}0 & f^{\prime} \\ 0 & 0\end{array}\right)$, so apparently $\|f\|=\left\|f^{\prime}\right\|$. The matrix of f^{\prime} appearing here has been formed with respect to orthonormal bases of $L^{\prime \prime}$ and M^{\prime}, so $\operatorname{vol} M^{\prime}=\left|\operatorname{det} f^{\prime}\right| \cdot\left(\operatorname{vol} L^{\prime \prime}\right)$. Each matrix entry satisfies $\left|f_{i j}^{\prime}\right| \leq\left\|f^{\prime}\right\|$, so letting $n=\operatorname{dim} M^{\prime}=\operatorname{dim} L^{\prime \prime} \quad$ we see that $\quad\left|\operatorname{det} f^{\prime}\right|=\left|\Sigma_{\sigma} \pm f_{\sigma 1,1}^{\prime} \cdots f_{\sigma n, n}^{\prime}\right| \leq n!\cdot\left\|f^{\prime}\right\|^{n}$. Combining everything, we get

$$
\begin{aligned}
& \log \|f\|=\log \left\|f^{\prime}\right\| \\
& \quad \geq \frac{1}{n} \log \left|\operatorname{det} f^{\prime}\right|-\frac{1}{n} \log (n!) \\
& \quad=\frac{1}{n} \log \operatorname{vol} M^{\prime}-\frac{1}{n} \log \operatorname{vol} L^{\prime \prime}-\frac{1}{n} \log (n!) \\
& \quad=\operatorname{slope} M^{\prime}-\operatorname{slope} L^{\prime \prime}-\frac{1}{n} \log (n!) \\
& \quad \geq \min M-\max L-\frac{1}{n} \log (n!) \\
& \quad \geq \min M-\max L-c
\end{aligned}
$$

where $c=\sup \{1 / n \log (n!): n \leq \operatorname{dim} L$ and $n \leq \operatorname{dim} M\} . \quad$ QED.

COROLLARY 2.3. If L and M are lattices, then there is a constant c depending only on the ranks of L and M so that

$$
\min L \otimes M \geq \min M+\min L-c
$$

and
$\max L \otimes M \leq \max M+\max L+c$.
Proof. Apply 2.2 to $\operatorname{Hom}\left(L^{*}, M\right)=L \otimes M$ and use $\min L=-\max L^{*}$. QED.
COROLLARY 2.4. Suppose L, M, and N are lattices, and $f: L \otimes M \rightarrow N$ is a nonzero map. There is a constant c (depending only on $\|f\|$ and the ranks of L, M, and N) such that any sublattices $L^{\prime} \subset L, M^{\prime} \subset M$, and $N^{\prime} \subset N$ with $\min N / N^{\prime}$ $>\max L^{\prime}+\max M^{\prime}+c$ also satisfy $f\left(L^{\prime} \otimes M^{\prime}\right) \subset N^{\prime}$.

Proof. Let $N^{\prime \prime}=N^{*} / N^{\prime}$, and consider the map $f^{\prime}: L^{\prime} \otimes M^{\prime} \rightarrow N^{\prime \prime}$ induced by f. For suitable orthonormal bases, we see that the matrix of f^{\prime} occurs as part of the matrix of f, so $\|f\| \geq\left\|f^{\prime}\right\|$. Applying 2.2 and 2.3 we find constants with

$$
\begin{aligned}
\min \operatorname{Hom}\left(L^{\prime} \otimes M^{\prime}, N^{\prime \prime}\right) & \geq \min N^{\prime \prime}-\max L^{\prime} \otimes M^{\prime}-c_{1} \\
& \geq \min N^{\prime \prime}-\max L^{\prime}-\max M^{\prime}-c_{2}
\end{aligned}
$$

If $f^{\prime} \neq 0$, then we know that
$\log \left\|f^{\prime}\right\| \geq \min \operatorname{Hom}\left(L^{\prime} \otimes M^{\prime}, N^{\prime \prime}\right)$.
Letting $c=\log \|f\|+c_{2}$ we find

$$
\min N / N^{\prime} \leq \max L^{\prime}+\max M^{\prime}+c . \quad \text { QED }
$$

3. The search for parabolic subalgebras

We need the following convenient characterization of parabolic subalgebras, which was used in $[\mathrm{AB}]$.

PROPOSITION 3.1 [AB]. Suppose \mathfrak{g} is semisimple, $W \subset \mathfrak{g}$ is a subalgebra, and the orthogonal W^{\vee} (formed with respect to the Killing form B) is contained in W and is ad ${ }_{\mathrm{n}}$-nilpotent. Then W is parabolic. The converse is also true.

Proof [Ranga Rao]. We tensor everything with \mathbb{C}, so we are dealing with complex Lie algebras, and are in the case where Borel subalgebras exist. Since W^{\vee} is solvable, it is contained in a Borel subalgebra ℓ, Let $״=[1,4]$, and write $h=h \oplus n$, where h is a Cartan subalgebra.

We claim that $W^{\vee} \subset n$. Choose $y \in W^{\vee}$ and write $y=h+n, h \in h, n \in n$. We have an ordering on the roots α so that $n=\sum_{\alpha>0} \mathfrak{g}_{\alpha}$, and $h=\sum_{\alpha \geq 0} \mathfrak{g}_{\alpha}$. If we choose a basis of $\&$ which contains bases for the root spaces, and is totally ordered in a way that extends the partial ordering of the roots, then the matrix of ad, n is strictly lower triangular (because $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{\alpha+\beta}$), and the matrix of ad, h is diagonal. But $\mathrm{ad}_{d}(h+n)=\mathrm{ad}_{g} y$ is nilpotent by hypothesis, so $\mathrm{ad}_{\boldsymbol{\prime}} h=0$. Thus $\alpha(h)=\operatorname{ad}_{\mathrm{q}_{\alpha}}(h)=0$ for $\alpha>0$. Now the simple roots are a basis of h^{*}, and so $h=0$, and thus $W^{\vee} \subset n$.

Next we claim that $n^{\vee}=6$. This follows from $B\left(H, \mathrm{~g}_{\alpha}\right)=0 \quad(\alpha \neq 0)$, $B\left(\mathrm{~g}_{\alpha}, \mathrm{g}_{\beta}\right)=0(\alpha+\beta \neq 0)$, and $\operatorname{dim} n=\operatorname{codim} / 4$.

Finally, we have $\measuredangle=n^{\vee} \subset W^{\vee \vee}=W$, so W contains a Borel subalgebra, and is parabolic (by definition). QED.

Proposition 3.1 describes parabolic subalgebras completely in terms of trilinear and bilinear data, namely $[\cdot, \cdot]: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ and $B: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathbb{R}$. We now see how to apply the facts from section 2 . Recall the notation $L=\left(\mathfrak{g}_{\mathbb{Z}}, H\right)$ for inner products $H \in X$.

LEMMA 3.2. Let $b=[\cdot, \cdot] \in \operatorname{Hom}(L \otimes L, L)$. The norm $\|b\|$ is independent of the choice of $H \in X$.

Proof [D. Kazhdan]. Suppose $H^{\prime} \in X$ also, and $L^{\prime}=\left(g_{\mathbb{Z}}, H^{\prime}\right)$. Then for some $g \in G(\mathbb{R})$ we have $H^{\prime}={ }^{t}(\operatorname{Ad} g) H(\operatorname{Ad} g)$. Since Ad g is a Lie algebra automorphism of \mathfrak{g} we get a commutative diagram

where $V=L \otimes \mathbb{R}, V^{\prime}=L^{\prime} \otimes \mathbb{R}$, and the vertical maps are isometries. The vertical maps do not preserve the integral structure; nevertheless, the diagram shows that $\|b\|=\|b\|^{\prime}$. QED.

For $H \in X$ and $L=\left(\mathrm{g}_{\mathbb{Z}}, H\right)$, we let $0=L_{0} \subset L_{1} \subset \cdots \subset L_{s-1} \subset L_{s}=L$ be the canonical filtration of $L, \sigma_{i}=\operatorname{slope}\left(L_{i} / L_{i-1}\right)$, and $L_{i}^{\vee}=$ the dual with respect to
B. We introduce the notation err (c) to denote any (undetermined) number of absolute value $\leq c$, i.e. $x=y+\operatorname{err}(c)$ will mean $|x-y| \leq c$.

PROPOSITION 3.3. There is a constant $c>0$ so that for all $H \in X$ we have
(P1) $\forall i, j, k \quad \sigma_{i}+\sigma_{j}+c \leq \sigma_{k+1} \Rightarrow\left[L_{i}, L_{j}\right] \subset L_{k}$
(P2) $\forall i$

$$
\sigma_{i+1} \geq \sigma_{i}+c \quad \Rightarrow \exists!j \quad L_{j}=L_{i}^{\vee}, \sigma_{j}=-\sigma_{i+1}+\operatorname{err}(c)
$$

$$
\text { and } \sigma_{j+1}=-\sigma_{i}+\operatorname{err}(c)
$$

Proof. P1 follows from (3.2) and (2.4) because $\sigma_{1}=\max L_{i}$ and $\sigma_{k+1}=\min L /$ L_{k}.

P2 follows from [G, 7.14] and the proof of [G, 7.13]. QED.
PROPOSITION 3.4. With c as in 3.3, assume i satisfies $1 \leq i \leq s-1$ and
(A) $2 c \leq \sigma_{i+1}$,
(B) $\sigma_{i}+c \leq \sigma_{i+1}$, and
(C) $2 \sigma_{i}+c \leq \sigma_{i+1}$.

Then L_{i} is a parabolic subalgebra of \mathfrak{g}.
Proof. By (B) and (P2) we know $L_{i}^{\vee}=L_{j}$ for some j. In addition, $\sigma_{j}=$ $-\sigma_{i+1}+\operatorname{err}(c) \leq-2 c+\operatorname{err}(c) \leq-c$. Were it true that $j \geq i+1$ we would have $\sigma_{j} \geq \sigma_{i+1} \geq 2 c$ as well, so we must have $j \leq i$ and thus $L_{j} \subset L_{i}$.

By (P1) and (C) we know $\left[L_{i}, L_{i}\right] \subset L_{i}$, so L_{i} is a subalgebra of \mathfrak{g}.
For all k we have $\sigma_{j}+\sigma_{k}+c \leq-c+\sigma_{k}+c=\sigma_{(k-1)+1}$, so by (P 1) we have $\left[L_{j}, L_{k}\right] \subset L_{k-1}$, which shows that $L_{i}^{\vee}=L_{j}$ is $\operatorname{ad}_{\mathfrak{g}}$-nilpotent. Now by (3.1) we know L_{i} is parabolic. QED.

Now we have enough to prove Theorem 1.2.
Proof. of Theorem 1.2. Suppose we have an $H \in X_{s s}(t)$. Then for all j $(1 \leq j \leq s)$ we have either $j=1$ (in which case $\sigma_{j} \leq$ slope L); or L_{j-1} is parabolic, in which case $\sigma_{j} \leq \sigma_{j-1}+\log t$; or, finally, L_{j-1} is not parabolic, in which case 3.4 shows that either $\sigma_{j}<2 c$, or $\sigma_{j}<\sigma_{j-1}+c$, or $\sigma_{j}<2 \sigma_{j-1}+c$. We apply descending induction to prove that for each $i<s$ there are a finite number of polynomials $P_{\alpha}^{i}(T)$ with positive coefficients such that $\sigma_{s}<\max _{\alpha} P_{\alpha}^{i}\left(\sigma_{i}\right)$. We find that $\max L=\sigma_{s}<\max _{\alpha} P_{\alpha}^{1}\left(\sigma_{1}\right) \leqslant \max _{\alpha} P_{\alpha}^{1}($ slope $L)$; the latter number is independent of L because slope L is. The dependence of that number on s can be removed because $1 \leqslant s \leqslant \operatorname{dim} \mathfrak{g}$, yielding an upper bound for $\max L$ which is independent of H. Clearly an upper bound on $\max L$ provides also a lower bound on $\min L$,
again using that slope L is independent of H. But $\min L \leq \log \|v\|$ for any nonzero $v \in L$. Thus we have proved the contrapositive of 1.2. QED.

4. Topology

To prove results about $X_{s s}$ we introduce flows on X for each parabolic subalgebra $W \subset \mathrm{~g}$, namely, the geodesic action of $[\mathrm{BS}]$.

LEMMA 4.1. Suppose $W \subset \mathfrak{g}$ is a parabolic subalgebra. Then for some s, g has a filtration by subspaces $0=W^{s+1} \subset \cdots \subset W^{1} \subset W^{0} \subset W^{-1} \subset \cdots \subset W^{-s}=\mathrm{g}$ such that $W^{0}=W, W^{i}=\left(W^{-i+1}\right)^{\vee}$ all i, and $\left[W^{i}, W^{j}\right] \subset W^{i+j}$ all i, j (using the obvious convention when $i+j$ falls outside the range $[s+1,-s]$). Moreover, if W is a \mathbb{Q}-subspace, so is each W^{i}.

Proof. Define $W^{0}=W, W^{1}=W^{\vee}$ (= orthogonal with respect to Killing form B); for $i>1$ define W^{i} inductively by $W^{i}=\left[W^{i-1}, W^{1}\right]$; for $i<0$ define $W^{i}=\left(W^{-i+1}\right)^{\vee}$. This is clearly a filtration, and $W^{s+1}=0$ for some s because W^{1} is nilpotent (3.1). To prove that $\left[W^{i}, W^{j}\right] \subset W^{i+j}$ we may first tensor with \mathbb{C} and make use of roots relative to a Cartan subalgebra $h \subset W^{0}$. [This approach was explained to me by Ranga Rao; I was also able to make a complicated combinatorial proof, using only the Jacobi identity and the invariance of B.] Let S be a set of simple roots chosen so $\alpha \in S \Rightarrow \mathrm{~g}_{\alpha} \subset W$. Then by [H, Exercise 6, p. 87] find a subset $S^{\prime} \subset S$ so W is generated by the subspaces \mathfrak{g}_{α} for $\alpha \in S, \mathfrak{g}_{-\alpha}$ for $\alpha \in S^{\prime}$, and h. The root spaces g_{α} are 1 -dimensional, and if $\alpha, \beta, \alpha+\beta$ are all roots, then $\left[\mathrm{g}_{\alpha}, \mathrm{g}_{\beta}\right]=\mathrm{g}_{\alpha+\beta}$ [H, Prop. 8.4(d)]; if α is a root, then $\left[\mathrm{g}_{\alpha}, \mathrm{g}_{-\alpha}\right] \subset h$ [H , Prop. 8.3(d)]; and $\left[h, \mathrm{~g}_{\alpha}\right] \subset \mathrm{g}_{\alpha}$. We also know that $B\left(h, \mathrm{~g}_{\alpha}\right)=0$; and $B\left(\mathrm{~g}_{\alpha}, \mathrm{g}_{\beta}\right)=0$ if $\alpha+\beta \neq 0$. Introduce the notation $\mathrm{g}(R)=\bigoplus_{\alpha \in R \cap \Delta} \mathfrak{g}_{\alpha}$, where $\Delta=$ the roots, and R is any subset of $\mathbb{Z} \Delta$ (we include $\alpha=0$, and let $\mathrm{g}_{0}=h$). Then we see that $W^{0}=\mathfrak{g}\left(\mathbb{N} S+\mathbb{Z} S^{\prime}\right), W^{1}=\mathfrak{g}\left(\mathbb{Z} \Delta \backslash-\left(\mathbb{N} S+\mathbb{Z} S^{\prime}\right)\right)=\mathfrak{g}\left(T_{1}\right)$, where $T_{i}=$ $\left\{\Sigma_{\alpha \in S} n_{\alpha} \alpha \in \mathbb{Z} \Delta: \Sigma_{\alpha \in S-s^{\prime}} n_{\alpha} \geq i\right\}$ and " \backslash " denotes "complement of." Using the fact that if $\sum n_{\alpha} \alpha$ is a root, then all n_{α} have the same sign, we deduce that $W^{i}=\mathrm{g}\left(T_{i}\right)$ for $i \geq 1$, and then that $W^{-i}=\left(W^{i+1}\right)^{\vee}=\mathrm{g}\left(\mathbb{Z} \Delta \backslash-T_{i+1}\right)=\mathrm{g}\left(T_{-i}\right)$. The conclusion then follows easily. QED.

CONSTRUCTION 4.2. Fix W and W^{i} as in 4.1. Fix an inner product $H \in X$ and its corresponding Cartan involution θ. Use () ${ }^{\perp}$ to denote the orthogonal complement with respect to H. Define $V^{i}=W^{i} \cap\left(W^{i+1}\right)^{\perp}$, so $\mathfrak{g}=V^{s} \oplus \cdots \oplus$ $V^{1} \oplus V^{0} \oplus V^{-1} \oplus \cdots \oplus V^{s}$ is a decomposition orthogonal with respect to H.

By compatibility of H and B, and using [G, proof of 7.5] deduce that
$\left(W^{i+1}\right)^{\perp}=\left(W^{-i}\right)^{\vee \perp}=\theta W^{-i}$ and $V^{i}=W^{i} \cap \theta W^{-i}$. Since θ preserves the bracket, we see that $\left[V^{i}, V^{j}\right] \subset V^{i+j}($ all $i, j)$ and thus we have a Lie algebra grading of \mathfrak{g}. [In terms of roots (after tensoring with \mathbb{C}) we see that $V^{i}=\mathfrak{g}\left(U_{i}\right)$ where $U_{i}=\left\{\sum_{\alpha \in S} n_{\alpha} \alpha: \sum_{\alpha \in S \backslash S^{\prime}} n_{\alpha}=i\right\}$, provided h is chosen to be $\ell \cap \theta \ell$, where ℓ is a Borel subalgebra contained in W.] Given $r \in \mathbb{R}, r>0$, the graded map $F_{r}: \mathfrak{g} \rightarrow \mathfrak{g}$, defined as multiplication by r^{-i} on V^{i}, is a Lie algebra automorphism of \mathfrak{g}. Define $H^{\prime}={ }^{t} F_{r} \cdot H \cdot F_{r} \in X$. The corresponding lattice $L^{\prime}=\left(\mathfrak{g}_{\mathbb{Z}}, H^{\prime}\right)$ will be denoted by $L\{W ; r\}$; the same notation was used in [G, 7.16] for a related concept in a different context.

These operations commute to some extent. If $W^{\prime} \subset W$ are \mathbb{Q}-parabolic subalgebras then

$$
\begin{equation*}
L\left\{W^{\prime} ; r^{\prime}\right\}\{W ; r\}=L\{W ; r\}\left\{W^{\prime} ; r\right\} \tag{4.2.1}
\end{equation*}
$$

This is best seen by examining the root spaces, as in the previous paragraph, the point being that F_{r} is multiplication by a scalar on each root space g_{α}. The hypothesis that $W^{\prime} \subset W$ ensures that we may assume $h \subset W^{\prime}$ and $h \subset W$, so the corresponding map F_{r}^{\prime} is diagonal for the same root space decomposition that F_{r} is diagonal for, and thus F_{r} and F_{r}^{\prime} commute.

LEMMA 4.3. If $W^{\prime} \subset W$ are \mathbb{Q}-parabolic subalgebrras of $\mathfrak{g}, L \in X$, and $r>1$, then
(a) $d(W, L\{W ; r\}) \geq r \cdot d(W, L)$
(a') $d\left(W, L\left\{w, r^{-1}\right\}\right) \leq r^{-1} \cdot d(W, L)$
(b) $d\left(W^{\prime}, L\{W ; r\}\right) \geq d\left(W^{\prime}, L\right)$
(b') $d\left(W^{\prime}, L\left\{W ; r^{-1}\right\}\right) \leq d\left(W^{\prime}, L\right)$.
Remark. It would have been nice to have (b) for the case $W \subset W^{\prime}$, but that is not true.

Proof. Let $V=$ g. Let $0 \subset W^{s} \subset \cdots \subset W^{1} \subset W^{0}=W \subset W^{-1} \subset \cdots$ and $0 \subset$ $W^{\prime s} \subset \cdots \subset W^{\prime 1} \subset W^{\prime 0}=W^{\prime} W^{\prime-1} \subset \cdots$ be chosen as in 4.2. It is not always true that the union of these two filtrations is a filtration, but we can manage anyway. Notice that $(\mathrm{a}) \Rightarrow\left(\mathrm{a}^{\prime}\right)$ and $(\mathrm{b}) \Rightarrow\left(\mathrm{b}^{\prime}\right)$.

We prove (b) assuming $W^{\prime} \neq W$. In the notation of $[G, 2.4]$ we have $L\{W ; r\}=L\left[r^{-s}\right]\left[W^{s} ; r\right] \cdots\left[W^{1} ; r\right]\left[W^{0} ; r\right] \cdots\left[W^{1-s} ; r\right] \quad$ and $W^{s} \subset \cdots \subset W^{1}$ 电 $W^{\prime} \subsetneq W^{0} \subset \cdots \subset W^{1-s}$. Since $d\left(W^{\prime}, L\left[r^{-s}\right]\right)=d\left(W^{\prime}, L\right)$ [see G, 2.1], all we need is the following lemma (from which (a) also follows). QED.

LEMMA 4.4. If L is a lattice, $W^{\prime} \subset W$ are \mathbb{Q}-subspaces of $V=L \otimes_{\mathbb{Z}} \mathbb{R}$ and
$r \geq 1$, then
(a) $d(W, L[W ; r])=r \cdot d(W, L)$
(b) $d\left(W, L\left[W^{\prime} ; r\right]\right) \geq d(W, L)$
(c) $d\left(W^{\prime}, L[W ; r]\right) \geq d\left(W^{\prime}, L\right)$

Proof. Part (a) was proved in [G, 2.4]. By duality [G, 7.1.] (b) will follow from (c). To prove (c) we replace L by $L / W^{\prime} \cap L$; then we must show that $\min (L[W ; r]) \geq \min (L)$ (notation from $[G, 1.23]$. So for each \mathbb{Q}-suspace $U \subset V$ we must show that $\operatorname{vol}(L[W ; r] \cap U) \geq \operatorname{vol}(L \cap U)$. Let $m=\operatorname{dim} U$, choose an orthonormal basis for V which contains an orthonormal basis for W, and write $\Lambda^{m}(U \cap L)=\mathbb{Z} u$, with $u=\sum a_{I} e_{I}$, where $I=\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{N}^{m}$ and $e_{I}=e_{i_{1}} \wedge$ $\cdots \wedge e_{i_{m}}$. Then $\quad \operatorname{vol}(L \cap U)=\|u\|=\left(\sum a_{I}^{2}\right)^{1 / 2}, \quad$ but $\quad \operatorname{vol}(L[W ; r] \cap U)=$ $\left(\sum\left(a_{I} r^{\{\prime\rangle}\right)^{2}\right)^{1 / 2}$, where $\langle I\rangle=$ card $\left\{j: e_{i,} \notin W\right\}$. Since $r \geq 1$, the desired inequality is clear. QED.

Our next goal is to identify the homotopy types of $X_{s s}$, its boundary, and its complement. In order to do these three tasks simultaneously, we abstract the information available to us. We let \mathscr{W} be the partially ordered set of parabolic \mathbb{Q}-subalgebras of \mathfrak{g}; for $W \in \mathscr{W}$ let $h_{W}: X \rightarrow \mathbb{R}$ be the continuous map defined by $h_{W}(x)=\log (d(W, x) / t)$, where t is the fixed number referred to in 1.1. Let $\varphi_{W}: X \times \mathbb{R} \rightarrow X$ be defined by $\varphi_{W}(L, r)=L\left\{W, e^{r}\right\}$. Let $\mathscr{W}_{i}=\{W \in \mathscr{W}: \operatorname{dim} W=$ $i\}$. Let $T=\operatorname{dim} \mathrm{g}$. These data satisfy the following axioms.
(A1) \mathscr{W} is a partially ordered subset which is the disjoint union of subsets \mathscr{W}_{i}, $(i=1, \ldots, T)$, such that $W \in \mathscr{W}_{i}, U \in \mathscr{W}_{j}, W<U \Rightarrow i<j$.
(A2) X is nonempty topological space.
(A3) $\forall W \in \mathscr{W} h_{W}: X \rightarrow \mathbb{R}$ is a continuous map.
(A4) $\forall W \in \mathscr{W} \varphi_{W}: X \times \mathbb{R} \rightarrow X$ is a continuous action of the topological group \mathbb{R} on X, i.e. $\varphi_{W}(x, 0)=x$ and $\varphi_{W}\left(\varphi_{W}(x, r), s\right)=\varphi_{W}(x, r+s)$.
(A5) $\forall W \in \mathscr{W} \forall x \in X$ the map $\mathbb{R} \rightarrow \mathbb{R}$ defined by $r \mapsto h_{W}\left(\varphi_{W}(x, r)\right)$ is an increasing bijection.
(A6) $\forall x \in X \forall W<U \in \mathscr{W}\left[r \geq 0 \Rightarrow h_{W}\left(\varphi_{U}(x, r)\right) \geq h_{W}(x)\right] \quad$ and $\quad[r \leq 0 \Rightarrow$ $\left.h_{W}(x) \geq h_{W}\left(\varphi_{U}(x, r)\right)\right]$.
(A7) The sets $\bar{X}_{W}:=\left\{x \in X: h_{W}(x) \geq 0\right\}$ form a locally finite family, and moreover, any $x \in X$ has a neighborhood \mathscr{U} such that $\left\{W \in \mathscr{W}: \mathscr{U} \cap \bar{X}_{W} \neq \phi\right\}$ is a chain in \mathscr{W}.

We also define $X_{s s}:=\left\{x \in X: \forall W h_{W}(x) \leq 0\right\}$, and $X^{+}=\bigcup_{W \in W} \bar{X}_{W}$. The following proofs will be based solely upon the axioms.

THEOREM 4.5. (a) The boundary $\partial X_{s s}$ is the set $\left\{x \in X_{s s}: \exists W h_{W}(x)=0\right\}$.
(b) There is a deformation retraction of X onto $X_{s s}$ which restricts to a deformation retraction of X^{+}onto $\partial X_{s s}$.
(c) Given $W_{1}<\cdots<W_{m} \in \mathscr{W}$, there is a deformation retraction of X onto $\bar{X}_{W_{1}} \cap \cdots \cap \bar{X}_{W_{m}}$.

First, we need some lemmas.

LEMMA 4.6. Given $W \in \mathscr{W}$, define $\psi_{W}: X \times \mathbb{R} \rightarrow \mathbb{R}$ by decreeing that $\psi_{W}(x, r)=t$ iff $h_{W}\left(\varphi_{W}(x, t)\right)=r$ (such a t exists by (A5)). The map ψ_{W} is continuous.

Proof. Let $\varphi=\varphi_{W}, \quad h=h_{W}, \quad$ and $\psi=\psi_{W}$. Suppose $\psi(x, r)=t$ and $\varepsilon>0$ is given. We know $h(\varphi(x, t))=r$, so by (A5) we may choose $\delta>0$ so $h(\varphi(x, t-\varepsilon))<r-\delta<r+\delta<h(\varphi(x, t+\varepsilon))$. Choose U a neighborhood of x so $\forall y \in \mathscr{U} h(\varphi(y, t-\varepsilon))<r-\delta$ and $r+\delta<h(\varphi(y, t+\varepsilon))$. If $y \in U$ and $s \in(r-\delta, r+\delta)$, then $h(\varphi(y, t-\varepsilon))<s=h(\varphi(y, \psi(y, s)))<h(\varphi(y, t+\varepsilon))$, and thus $t-\varepsilon<\psi(y, s)<t+\varepsilon$. QED.

LEMMA 4.7 [Rectification of φ_{W}]. Define $\varphi_{W}^{\prime}: X \times \mathbb{R} \rightarrow X$ by the formula $\varphi_{W}^{\prime}(x, r)=\varphi_{W}\left(x, \psi_{W}\left(x, r+h_{W}(x)\right)\right)$. The maps $\left\{\varphi_{W}^{\prime}\right\}$ satisfy the axioms (A1)(A7) as well as
(A8) $\forall x \in X \forall r h_{W}\left(\varphi_{W}(x, r)\right)=h_{W}(x)+r \quad$ [equivariance of $\left.h_{W}\right]$.

Proof. Axiom (A8) for φ_{W}^{\prime} follows from the definition.
Check (A4). Continuity follows from the previous lemma. Check $\left.h_{W}\left(\varphi_{W}^{\prime}\left(\varphi_{W}^{\prime}(x, r), s\right)\right)\right)=h_{W}\left(\varphi_{W}^{\prime}(x, r)\right)+s=h_{W}(x)+r+s=h_{W}\left(\varphi_{W}^{\prime}(x, r+s)\right)$; thus $\varphi_{W}^{\prime}\left(\varphi_{W}^{\prime}(x, r), s\right)=\varphi_{W}^{\prime}(x, r+s)$, as both sides are in the orbit of x for the φ_{W} action.

It is immediate that (A8) implies (A5).
To check (A6) notice that $\psi_{W}\left(x, r+h_{W}(x)\right) \geq 0$ iff $r \geq 0$, which itself follows from (A6) for φ_{w}. QED.

Proof of $4.5 a$. For any $\varepsilon>0, \mathrm{~W} \in \mathcal{W}$, and $x \in X_{s s}$ with $h_{W}(x)=0$, we have $h_{W}\left(\varphi_{W}(x, \varepsilon)\right)>0$, and thus $\varphi_{W}(x, \varepsilon) \notin X_{s s}$. since $\varphi_{W}(x, \varepsilon)$ is continuous in ε, we see $x \in \partial X_{s s}$.

Proof of 4.5b. We define the homotopy $H: X \times[0, T] \rightarrow X$ as a composite of
homotopies $H_{1}, \ldots, H_{T}: X \times[0,1] \rightarrow X$, i.e. for $s \in[i-1, i]$ and $x \in X$ we have

$$
H(x, s)=H_{i}\left(H_{i-1}\left(H_{i-2}\left(\ldots H_{1}(x, 1) \ldots, 1\right), 1\right), s-i+1\right) .
$$

Each H_{i} will satisfy $H_{i}(x, 0)=x$ (all $x \in X$) so H will be continuous.
Since 4.5 b makes no reference to the maps φ_{W}, we may use 4.7 to rectify the φ_{W} 's, and thus may assume (A8) is satisfied. Now set

$$
H_{i}(x, s)=\left(\begin{array}{ll}
\varphi_{W}\left(x,-s h_{W}(x)\right) & \text { if } x \in X_{w} \text { and } W \in W_{i} \\
x & \text { if } h_{W}(x) \leq 0 \text { all } W \in \mathscr{W}_{i}
\end{array}\right.
$$

Axioms (A1,7) ensure that the sets $X_{W}\left(W \in \mathscr{W}_{i}\right)$ are disjoint. Since $\varphi_{W}(x, 0)=x$ we see that when the two cases in the definition of H_{i} overlap, they agree; moreover the closed sets involved form a locally finite family, so H_{i} is continuous.

Now we claim that

$$
\begin{equation*}
\forall j \leq i \quad \forall U \in \mathscr{W}_{j} \quad \forall x \in X \quad h_{U}(H(x, i)) \leq 0 \tag{*}
\end{equation*}
$$

We prove this by induction on i, the case $i=0$ being vacuous. Let $z=H(x, i)$ and $y=H(x, i-1)$, so $z=H_{i}(y, 1)$. By the inductive hypothesis, we know that $h_{W}(y) \leq 0$ for $U \in \mathscr{W}_{j}, j>i$. Look at the definition of H_{i} : if $h_{W}(y) \leq 0$ all $W \in \mathscr{W}_{i}$, then $z=y$ and (*) is clear. On the other hand, if $W \in \mathscr{W}_{i}$ and $x \in \bar{X}_{W}$, then $z=\varphi_{W}\left(y,-h_{W}(u)\right)$. Pick $j \leq i$ and $U \in \mathscr{W}_{j}$ and establish (*): there are three cases. If $U=W$ then $h_{U}(z)=h_{W}(z)=h_{W}(y)-h_{W}(y)=0$. If $U<W$, then (A6) yields $h_{U}(z) \leq h_{U}(y) \leq 0$. If $\{U, W\}$ is not a chain, then $h_{W}(z)=0$ forces $h_{U}(z)<0$ by (A7).

Now we check that H provides the deformation retraction we need; this means we must check the following properties:
(i) $H(x, 0)=X$
(ii) $H(x, T) \in X_{s s}$
(iii) $x \in X_{s s} \Rightarrow H(x, s)=x$, all s
(iv) $x \in X^{+} \Rightarrow H(x, s) \in X^{+}$, all s
(v) $x \in X^{+} \Rightarrow H(x, T) \in \partial X_{s s}$

Property (i) is immediate, and (v) follows from the others because $\partial X_{s s}=X^{+} \cap$ $X_{s s}$. Property (ii) is (*) for $i=T$. Property (iii) is immediate from the definition of H_{i}. Property (iv) follows from the analogous statements for each H_{i}, which are immediate. QED.

Proof of $4.5 c$. We replace h_{W} by $h_{W}^{\prime}=-h_{W}$, and φ_{W} by φ_{W}^{\prime} defined as $\varphi_{W}^{\prime}(x, r)=\varphi_{W}(x,-r)$. The axioms (A1-6) are preserved. We replace W by
$\mathscr{W}^{\prime}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$, so now (A7) is satisfied as well, because \mathscr{W} is itself a chain. Now 4.5 b yields what we want. QED.

In order to prove that various subspaces of X are manifolds, we introduce some new axioms, which we show later are satisfied in our situation. These are necessary because, for example, the assertion $M \times \mathbb{R}$ is a manifold does not imply that M is a manifold.
(A9) X is a C^{x}-manifold
(A10) φ_{W} is a C^{x}-map
(A11) If $W<U \in \mathscr{W}$, then φ_{W} and φ_{U} commute, i.e. $\left.\varphi_{W}\left(\varphi_{U}(x, r), s\right)\right)=$ $\varphi_{W}\left(\varphi_{U}(x, s), r\right)$.
(A12) Given $W_{1}<\cdots<W_{s} \in \mathscr{W}$, there are numbers $n_{1} \ldots, n_{s}>0$ so that if we define $\varphi(x, r)=\varphi_{W_{1}}\left(\varphi_{W_{2}}\left(\ldots \varphi_{W_{s}}\left(x, n_{s} r\right) \ldots, n_{2} r\right), n_{1} r\right)$, then $\forall i$ $\forall r \geq 0 \forall x h_{W_{t}}(\varphi(x, r)) \geq r+h_{W_{t}}(x)$. Moreover, there is a C^{x}-map $h: X \rightarrow \mathbb{R}$ so $h(\varphi(x, r)) \geq h(x)+r$, all $x \in X, r \geq 0$.

THEOREM 4.8. Assume (A1-7, 9-12) are satisfied.
(a) $X_{s s}$ is a manifold with boundary, and the boundary is $\partial X_{s s}$.
(b) Given $W_{1}<\cdots<W_{s} \in \mathscr{W}$, the space $\bar{X}_{W_{1}} \cap \cdots \cap \bar{X}_{W_{s}}$ is a manifold with boundary.

Proof. Using "inversion" as in the proof of 4.5 c , we see that (b) follows from (a).

The idea for proving (a) comes from [G, proof of 3.4]. We see that the differential $d h$ is nonzero everywhere (look at the composite $r \mapsto h(\varphi(x, r)$), so the level set $h^{-1}(\{0\})$ is a submanifold of X of codimension 1 , and is the boundary ∂Y of the manifold $Y=h^{-1}((-\infty, 0])$.

Now suppose we choose a point $x \in X$ and try to show that $X_{s s}$ is a manifold near x, assuming $x \in \partial X_{s s}$. We use (A7) to choose a neighborhood \mathscr{U} of x and let $\left\{W_{1}<\cdots<W_{s}\right\}=\left\{W \in \mathscr{W}: \mathscr{U} \cap \bar{X}_{W} \neq \phi\right\}$. Define $h^{\prime}(x)=\sup _{i}\left\{h_{W_{i}}(x)\right\}$ for $x \in$ X, so letting $Y^{\prime}=h^{\prime-1}((-\infty, 0])$, we have $\mathscr{U} \cap X_{s s}=U \cap Y^{\prime}, \partial Y^{\prime}=h^{\prime-1}(\{0\})$, and $\mathscr{U} \cap \partial X_{s s}=\mathscr{U} \cap \partial Y^{\prime}$; thus it will suffice to prove that Y^{\prime} is a manifold with boundary ∂Y^{\prime}. From (A12) we see that

$$
\text { (A13) } h^{\prime}(\varphi(x, r)) \geq h^{\prime}(x)+r, \text { all } x \in X, r \geq 0 \text {. }
$$

Then using 4.6 for h and h^{\prime}, it is not hard to set up a homeomorphism $Y \simeq Y^{\prime}$ which restricts to a homeomorphism $\partial Y \simeq \partial Y^{\prime}$.

PROPOSITION 4.9. (A9-12) are actually satisfied in our situation.

Proof. (A9, 10) are clear; (A11) was proved in 4.2.1.
Prove (A12). We define $h(x)=\operatorname{slope}\left(x / x \cap W_{1}\right)-\operatorname{slope}\left(x \cap W_{1}\right)$; it is a C^{x} function*. We let $N=\operatorname{dim} \mathfrak{g}$, and define $n_{i}=N \cdot i$. It is easy to check the required properties in terms of root spaces. Each W_{i} and its orthogonal complement for the inner product H is a sum of root spaces, and each $\varphi_{W_{r}}$ comes from a map F_{r} which is diagonal with respect to the root space decomposition. The numbers n_{i} have been chosen to make it clear that the composite of all these maps F_{r} has the following property: for each W_{i}, the scalars occurring in W_{i} are strictly smaller than the scalars occurring in its orthogonal complement. The result follows then from 4.4. QED.

5. Conclusion

THEOREM 5.1. Suppose $t>1$. The space $X_{s s}(t)$ is a manifold with boundary, is contractible, and is compact modulo Γ. The boundary is homotopy equivalent to the Tits building by a homotopy equivalence which respects the action of Γ.

Proof. We combine $4.8 \mathrm{~b}, 4.5 \mathrm{~b}$, and 1.1 to get the assertion about $X_{s s}$.
Now consider the covering $X^{+}=\bigcup_{W \in W} \bar{X}_{W}$ by closed subsets; we will use [BS, 8.1, 8.2] to identify its homotopy type.

Suppose $W_{1}, \ldots, W_{s} \in \mathscr{W}$. If they do not form a chain, then $\bar{X}_{W_{1}} \cap \cdots \cap$ $\bar{X}_{W_{s}}=\phi$, by (A7). If they do form a chain, then $\bar{X}_{W_{1}} \cap \cdots \cap \bar{X}_{W_{s}}$ is a contractible manifold with boundary, according to 4.5 c , contractibility of X, and 4.8 b , and thus is an absolute retract [BS, 8.1].

Now we apply [BS, 8.2.1] to conclude that X^{+}(and thus $\partial X_{s s}$ also, by 4.5 b) is Γ-homotopy equivalent to the simplicial complex associated to the poset A of \mathbb{Q}-parabolic subalgebras of \mathfrak{g}, and thus to the Tits building of G. QED.

Thus we have proved for our space $X_{s s}$ the same qualitative properties which Borel and Serre prove for their manifold with corners \bar{X}, namely [BS, 8.4.2 and 9.3]. The cohomological properties for Γ deduced in [BS, Section 11, except for 11.3] can be derived using $X_{s s}$, except that we must appeal to [KS, p. 123] for the fact that $X_{s s} / \Gamma$ is equivalent to a finite simplicial complex, and appeal to [B, 9.10] for the fact that Γ contains only finitely many conjugacy classes of torsion elements (which implies that Γ contains a torsion-free subgroup of finite index).

[^1]Ultimately, I hope that both of these latter facts can be proved directly by these methods.

REFERENCES

[AB] M. Atiyn and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos, Trans. Roy. Soc. London, Ser. A 308 (1983) 523-615.
[B] A. Borel, Introduction aux groupes arithmétiques, Hermann, Paris 1969.
[BHC] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. 75 (1962) 485-535.
[BS] A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436.
[G] D. Grayson, Reduction theory using semistability, Comment. Math. Helv. 59 (1984) 600.
[Hal] G. Harder, Minkowskische Reduktionstheorie uber Funktionenkörpern, Inv. math. 7 (1969) 33-54.
[Ha2] G. Harder, A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Scient. Ec. Norm. Sup., 4 (1971) 409-455.
[H] J. Humphreys, Introduction to Lie algebras and Representation Theory, Springer, New York, Heidelberg, Berlin, 1972.
[KS] R. Kirby and L. Siebenmann, Foundational essays on topological manifolds, smoothing, and triangulations, Annals of Math. Study 88, Princeton Univ. Press, 1977.
[M] K. Mahler, On lattice points in n-dimensional star bodies, I, Existence theorems, Proc. Roy. Soc. London, Ser. A, 187 (1946) 151-187.
[MT] G. D. Mostow and T. Tamagawa, On the compactness of arithmetically defined homogeneous spaces, Ann. of Math. 76 (1962) 446-463.
[V] V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Mathematics 576, Springer, Berlin, Heidelberg, NY.
[W] F. Warner, Introduction to Differentiable manifolds and Lie groups, Scott, Foresman, 1971, Glenview, III.

University of Illinois
Urbana, Il 61801/USA

Received February 24, 1986

[^0]: ${ }^{1}$ Supported by NSF grant MCS 82-02692 and the University of Illinois. Address: Department of Mathematics, 1409 W. Green St., Urbana, IL 61801.

[^1]: * One may choose a basis so that each of these slopes is a constant times the log of the determinant of a principal minor of the matrix (or its inverse) of the inner product x.

