Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 65 (1990)

Artikel: Multiple fibres of a morphism.

Autor: Serrano, Fernando

DOI: https://doi.org/10.5169/seals-49726

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 01.02.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Multiple fibres of a morphism

FERNANDO SERRANO

§0. Introduction

Let us be given a proper, surjective, holomorphic map $\varphi: X \to C$ with connected fibres from a complex manifold onto a smooth quasiprojective curve C. Let $\{m_1, \ldots, m_t\}$ be the (global) multiplicities of the multiple fibres of φ , and denote by F a general fibre. The aim of this paper is to compute the homology of the natural complex of abelian groups

$$H_1(F, \mathbb{Z}) \to H_1(S, \mathbb{Z}) \xrightarrow{\varphi \star} H_1(C, \mathbb{Z}) \to 0$$

in terms of the multiplicities $\{m_1, \ldots, m_t\}$. Namely, a suitable exact sequence

$$H_1(F,\mathbb{Z}) \to H_1(S,\mathbb{Z}) \to H_1(C,\mathbb{Z}) \times G(\varphi) \to 0$$

is constructed, where $G(\varphi) := \operatorname{Coker}(f : \mathbb{Z} \to \bigoplus_i \mathbb{Z}/m_i\mathbb{Z})$ and $f(1) = (\overline{1}, \ldots, \overline{1})$.

Next we will address the question of the variation of $G(\varphi)$ and $\bigoplus_{i=1}^t \mathbb{Z}/m_i\mathbb{Z}$ under smooth deformations of φ (with the extra assumption that X and C are compact). It will be shown in §2 that both groups are actually invariant under deformation. The proof for $G(\varphi)$ relies on the above exact sequence plus the fact that a smooth analytic map is differentiably locally trivial. Then a base change trick will give the invariance of $\bigoplus_i \mathbb{Z}/m_i\mathbb{Z}$.

All this generalizes the already known situation for elliptic surfaces: when X is a compact surface and F is a curve of genus 1, the above exact sequence on homology groups can be deduced from the explicit description of the fundamental group of the surface ([8]). For a larger fibre genus such a description is lacking in general. As to the behaviour under deformation, the picture is neater for these two-dimensional elliptic fibrations: Iitaka has proved in [7] that the set of multiplicities of the fibres is a deformation invariant in this case.

Finally, I want to express my thanks to J. Kollar for a helpful remark.

§1. Homology groups

We shall be working over the field of complex numbers. Our complex manifolds are by definition connected, non-singular analytic varieties. A curve C is a quasiprojective complex manifold of dimension one. Equivalently, the smooth compactification of C differs from C at finitely many points only. In this paper a fibration is defined to be a proper, surjective holomorphic map from a complex manifold onto a smooth curve, all of whose fibres are connected. We will also use the following notation:

- $-\mathbb{Z}_m := \text{integers } \mathbb{Z} \text{ modulo } (m)\mathbb{Z}.$
- tor H :=torsion of an abelian group H.
- $\pi_1(X) :=$ fundamental group of X.
- $h^i \mathcal{O}_X := \dim_{\mathbb{C}} H^i(X, \mathcal{O}_X)$, where \mathcal{O}_X is the structure sheaf of X.

Let $\varphi: X \to C$ be a fibration, and $F = \sum n_i B_i$ a fibre of φ where the B_i 's are the irreducible reduced components of F and the n_i 's are their multiplicities. Let m be the greatest common divisor of the n_i 's. We say that m is the multiplicity of F and write F = mD, where $D = \sum (n_i/m)B_i$. Whenever we say "let mD be a multiple fibre" we shall always mean that m is the multiplicity of mD and $m \ge 2$.

Let $\varphi: X \to C$ be a fibration and let $m_1 D_1, \ldots, m_t D_t$ be all its multiple fibres.

DEFINITION 1.1.

$$G(\varphi) := \operatorname{Coker} \left(\mathbb{Z} \to \bigoplus_{i=1}^{t} \mathbb{Z}_{m_i} \right) \qquad 1 \mapsto (1, \dots, 1)$$

$$L(\varphi) := \bigoplus_{i=1}^{t} \mathbb{Z}_{m_i}.$$

If μ is the least common multiple of m_1, \ldots, m_t , by dualizing the sequence

$$0 \to \mathbb{Z}_{\mu} \to \bigoplus_{i=1}^{\ell} \mathbb{Z}_{m_i} \to G(\varphi) \to 0$$

we obtain an alternative description of $G(\varphi)$ as

$$G(\varphi) = \operatorname{Ker}\left(\bigoplus_{i=1}^{\tau} \mathbb{Z}_{m_i} \to \mathbb{Z}_{\mu}\right) \qquad (a_1, \ldots, a_t) \mapsto \sum_{i=1}^{\tau} a_i(\mu/m_i).$$

The third characterization that follows will be used later:

LEMMA 1.2. Write $\bigoplus_{i=1}^{t} \mathbb{Z}_{m_i} \simeq \bigoplus_{j=1}^{k} \mathbb{Z}_{d_j}$ where each d_j divides d_{j+1} . Then

$$G(\varphi) \simeq \bigoplus_{j=1}^{k-1} \mathbb{Z}_{d_j}.$$

Proof. Since $\mu/m_1, \ldots, \mu/m_t$ are relatively prime, we can find integers $\lambda_1, \ldots, \lambda_t$ such that $\sum_{i=1}^{t} (\lambda_i \mu/m_i) = 1$. The homomorphism

$$\bigoplus_{i=1}^t \mathbb{Z}_{m_i} \to \mathbb{Z}_{\mu} \qquad (a_1, \ldots, a_t) \mapsto \sum_{i=1}^t a_i (\lambda_i \mu / m_i)$$

is a retraction of $0 \to \mathbb{Z}_{\mu} \to \bigoplus_{i=1}^{t} \mathbb{Z}_{m_i} \to G(\varphi) \to 0$, and this sequence splits. If we put $G(\varphi) = \bigoplus_{j=1}^{r} \mathbb{Z}_{e_j}$ with e_j dividing e_{j+1} for all j, then all e'_j 's divide μ and

$$\bigoplus_{i=1}^{r} \mathbb{Z}_{m_i} = G(\varphi) \oplus \mathbb{Z}\mu = \left(\bigoplus_{j=1}^{r} \mathbb{Z}_{e_j}\right) \oplus \mathbb{Z}_{\mu}.$$

Since the d'_j 's are uniquely determined, it follows that $(d_1, \ldots, d_{k-1}, d_k) = (e_1, \ldots, e_r, \mu)$.

Now it comes the main result of this paper. Our proof has been inspired in that of Prop. 1.41 of [2].

THEOREM 1.3. Let $\varphi: X \to C$ be a fibration from the complex manifold X onto a smooth curve C. Denote by m_1D_1, \ldots, m_tD_t all multiple fibres of φ , and let F be any smooth fibre, and $G := G(\varphi)$. Then there exists an exact sequence

$$H_1(F, \mathbb{Z}) \to H_1(X, \mathbb{Z}) \to H_1(C, \mathbb{Z}) \times G \to 0$$

induced by φ and the inclusion of F into X.

Proof. Let

$$\Omega = \{ p \in C \mid \varphi^{-1}(p) \text{ is singular} \}, \qquad \tilde{C} = C - \Omega, \quad \tilde{X} = X - (\bigcup_{p \in \Omega} \varphi^{-1}(p)).$$

Consider the following commutative diagram with exact rows and columns, whose homomorphisms come from the obvious inclusions and restrictions:

$$0 \longrightarrow M \xrightarrow{\varepsilon} H_1(X, \mathbb{Z}) \xrightarrow{\varphi^*} H_1(C, \mathbb{Z}) \longrightarrow 0$$

$$\uparrow^f \qquad \uparrow^g \qquad \uparrow^h$$

$$H_1(F, \mathbb{Z}) \longrightarrow H_1(\widetilde{X}, \mathbb{Z}) \xrightarrow{\sigma} H_1(\widetilde{C}, \mathbb{Z}) \longrightarrow 0$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$N_1 \xrightarrow{\tau} N_2$$

$$\uparrow \qquad \uparrow$$

$$0 \qquad 0$$

M, N_1 and N_2 are defined to be the kernels of the corresponding homomorphisms. The second row is exact because $\tilde{X} \to \tilde{C}$ is a C^{∞} -fibre bundle.

CLAIM 1. The cokernel of $\tau: N_1 \to N_2$ is a quotient of G.

Proof of Claim 1. Given $p \in \Omega$, denote by γ_p a simple loop around p in \tilde{C} . The group N_2 is generated by all the γ_p , $p \in \Omega$, with the single relation $\Pi_{p \in \Omega} \gamma_p = 0$.

If B is a component of multiplicity n of a fibre $\varphi^{-1}(p)$, $p \in \Omega$, then there is a loop α in \tilde{X} around B such that $\alpha \in N_1$ and $\tau(\alpha) = n\gamma_p$. Consequently, if m is the total multiplicity of $\varphi^{-1}(p)$ then $m\gamma_p \in \text{Im}(\tau)$, and the claim follows.

CLAIM 2. There exists an exact sequence:

$$H_1(F, \mathbb{Z}) \xrightarrow{f} M \xrightarrow{\rho} \operatorname{Coker}(\tau) \longrightarrow 0.$$

Proof of Claim 2. Define the map $\rho: M \to \operatorname{Coker}(\tau)$ as follows. Given $x \in M$, there is $y \in H_1(\widetilde{X}, \mathbb{Z})$ such that $g(y) = \varepsilon(x)$. Thus $\sigma(y) \in N_2$, and we write $\rho(x)$ as the class of $\sigma(y)$ in $N_2/(\operatorname{Im}(\tau))$. An easy diagram-checking shows that the above sequence is exact. This is nothing else than the so-called Snake Lemma, but later we are going to use the explicit description of the map ρ .

CLAIM 3. There exists a commutative diagram with exact rows and columns as follows:

$$H_{1}(F, \mathbb{Z}) \xrightarrow{f} M \xrightarrow{\rho} \operatorname{Coker}(\tau) \longrightarrow 0$$

$$\downarrow^{f} \downarrow^{\epsilon} \qquad \uparrow^{\theta} \qquad \uparrow^{\theta}$$

$$H_{1}(X, \mathbb{Z}) \xrightarrow{\lambda} G$$

$$\downarrow^{\varphi^{*}}$$

$$H_{1}(C, \mathbb{Z})$$

$$\downarrow^{0}$$

Proof of Claim 3. $\theta: G \to \operatorname{Coker}(\tau)$ is the epimorphism of Claim 1, and $j = \varepsilon \circ f$ by definition. We must define λ and prove $\rho = \theta \circ \lambda \circ \varepsilon$. The fundamental group $\pi_1(\tilde{C})$ is generated by elements $\alpha_i, \beta_i, \gamma_p, \delta_i$ (for i from 1 up to genus of \tilde{C} , $p \in \Omega$, and δ_j corresponding to the "holes" of C) with the unique relation $(\Pi_i \alpha_i \beta_i \alpha_i^{-1} \beta_i^{-1})(\Pi_j \delta_j)(\Pi_{p \in \Omega} \gamma_p) = 1$. Given $p \in \Omega$ and m(p) = multiplicity of $\varphi^{-1}(p)$, there corresponds to $\varphi^{-1}(p)$ a direct summand $\mathbb{Z}_{m(p)}$ in $\bigoplus_{i=1}^{t} \mathbb{Z}_{m_i}$, with $\mathbb{Z}_{m(p)} = 0$ in case m(p) = 1. Define an epimorphism $\pi_1(\tilde{C}) \to G$ by mapping γ_p to the image of $\bar{1} \in \mathbb{Z}_{m(p)} \subseteq \bigoplus_i \mathbb{Z}_{m_i}$ in G, and all $\alpha_i, \beta_i, \delta_j$ to 0. We get in this fashion a ramified covering $B \to C$, unramified outside Ω and such that the ramification index on points over $p \in \Omega$ divides m(p). If Y denotes the normalization of $X \times_C B$ then $Y \rightarrow X$ is unramified with group G (see the proof of [1], III 9.1, valid in any dimension), and thus it is determined by an epimorphism $\pi_1(X) \to G$ which descends to an epimorphism $\lambda: H_1(X, \mathbb{Z}) \to G$. The preimage of F by $Y \to X$ splits into as many components as the order of G, so that the induced map $\pi_1(F) \to G$ is 0. It follows that $\lambda \circ j = 0$. Finally, the commutativity of the diagram of Claim 3 stems from the description of ρ given in Claim 2 combined with the commutativity of the following diagram:

$$(*) \begin{array}{c} H_1(X,\mathbb{Z}) \xrightarrow{\lambda} & G \\ & & \uparrow \\ H_1(\widetilde{X},\mathbb{Z}) \xrightarrow{\sigma} H_1(\widetilde{C},\mathbb{Z}) \end{array} \xrightarrow{Coker} (\tau)$$

CLAIM 4. θ is an isomorphism.

Proof of Claim 4. Since $\lambda \circ j = 0$, one has a commutative diagram

$$M/\operatorname{Im}_{\lambda \circ \tilde{\varepsilon}} \overset{\sim}{\longrightarrow} \operatorname{Coker}(\tau)$$

$$\uparrow_{\theta}$$

$$G$$

In particular, Coker (τ) is a direct summand of G. Now it suffices to show that $\lambda \circ \bar{\varepsilon}$ is surjective. The class of the loop γ_p in $H_1(\tilde{C}, \mathbb{Z})$ maps by $q: H_1(\tilde{C}, \mathbb{Z}) \to G$ to the image of $\bar{1} \in \mathbb{Z}_{m(p)} \subseteq \bigoplus_{i=1}^t \mathbb{Z}_{m_i}$ in G. By the commutativity of the diagram (*) above, one gets that if $\sigma(x) = \gamma_p$ then $g(x) \in \text{Im } (\varepsilon)$, and $(\lambda \circ g)(x)$ is also the image of $\bar{1} \in \mathbb{Z}_{m(p)}$ in G. Consequently $\lambda \circ \bar{\varepsilon}$ is surjective, as we wanted.

CLAIM 5. The following sequence is exact:

$$H_1(F, \mathbb{Z}) \xrightarrow{j} H_1(X, \mathbb{Z}) \xrightarrow{(\lambda, \varphi_{\bullet})} G \times H_1(C, \mathbb{Z}) \to 0.$$

Proof of Claim 5. Clearly Im $(j) \subseteq \operatorname{Ker}(\lambda, \varphi_*)$. Conversely if $x \in \operatorname{Ker}(\lambda, \varphi_*)$ then $x \in M$ and $\rho(x) = 0$, so that $x \in \operatorname{Im}(j)$. Let us finally prove the surjectivity of (λ, φ_*) . Let $(y, z) \in G \times H_1(C, \mathbb{Z})$. There exists an element $x \in H_1(H, \mathbb{Z})$ such that $\varphi_*(x) = z$. Since $\lambda \circ \varepsilon$ is surjective, one can find $t \in M$ such that $\lambda(\varepsilon(t)) = y - \lambda(x)$. Then $\lambda(x + \varepsilon(t)) = y$ and $\varphi_*(x + \varepsilon(t)) = z$. This ends the proof of Theorem 1.3.

For the remainder of this section we will assume all complex manifolds to be projective algebraic.

REMARK 1.4. When X is a compact surface and F is a curve of genus 1 (i.e. when $\varphi: X \to C$ is an elliptic fibration) one has a more accurate information. If φ has a singular fibre other than a multiple of a smooth curve, then the homomorphism $H_1(F, \mathbb{Z}) \to H_1(X, \mathbb{Z})$ is the zero map ([2], 1.39). In particular $h^1 \mathcal{O}_X = h^1 \mathcal{O}_C$ in this case. For the other cases see [11]. In general, the fundamental group of an elliptic surface can be almost completely described ([8]).

A fibration $\varphi: X \to C$ induces a surjective morphism $Alb(X) \to Alb(C)$ between the corresponding Albanese varieties, so that one always has the inequality $h^1 \mathcal{O}_X \ge h^1 \mathcal{O}_C$. Furthermore, one gets the equality $h^1 \mathcal{O}_X = h^1 \mathcal{O}_C$ if and only if either $h^1 \mathcal{O}_X = 0$ or φ coincides with the map from X onto its image by $X \to Alb(X)$. This is a consequence of the universal property of the Albanese variety and uses in a crucial way the connectedness of the fibre of φ .

Denote by tor(H) the torsion of an abelian group H. From Theorem 1.3 one immediately gets.

COROLLARY 1.5. Let J denote the image of $H_1(F, \mathbb{Z})$ in $H_1(X, \mathbb{Z})$. Then there is an exact sequence

$$0 \to \text{tor } J \to \text{tor } H_1(X, \mathbb{Z}) \to G.$$

Furthermore, tor $H_1(X, \mathbb{Z}) \to G$ is surjective provided that $h^1 \mathcal{O}_X = h^1 \mathcal{O}_C$.

We recall that tor $H_1(X, \mathbb{Z}) \simeq \text{tor } H^2(X, \mathbb{Z})$ (non-canonically). The following Proposition describes explicitly some of the elements of tor $H^2(X, \mathbb{Z})$ in case $h^1 \mathcal{O}_X = h^1 \mathcal{O}_C$. Let $m_1 D_1, \ldots, m_t D_t$ be the multiple fibres of a fibration $\varphi \colon X \to C$, and denote μ the least common multiple of m_1, \ldots, m_t . Since $\mu/m_1, \ldots, \mu/m_t$ are relatively prime, there exist integers $\lambda_1, \ldots, \lambda_t$ such that $\sum_{i=1}^t (\lambda_i \mu/m_i) = 1$ Let $D = \sum_{i=1}^t \lambda_i D_i$. Denote by [E] the class in $H^2(X, \mathbb{Z})$ of a divisor E, and $G := G(\varphi)$.

PROPOSITION 1.6. If $h^1\mathcal{O}_X = h^1\mathcal{O}_C$, then the classes $\{[D_i - (\mu/m_i)D] | i = 1, ..., t\}$ generate a subgroup of tor $H^2(X, \mathbb{Z})$ isomorphic to G.

Proof. First we remark that the subgroup generated by these classes is precisely $\{\Sigma_{i=1}^t \alpha_i[D_i] \mid \alpha_i \in \mathbb{Z}, \Sigma_{i=1}^t (\alpha_i/m_i) = 0\}.$

In order to avoid technical difficulties we will reduce the proof to the case dim X=2. Take successive general hyperplane sections of X so as to get a smooth surface S. We have $h^1\mathcal{O}_S=h^1\mathcal{O}_X$ and $H^2(X,\mathbb{Z})\to H^2(S,\mathbb{Z})$ one-to-one ([5], §1). By Lemma 1.8, the multiple fibres of the restriction $\varphi|_S:S\to C$ come as linear sections of the multiple fibres of φ , and have the same multiplicities. Therefore the Proposition is true for X as long as it holds for S. From now onwards we will assume dim X=2.

If F is a general fibre of φ then

$$m_i[D_i - (\mu/m_i)D] = [m_iD_i] - [\mu D]$$

= $[F] - [F] = 0.$

Thus $[D_i - (\mu/m_i)D] \in \text{tor } H^2(X, \mathbb{Z})$. Define the homomorphisms:

$$\sigma: \mathbb{Z} \to \bigoplus_{i=1}^{t} \mathbb{Z}_{m_i}, \qquad \rho: \bigoplus_{i=1}^{t} \mathbb{Z}_{m_i} \to \text{tor } H^2(X, \mathbb{Z})$$

as $\sigma(1) = \sum_{i=1}^{t} \lambda_i e_i$, $\rho(e_i) = [D_i - (\mu/m_i)D]$, where $e_i = (0, \dots, 0, \overline{1}, 0, \dots, 0)$, ($\overline{1}$ in the *i*th-position).

CLAIM 1. The sequence

$$\mathbb{Z} \xrightarrow{\sigma} \bigoplus_{i=1}^{t} \mathbb{Z}_{m_i} \xrightarrow{\rho} \text{tor } H^2(X, \mathbb{Z})$$

is exact.

Proof of Claim 1. First note that

$$\rho\left(\sum_{i=1}^{t} \lambda e_i\right) = \left[\left(\sum_{i} \lambda_i D_i\right) - \sum_{i} (\lambda_i \mu/m_i)D\right]$$
$$= [D - D] = 0$$

Hence Im $(\sigma) \subseteq \text{Ker } (\rho)$. Now assume $\rho(\Sigma_{i=1}^t \gamma_i e_i) = 0$, and put $\delta := \Sigma_i (\gamma_i \mu/m_i)$. From $[(\Sigma_i \gamma_i D_i) - \delta D] = 0$ it follows that $(\Sigma_i \gamma_i D_i) - \delta D$ belongs to the Picard variety of X, denoted Pic° (X). As indicated before, the fact that $h^1 \mathcal{O}_X = h^1 \mathcal{O}_C$

implies that the Albanese varieties of X and C are isomorphic, hence also their Picard varieties are isomorphic. The symbol \sim is going to denote linear equivalence of divisors. Obviously the restriction $\operatorname{Pic}^{\circ}(C) \to \operatorname{Pic}^{\circ}(D_k)$ is the zero map, and it follows that $(\Sigma_{i=1}^t \gamma_i D_i - \delta D)_{|D_k} \sim 0$. We know that $(D_i)_{|D_k} \sim 0$ if $i \neq k$, and $(D_k)_{|D_k}$ is torsion of order m_k in $\operatorname{Pic}(D_k)$ ([1]; III 8.3). Combining with $D_{|D_k} \sim \lambda_k (D_k)_{|D_k}$ one gets $(\gamma_k - \delta \lambda_k)(D_k)_{|D_k} \sim 0$, which implies that $\gamma_k - \delta \lambda_k$ is a multiple of m_k . Thus $\Sigma_i \gamma_i e_i = \delta \Sigma_i \lambda_i e_i \in \operatorname{Im}(\sigma)$, as we wanted.

CLAIM 2. Ker
$$(\sigma) = (\mu)\mathbb{Z}$$

Proof of Claim 2. Let $(v)\mathbb{Z} := \operatorname{Ker}(\sigma)$. Multiplying the equation $\sum_{i=1}^{t} (\lambda_i \mu/m_i) = 1$ by m_k we obtain that $\lambda_k \mu$ is a multiple of m_k . Hence $\sigma(\mu) = 0$ and one can write $\mu = v \cdot d$ for some $d \in \mathbb{Z}$. Since m_i divides $\lambda_i v$ we have $\sum_i (\lambda_i v/m_i) \in \mathbb{Z}$. On the other hand $1 = \sum_i (\lambda_i \mu/m_i) = d \sum_i (\lambda_i v/m_i)$, so that d = 1 and Claim 2 follows.

The exact sequence

$$0 \to \mathbb{Z}_{\mu} \xrightarrow{\bar{\sigma}} \bigoplus_{i=1}^{t} \mathbb{Z}_{m_{i}} \longrightarrow \operatorname{Im}(\rho) \longrightarrow 0$$

splits because $\bar{\sigma}$ admits a retraction τ defined by $\tau(e_i) = \mu/m_i$. Let $\operatorname{Im}(\rho) \simeq \bigoplus_{j=1}^r \mathbb{Z}_{b_j}$ with b_j dividing b_{j+1} for all j. Since $\operatorname{Im}(\rho)$ is a quotient of $\bigoplus_{i=1}^r \mathbb{Z}_{m_i}$ we see that b_r divides μ . Hence

$$\bigoplus_{i=1}^{l} \mathbb{Z}_{m_i} \simeq \mathbb{Z}_{b_1} \oplus \cdots \oplus \mathbb{Z}_{b_r} \oplus \mathbb{Z}_{\mu}$$

The uniqueness of this decomposition together with Lemma 1.2 imply that $Im(\rho) \simeq G$.

Finally we will prove some results used before.

LEMMA 1.7. Let $V \subseteq \mathbb{P}^n$ be a reduced variety of dimension ≥ 2 , and denote by $(\mathbb{P}^n)^V$ the variety of hyperplanes. Then $\dim \{L \in (\mathbb{P}^n)^V \mid L \cap V \text{ is non-reduced}\} \leq n-2$.

Proof. Let $\Gamma = \{(P, L) \in V \times (\mathbb{P}^n)^V \mid L \cap V \text{ is non-reduced at } P\}$, and $\Omega = \{(P, L) \in V \times (\mathbb{P}^n)^V \mid L \cap V \text{ is singular at } P\}$. One has dim $\Omega = n - 1$ ([6], II 8.18) and $\Gamma \subseteq \Omega$, so that dim $\Gamma \le n - 1$. On the other hand, if $\pi : \Gamma \to (\mathbb{P}^n)^V$ denotes the projection and $L \in \text{Im } \pi$ then dim $\pi^{-1}(L) \ge 1$. We conclude dim $\text{Im } \pi \le n - 2$. \square

LEMMA 1.8. Let $\varphi: X \to C$ be a fibration from the smooth projective variety X of dimension ≥ 3 onto a curve. Let Y be a general hyperplane section of X. Then the

multiple fibres of the restriction of φ to Y are exactly the hyperplane sections of the multiple fibres of φ , and have their same multiplicities.

Proof. Let $X \subseteq \mathbb{P}^n$, and set $\Gamma = \{(t, L) \in C \times (\mathbb{P}^n)^V \mid \text{multiplicity of } (\varphi^{-1}(t) \cap L) \text{ is strictly greater than the multiplicity of } \varphi^{-1}(t)\}$. Denote by $\alpha : \Gamma \to C$, $\beta : \Gamma \to (\mathbb{P}^n)^V$ the two projections. For any $t \in C$, the preceding Lemma applied to all the irreducible components of $(\varphi^{-1}(t))_{\text{red}}$ yields dim $\alpha^{-1}(t) \leq n-2$. Therefore dim Im $\beta \leq \dim \Gamma \leq n-1$.

§2. Families of fibrations

We will consider the following situation. Let X, Y, M be connected complex manifolds (not necessarily compact), and let $f: X \to Y$, $g: Y \to M$ be surjective, proper, flat holomorphic maps with connected fibres. Write $h:=g \circ f$, and suppose that all fibres of g are smooth compact curves, and the fibres of g are all compact manifolds. If X_t, Y_t denote the fibres of g and g over g over g over g is a fibration as defined at the beginning of §1.

DEFINITION 2.1. With the hypothesis just stated, we will say that $\{f_t: X_t \to Y_t\}_{t \in M}$ is a family of fibrations. For any 0, $t \in M$, f_t is called a smooth deformation of f_0 .

Now we ask ourselves how do the groups $L(f_t)$ of Definition 1.1 vary for a family of fibrations $\{f_t\}_{t\in M}$. As a matter of fact, we will see that they are all isomorphic. To begin with, the following Proposition shows the invariance of $G(f_t)$ under smooth deformations. The proof relies on the fact that a smooth holomorphic map is differentiably locally trivial. Then we will recall that $G(f_t)$ is a direct summand of $L(f_t)$ and will do a base change in order to obtain the invariance of $L(f_t)$.

PROPOSITION 2.2. If $\{f_t: X_t \to Y_t\}_{t \in M}$ is a family of fibrations, then the groups $G(f_t)$ are all isomorphic.

Proof. Let (X, Y, M, f, g) be the quintuplet which determines the family $\{f_t: X_t \to Y_t\}$, as defined before. In order to fix ideas, we will choose an element $0 \in M$ and will write $R := X_0$, $C := Y_0$, $\varphi := f_0$. The maps f_t are smooth deformations of $\varphi: R \to C$. A theorem of Ehresmann ([3]; compare with [10], page 19, and [12]) states that g and $h := g \circ f$ are differentiably locally trivial. In particular, there exists an analytic open neighbourhood U of $0 \in M$ and a commutative diagram

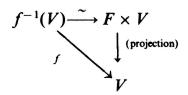
$$h^{-1}(U) \xrightarrow{f} g^{-1}(U)$$

$$\downarrow p \downarrow \sim \qquad q \downarrow \sim \qquad g$$

$$R \times U \longrightarrow C \times U \quad \text{(projection)}$$

$$(x, t) \longmapsto (\Psi_t(x), t) \longrightarrow U$$

where the vertical arrows p, q are diffeomorphisms, and $\Psi_t : R \to C$ a differentiable map. Choose a point $\xi \in C$ such that $F := \varphi^{-1}(\xi)$ is smooth. The map $f : X \to Y$ is also differentiably trivial in a neighbourhood $V \subseteq g^{-1}(U)$ of $q^{-1}(\xi, 0)$, that is, there exists a diffeomorphism $f^{-1}(V) \simeq F \times V$ making commutative the following diagram



Put W := q(V). We have a commutative diagram

$$F \times W \xrightarrow{\text{(projection)}} W$$

$$\downarrow \qquad \qquad \downarrow$$

$$R \times U \longrightarrow C \times U$$

working as

$$(z; (y, t)) \mapsto (y, t)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\lambda(z, y, t),); t) \mapsto ((\Psi_t \circ \lambda)(z, y, t,); t) = (y, t)$$

The left vertical arrow is a differentiable immersion, and $\lambda: F \times W \to R$ is a differentiable map. Let us define $\sigma_t: F \to R(t \in M)$ by $\sigma_t(z) = \lambda(z, \xi, t)$. Notice that $\sigma_t(F)$ is the fibre of Ψ_t over the point $\xi \in C$. Furthermore the maps σ_t , σ_0 are homotopic to each other for t close enough to 0, and thus they induce the same map in homology. With our identifications and Theorem 1.3 we immediately see that the cokernel of $(\sigma_t)_*: H_1(F, \mathbb{Z}) \to H_1(R, \mathbb{Z})$ is isomorphic to $H_1(C, \mathbb{Z}) \times G(f_t)$, whose torsion part is $G(f_t)$. Since $(\sigma_t)_* = (\sigma_0)_*$, it follows that $G(f_t) \simeq G(f_0)$ for t near 0. As a matter of fact, we have just proved that the set of $t \in M$ such that $G(f_t) \simeq G(f_0)$ is open. But similar arguments show that it is also closed, and the connectedness of M finishes our proof.

THEOREM 2.3. Let $\{f_t: X_t \to Y_t\}_{t \in M}$ be a family of fibrations. Then the groups $L(f_t)$ are all isomorphic.

Proof. Let the family be determined by the maps $f: X \to Y$, $g: Y \to M$ as described at the beginning of this section. Write $h:=g\circ f$, and choose a point $0\in M$. First we will assume that Y_0 is not rational. Let $\sigma: B\to Y_0$ be any étale morphism of degree 2. Since g is differentiably locally trivial, there is a neighbourhood U of $0\in M$ such that $U\times Y_0$ and $g^{-1}(U)$ are diffeomorphic over U. The composite $(\mathrm{id},\sigma):U\times B\to U\times Y_0\approx g^{-1}(U)$ makes $U\times B$ into a topological covering space of $g^{-1}(U)$. Let V denote the space $U\times B$ endowed with the complex structure induced by $g^{-1}(U)$, and set $W:=h^{-1}(U)\times_{g^{-1}(U)}V$. The natural projection $\lambda:W\to V$ defines a family of fibrations parametrized by U. Furthermore, each fibre of multiplicity m of $f_t:X_t\to Y_t$, $t\in U$, lifts to a pair of fibres of $\lambda_t:W_t\to V_t$, both with multiplicity m. Thus $L(\lambda_t)\simeq L(f_t)\oplus L(f_t)$. Combining the invariance of $G(\lambda_t)$ asserted in Theorem 2.2 with Lemma 1.2 yields the invariance of $L(f_t)$ for $t\in U$. Now use the connectedness of M to get that $L(f_t)$ is the same for all $t\in M$.

Next let us suppose that Y_0 is rational. Then $Y_t \simeq \mathbb{P}^1$ for all $t \in M$. It follows from [4] that $g: Y \to M$ is analytically locally trivial, so that $g^{-1}(U)$ is analytically isomorphic to $U \times Y_0$ over U, for some neighbourhood U of $0 \in M$. Let $B \to Y_0$ be any double cover which is unramified over the points of Y_0 where $f_0: X_0 \to Y_0$ fails to be smooth. Making U smaller if necessary one may assume that the composite $f: h^{-1}(U) \to g^{-1}(U) \approx U \times Y_0$ is a smooth map over all points (t, x) where x is a branch point of $B \to Y_0$. Set $V := U \times B$ and $W := h^{-1}(U) \times_{g^{-1}(U)} V$. Then W is smooth and the projection $\lambda: W \to V$ defines a family of fibrations. One checks that $\lambda_t: W_t \to V_t$. has no other multiple fibres than the ones coming from $f_t: X_t \to Y_t$. Hence also $L(\lambda_t) \simeq L(f_t)^{\oplus 2}$ for all t, and one finishes as before.

REMARK 2.4. For elliptic fibrations on a compact surface something stronger than Theorem 2.3 holds, namely, that the set of multiplicities of the fibres is invariant under smooth deformations. This was proved by Iitaka in [7].

REFERENCES

- [1] W. BARTH, C. PETERS and A. VAN DE VEN, Compact Complex Surfaces, Springer, Berlin, Heidelberg, New York 1984.
- [2] D. A. Cox and S. Zucker, Intersection numbers of sections of elliptic surfaces. Invent. Math. 53 1-44 (1979).
- [3] C. EHRESMANN, Sur les espaces fibrés différentiables. C. R. Acad. Sci. Paris, 224, 1611-1612 (1947)
- [4] W. FISCHER and H. GRAUERT, Lokal triviale Familien kompakter komplexer Mannigfaltigkeiten. Nach. Akad. Wiss. Göttingen, II. Math. Phys. Kl. pp. 89-94 (1965).

- [5] T. FUJITA, On the hyperplane section principle of Lefschetz. J. Math. Soc. Japan 32, 153-169 (1980).
- [6] R. HARTSHORNE, Algebraic Geometry, Springer, Berlin, Heidelberg, New York 1977.
- [7] S. IITAKA, Deformations of compact complex surfaces II. J. Math. Soc. Japan 22, 247-261 (1970).
- [8] S. IITAKA, Deformations of compact complex surfaces III. J. Math. Soc. Japan 23, 692-705 (1971).
- [9] M. LEVINE, Pluricanonical divisors on Kähler manifolds. Invent. Math. 74, 293-303 (1983).
- [10] J. MORROW and K. KODAIRA, Complex Manifolds, Holt, Rinehart and Winston, New York 1971.
- [11] F. SERRANO, The Picard group of a quasi-bundle (preprint).
- [12] J. A. Wolf, Differentiable fibre spaces and mappings compatible with Riemannian metrics. Mich. Math. J. 11, 65-70 (1964).

Departament d'Àlgebra i Geometria Universitat de Barcelona Gran Vla 585 08007 Barcelona, Spain

Received May 19, 1989/October 30, 1989