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A calculation of Pin + bordism groups

R C Kirby1 and L R Taylor1

We begin by recalhng the définition of the Pin and Spin -bordism groups For each

mteger n ^ 1 there are compact Lie groups, Spin(n), Pin~(n) and Pin+in) Atiyah,
Bott and Shapiro [ABS], descnbed the groups Spin(n) and Pin ~ (ri) in terms of the

Clifford algebra associated to the négative definite form on R&quot; Lam [L], descnbes
thèse as well as Pin + (ri), the group coming from the Clifford algebra associated to
the positive definite form on R&quot; Another définition îs the followmg The group
Spin{n) îs the double cover of the group SO(ri) It îs a Z/2 central extension of SO(ri)
and îs classified by w2e H2(BSO(n), Z/2) indeed it îs the unique non-tnvial Z/2
central extension The two groups Pin ± are double covers of O(ri) They are also Z/2
central extensions Pin&apos; îs classified by w2 + w] e H2(B0(n), Z/2) and Pin + îs

classified by w2

There îs a bordism theory of manifolds with Spin, Pin ~, or Pin + structure, and

we use the term bordism groups for the bordism groups of a point Anderson, Brown
and Peterson calculated the Spm-bordism groups, [ABP1], and the /&gt;m~-bordism

groups, [ABP2] We complète the story by calculating the Pin+ -bordism groups
Both the Pin± -bordism groups are 2-torsion, and they hâve cychc summands of

order equal to an arbitranly high power of 2 Both bordism groups are modules over
the Spin bordism ring Of the real projective spaces, the RP4k&apos;$ hâve Pin + structures
and the RP4k + 2&apos;s hâve Pin~ structures The other resuit m this paper is that
Pin ± -bordism, modulo the Spin bordism submodule generated by the real projective
spaces, is a Z/2 vector space

To descnbe our results in more détail, recall the 2-local décomposition of the

spectrum MSpin from [ABP1]

MSpin-* V 7r(2A:)bo&lt;8Â:&gt; V n(2k + 1)*&gt;o&lt;8â: + 2&gt; V &lt;*(k)K(Z/2, k)
k^0 k&gt;0 k&gt;0

where bo&lt;r&gt; dénotes the spectrum obtained from the usual BO spectrum by kilhng
ail the homotopy groups m dimensions less than r, and K(A9 r) dénotes the

Eilenberg-MacLane spectrum with one non-zero homotopy group isomorphic to A

&apos;Partially supported by the N S F
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in dimension r. Furthermore, n(k) dénotes the number of partitions of k with
ail the pièces greater than 1. If p(k) dénotes the usual partition function, then
n(k) =p(k) —p(k — 1). The numbers cc(k) in principle can be computed. Since the

cohomologies of MSpin, bo&lt;r&gt; and K(Z/2, r) are known, as are the n(k), the &lt;x(k)

are the unique numbers which give equality of cohomologies.
The décomposition above is not unique, but we choose one such décomposition

and fix it for the rest of the paper.
The Anderson, Brown and Peterson calculations of Spin and Pin ~ bordism are

similar. The homotopy groups of the bo&lt;r&gt; and the K(Z/2, r) are known, so once
they prove the décomposition formula, they can easily calculate Spin bordism. For
Pin~ bordism, they argue that MPin~ is homotopy équivalent to the spectrum
MSpin aT1 T(Ç), where T{Ç) dénotes the suspension spectrum of the Thom space
of the canonical bundle over RP™. They apply the décomposition formula and

compute (via Adams spectral séquence methods) 7i+(bo&lt;8fc&gt; a I~xT(Ç)) and

7r%(bo&lt;8A: + 2&gt; a Z~xT(Ç)). We describe our answer in a similar fashion. We will
show that MPin + is homotopy équivalent to the spectrum MSpin a E~3T(3Ç), where

T(sÇ) will dénote the suspension spectrum of the Whitney sum of s copies of the

canonical bundle over RP™. We record our answer in the theorem below along with
the results of the Anderson, Brown and Peterson calculation for MPin~, which we
will need later. Hère are some well-known formulae which will simplify what follows.

(i) For any spectrum X,

nM(X a K(Z/2, r)) nt_r{X a K(Z/2, 0)).

(ii) For any spectrum X,

n^X a bo&lt;8£» n^sk(X a bo&lt;0»

tu, (X a bo&lt;8£ + 2» nË_^(X a bo&lt;2».

Hence we only describe the answers below. In the sequel, we let M(r) dénote the

spectrum Z~rT{rÇ).

THEOREM 1.

te, (M( 1) a K(Z/2, 0)) 71, (M(3) a K(Z/2, 0)) Z/2 for ail i &gt; 0.

nSn + l= Sn Sn +1 8/1+2 8« + 3 8« -h4 8/i + 5 8« -h6 $n + 7

M(l)Abo&lt;0&gt; Z/2 Z/2 Z/24n + 3 0 0 0 Z/24&quot;*4 0

M(3)Abo&lt;0&gt; Z/24n + 1 0 Z/2 Z/2 Z/24^4 0 0 0

for 0 ^ i &lt; 8 and nî&gt;0.
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M(l)
M(3)

forO

Abo&lt;2&gt;

Abo&lt;2&gt;

^ i &lt; 8,

8/1

Z/2 0 Z/2
Z/24&quot;-1

w ^ 0 awd

8/

8*

i + 1

Z/2
Z/2

+ i 2

8/1 + 2

Z/24n+1

Z/20 Z/2

3. /„ r^

8n+3
Z/2
Z/2

:ase n

8/1+4
Z/2

Z/24w + :

i 0

oft + 5

0
2 Z/2

or 1,

8/1+6 1

Z/24&quot;4&quot;2

Z/2

J/i+7
Z/2

0

7t;(M(l) a bo&lt;2» 7tf(M(3) a bo&lt;2» 0.

In the case n 0, / 2,

7t2(M(l) a bo&lt;2» tt2(M(3) a bo&lt;2» Z/2.

COROLLARY 2. The top Une of the first table, with n 0, gives the Pin ~

bordism groups through dimension 7; the second Une of the first table, with n 0,

gives the Pin + bordism groups through dimension 7.

An alternate calculation of thèse bordism groups through dimension 4 is given
in [KT]. While trying to understand thèse low-dimensional calculations, we were
led to the gênerai results presented hère. The proofs will be given in the second

section and a short table of the bordism groups is included at the end of the

paper.
Notice that Pin ~ bordism is a Z/2 vector space except in dimensions congru-

ent to 2 mod 4. Moreover, RPn has a Pin ~ structure if n is congruent to 2 mod 4.

Likewise, Pin+ bordism is a Z/2 vector space except in dimensions congruent to
0 mod 4 and RPn has a Pin + structure if n is congruent to 0 mod 4.

Recall some facts about the structure of the Spin bordism ring. The bo&lt; &gt;

factors are indexed by partitions. For a fixed n %k we hâve a différent bo&lt;8fc&gt;

for each partition, /, of 2k such that / has no l&apos;s in it. For any partition, let n(J)
dénote the sum of the éléments of J, or in other words, n(J) is the integer for
which J is a partition. The bo&lt;8fc + 2&gt;&apos;s are indexed by the partitions, /, with no
l&apos;s for which n(J) 2k + 1. In the sequel, let bo&lt;/&gt; dénote bo&lt;4«(/)&gt; if n(J) is

even or bo(4«(/) — 2&gt; if n(J) is odd. There is also a copy of bo&lt;0&gt;. There are
éléments M, in dimensions 4«(/), where / is a partition of n(J) with no l&apos;s. Thèse

manifolds satisfy the condition that in our fixed décomposition of MSpin, the

bordism class of M, is a generator of n4n{J)bo{J} and maps to zéro in n4n{J) of ail
the other summands.

Let X(J, n) RPn x M, if n(J) is even. If n is even, fix a Pin ± structure on
RPn and consider X(J, ri) as an élément of Pin± bordism. If n(J) is odd,
RPn x Mj will be divisible by 2 in the corresponding Pin bordism group, so let

X(J, ri) dénote an élément in Pin± bordism such that 2X(J, ri) RPn x M,. Note
that for Pin + bordism we are asserting that Mj Mj x RP° is divisible by 2. Let

C(J, 2ri) dénote a cyclic group whose order is the order of the élément X(J, 2ri) in
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the appropriate Pin bordism group. There are natural maps C(J, 4n)
and C(J, An + 2)

THEOREM 3. The order of X{J, 2n) is given as follows:

2n =8A: 2n 8Â: + 2 2n Sk+4
w(/)even 24*+1 24/c + 3 24* + 4

odd 24/c + 2

of the natural maps

J,n

is injective with image a summand: the complementary summand is a Z/2 vector

space. The sum of the natural maps

® C(J,4n+2)-+MPin~
J,n

is injective with image a summand: the complementary summand is a Z/2 vector

space. In both sums, n ^ 0 and J runs over ail partitions with no l&apos;s.

COROLLARY 4. The Pin + bordism groups, modulo the Spin bordism submodule

generated by the RP4n, are Z/2 vector spaces. The Pin ~ bordism groups, modulo
the Spin bordism submodule generated by the RP4n + 2, are Z/2 vector spaces.

Finally, we pause to consider the standard question of the image of Pin +

bordism in unoriented bordism, denoted Jf+. Using the techniques of Anderson,
Brown and Peterson [ABP2], we show

COROLLARY 5. The image of the natural map MPint -*Jf+ equals ail
bordism classes ail of whose Stiefel-Whitney numbers involving w2(r) vanish, where

t dénotes the tangent bundle.

After this paper was submitted, we learned of the paper of Giambalvo [G],
which also calculâtes MPin+ bordism. Giambalvo does the calculation via the
Adams&apos; spectral séquence and arrives at the same answer we do. He also attempted
to analyse the rôle of the RP2n&apos;s in Pin+ and Pin~ bordism, using the map if/

described below, but his results differ considerably from ours. Specifically, we claim
that the order of RP*n + 4 in Pin+ bordism is 28n + 4 and that his Corollary 3.5 is
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wrong (see the discussion preceding Theorem 3). The table on page 399 is also
incorrect: the factor corresponding to M(2) a bo&lt;8&gt; is missing and the Z\ should
be Z/28.

We would like to thank S. Stolz for numerous conversations on the subject of
Pin bordism.

Proofs

We begin with two lemmas to reduce the calculation to a diagram chase.

LEMMA 6. The ith Pin + bordism group is isomorphic to

7r,(MSpin a M(4k + 3)) for any k ^ 0.

The ith Pin ~~ bordism group is isomorphic to

7i, (MSpin a M(4k + 1)) for any k &gt; 0.

In both cases, the usual transversality construction gives the isomorphism.

Proof Let us begin with the Pm+ case. Standard transversality constructions
identify 7r,(MSpin a M(4/c + 3)) with the bordism theory of /-dimensional mani-
folds with a Spin structure on the bundle t ©(4fc + 3) det (t), where t is the

tangent bundle to the manifold and det (t) is the déterminant Une bundle. It is

easy to check that for any bundle y\, 4rj has a canonical Spin structure, so the
above bordism theory is équivalent to the bordism theory of /-dimensional mani-
folds with a Spin structure on the bundle t © 3 det (t). Next one can compute that
any bundle rj has a Pin + structure iff r\ ® 3 det (rç) has a Spin structure, and, since

this is a universal relation, one can set up a one-to-one correspondence between

Spin structures on rj © 3 det (rj) and Pin+ structures on r\. Hence our bordism
theory is équivalent to the bordism theory of /-dimensional manifolds with a Pin +

structure on the tangent bundle.
The Pin ~ case is entirely similar.

Let M(Z/2,0) =e°uel with attaching map of degree 2 and dénote the

homotopy ith group of MSpin a M(Z/2, 0) by (MSpin a Z/2),. Thèse groups
can largely be calculated by applying Spin bordism to the cofibration séquence
S0 -^&gt; S0 -&gt; M(Z/2, 0), since the degree 2 map on S0 induces multiplication by 2

on the Spin bordism groups.
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Thèse groups hâve an interprétation as Z/2-Spin bordism This îs the bordism
theory consisting of a manifold M with a codimension-one submamfold N9 an
orientation on M — N which does not extend across any component of N, an
orientation of the normal bundle of iV in M, a Spin structure on M — N, a Spin
structure on N, and diffeomorphisms which préserve the Spin structures from N to
the boundary components of M - N We do not need this interprétation in the
sequel

LEMMA 7 There exists a cofibration séquence

M(Z/2, 0) -&gt;M(2r - 1) -&gt;r2M(2r + 1) (8)

Hence we get long exact séquences

-&gt; (MSpin a Z/2), -&gt; MPinf -^-+ MPin, 2 -&gt;

- MSpin a Z/2), - MPin,
-^-&gt; MPin +

2 -*

In both cases, the map \\j is defined by starting with a manifold M, finding a
submamfold N a M dual to co,, and then forming the transverse intersection, N r\N
Notice that \\t can also be descnbed by taking the natural map
\p M(r) -&gt; Z2M(r + 2) and smashing it with MSpin In particular, the two exact

séquences above décompose in the same way that MSpin does

Proof Recall that T(rÇ) RP^/RPr l Indeed, RPnczRPn + r with normal
bundle r^\Rpn Hence we hâve a map RPn + r-+ T(r£\Rpn) and the composite
RPnciRPn + r-+T(rÇ\Rpn) is the zero-section Hence a copy of RPr l disjoint
from RPn in RPn + r is null-homotopic in T(rÇ\RpH), so we get a map RPn + r/

RPr ] -? T{r^\Rpn) which is easily checked to be a homotopy équivalence
The cofibration séquence is now clear since RP2r/RP2r 2 is homotopy équivalent

to T((2r - 1K\RPi) and this is I2r !M(Z/2, 0)
The description of the map ij/ also follows Consider a Spin boundary

Mm + 2r &apos;

and a map/ M-^T((2r - 1)£) The map if/ sends / to the composite
M -&gt; T((2r -h 3)0 of / and the map g T((2r + 1){) -&gt; T((2r + 3)0 To see what
happens to the underlying Pin manifolds, we can assume that / lands in
T((2r — \)£\rpn) for some large A^, and we get a cofibration séquence hke (8) but
taking place inside of RpN + 2r+l instead of RP* We make the new map transverse

to the zero-section to get out Pin manifold, P The map g becomes a map
g T((2r+ \)Ç\RpN)-&gt;T((2r+ 3)Ç\rpn 2), so to get il/(P) we make the map
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P-*RPN transverse to RPN2. But this is the same as making it transverse to
RPN~\ which gives a dual to œl in P and then intersecting this dual with
itself.

PROPOSITION 9. The two tables below are obtained by smashing bo&lt;0&gt; with
the cofibration séquence (8) and taking homotopy groups. The first table takes

2r — 1 4k + 1 and the second takes 2r — 1 4k -f 3.

M(4k + 1) a bo&lt;0&gt; I2M(4k -h 3) a bo&lt;0&gt;

Z/2 0

Z/2 0

Z/24n + 3 Z/24w+1
0 0

0 Z/2
0 Z/2

8/1 + /

0
1

2

3

4

5

6

7

0
1

2

3

4

5

6

7

M(Z/2, 0) a bo&lt;0&gt;

Z/2
Z/2
Z/4
Z/2
Z/2

0

0

0

M(Z/2,0) a bo&lt;0&gt;

Z/2
Z/2
Z/4
Z/2
Z/2

0

0

0

0 0

0

Z/2
Z/2

0

0

0

Z/24&quot;

0

Z/2
Z/2

Z/24&quot; + 3

0

0

0

Proof. The groups in the first columns follow from Bott periodicity and
the work on coefficients of Araki and Toda, [ATI] [AT2]. Note that ail the

groups follow easily from the cofibration séquence S0-^—&gt;S°-+M(Z/2fi) except
the extension for n2. The groups in the column for M(4/c + 1) are taken
from Anderson, Brown and Peterson, [ABP2], From the second table
bo&lt;0&gt; AM(3)8n + 7 bo&lt;0&gt; AM(3)8wH.6 bo&lt;0&gt; a M(3)8w + 5 0. From the first
table bo&lt;0&gt; a M(3)8rt + 4 Z/24w + 4 and bo&lt;0&gt; a M(3)8n + 3 bo&lt;0&gt; a M(3)8m + 2

Z/2. An easy diagram chase using the second table shows that
bo&lt;0&gt; a M(3)4n +, 0 and that 0 -&gt; Z/2 -? bo&lt;0&gt; a M(3)8n -&gt; Z/24w -* 0 is

exact. An easy diagram chase using the first table shows that bo&lt;0&gt; a M(3)8n Z/
24w+1. D
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PROPOSITION 10. The two tables below are obtained by smashing bo&lt;2&gt; with
îhe cofibration séquence (8) and taking homotopy groups. The first table takes

2r — 1 4k + 1 and the second takes 2r — 1 4k + 3.

8n + i

4

5

6

7

8

9

10

11

8n + i

4

5

6

7

8

9

10

11

M(Z/2, 0) a bo&lt;2&gt;

Z/2
0

0

0

Z/2
Z/2
Z/4
Z/2

M(Z/2,0) a bo&lt;2&gt;

Z/2
0

0

0

Z/2
Z/2
Z/4
Z/2

M(4k + 1) a bo&lt;2&gt;

Z/2
0

Z/24n + 2

Z/2
Z/2 ©Z/2

Z/2
Z/24n + 5

Z/2

M(4k + 3) a bo&lt;2&gt;

Z/24n + 2

Z/2
Z/2

0
Z/24&quot; + 3

Z/2
Z/2 ©Z/2

Z/2

r2M(4fc + 3) a
Z/2 ©Z/2

Z/2
Z/24&quot; + 2

Z/2
Z/2

0

Z/24n + 3

Z/2

E2M(4k + 5) a 1

Z/24n + 1

Z/2
Z/2

0

Z/2*&quot; + 2

Z/2
Z/2 ©Z/2

Z/2

groups nSn + f /or w 0 and i 0 or 1 rams/i /or dimensional reasons. For

i=2 or 3, nSn^XM(4k + 3) a bo&lt;2» 7i8n + ,(M(Z/2,0) A bo&lt;2»

Proof. The first columns follow just as above. Indeed, tc1(M(Z/2, 0) a
bo&lt;2» 7i,(M(Z/2, 0) a bo&lt;0» unless î 0, 1 or 2, in which case m,(M(Z/2,0) a
bo&lt;2» 0 if i 0, or 1, and te2(M(Z/2, 0) a bo&lt;2» Z/2. (This is why we hâve

started our rows with 4 and gone to 11.) From the second table
bo&lt;2&gt; a M(3)8n + 7 0 and bo&lt;2&gt; a M(3)8m + 6 Z/2. From the first table
bo&lt;2&gt; AM(3)8n + 4 Z/24fl + 2 and bo&lt;2&gt; a M(3)8n + 5 Z/2. Feeding thèse values

back into the second table, we see that bo&lt;2&gt; aM(3)8b + 9 has order at least 2

and at most 4. From the first table, it is a subgroup of Z/2, and so

bo&lt;2&gt; a M(3)8w + 9 Z/2. From the first table, bo&lt;2&gt; a M(3)8w + 8 is cyclic of order
at least 24n + 3 and at most 24n + 5. Feeding this into the second table,
bo&lt;2&gt; a M(3)8w + 8 Z/24n + 3 and bo&lt;2&gt; a M(3)8n+10 has order at least 2 and at

most 8. From the first table, bo&lt;2&gt; a M(3)8w + u is a subgroup of Z/2, whereas
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from the second table it has order at least 2. Hence bo&lt;2&gt; a M(3)8/,+ Z/2, and
from either table bo&lt;2&gt; a M(3)8/î + 10 has order 4. Indeed, the tenth row of the
second table is Z/4-»bo&lt;2&gt; a M(3)8w + 10-»Z/2 © Z/2. Thèse séquences are modules

over 7rJ(t(bo&lt;0», and the product with the non-zero class in 7T|(bo&lt;0» induces

an epimorphism 7r8n + 10(M(Z/2, 0) a bo&lt;2» -&gt;nSn+ u(M(Z/2, 0) a bo&lt;2». This
shows that bo&lt;2&gt; a M(3)8w + 10 Z/2 © Z/2 since the map 7r8n+n(M(Z/2,0) a
bo&lt;2»-*7i8rt+11(M(4Â: + 3) a bo&lt;2» is an isomorphism. To see the required
product relation, first of ail observe that it is an equally valid relation in n+(M(Z/
2, 0)Abo&lt;0». In tt^IhKO» it is a well-known relation that 7c8rt + i(bo&lt;0» -&gt;

nsn + 2(b°&lt;fly) is an isomorphism. The required relation is an easy diagram chase.

The case 8/i + i 2 or 3 can be dealt with similarly, and it is not hard to see that
bo&lt;2&gt; a M(3)3 bo&lt;2&gt; a M(3)2 Z/2. Note that 7r2(bo&lt;2&gt; a M(Z/2, 0)) Z/2,
not the Z/4 one might hâve expected, and that n3(Z2M(r) a bo&lt;2» 0, as does n2

since I2M(r) a bo&lt;2&gt; is 3-connected. D

The reader can easily deduce Theorem 1 from Propositions 9 and 10.

LEMMA 11. There exists a positive inîeger valued funetion, &lt;/&gt;(/•), such that, for
any integer s such that s&gt;r and s — (r + 1) mod 2^(r), there exists a map
c : SrJts -+ T(sÇ) which is transverse to the zéro section with inverse image RPr.

Froof. The reduced A^-theory of RPr is cyclic of order a power of 2 and

generated by f, the canonical Une bundle. The power of 2 is the number &lt;j&gt;(r), where

0(r) is the number of integers, t, with 0 &lt; t ^ r and t 0, 1, 2, 4 mod 8. Since the

tangent bundle of RPr is well-known to be (r -f 1)£, if we choose s as above, sÇ is

a stable bundle which is a normal bundle for an embedding of RPr into Sr + S.

Apply the Pontrjagin-Thom construction to this embedding to produce the map c.

D

Remark. The map c, or even its homotopy class, is not unique. Indeed, since the

r ¦+- s sphère above has a unique Spin structure, c endows RP4n with a Pin +

structure and Rp4n + 2 with a Pin~ structure. It is not hard to see that c may be

chosen to get either of the two Pin ± structures that exist on an RP2m.

We conclude this section with the proof of Theorem 3.

It will be convenient in what follows to fix a Pin ± structure on RP2n. Begin by
noticing that MPin2 Z/8 and RP2 is a generator. Finally, if we switch the Pin~
structure on RP2, we get the négative of our previous élément. Fix a Pin ~ structure
on RP2. It is easy to calculate our map \j/ from above in this case:

ij/(RP2n) =RP2&quot;2 and if we switch Pin structure on RP2n we also switch Pin
structure on RP2n~2. Hence, having fixed a Pin~ structure on RP2, we can use

itérations of the ij/&apos;s to pick out a Pin structure on ail the RP2nt&gt;s.
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Recall another resuit on the décomposition of MSpin from [ABP1]. The bo&lt; &gt;

factors are index by partitions / with no l&apos;s in them. If we set bo(J) bo(4w(/)&gt;

if n(J) is even and bo(/) bo&lt;4«(7) - 2&gt; if n(J) is odd, then, localized at 2, MSpin
is a wedge of some K(Z/2,)&apos;s and bo&lt;/&gt;&apos;s where we hâve one factor for each

partition / with no l&apos;s. For each partition / with no l&apos;s sélect a Spin manifold, Mj.
The class represented by M, is a generator of 7r4/l(y)(bo&lt;7» and maps to zéro in the
other factors in our fixed décomposition of MSpin localized at 2.

Define Y(J, An) M3 x RP4n as a Pin + manifold using our fixed Pin + structure
on RP4n. Define Y(J, 4n + 2) M, x RP4n + 2 as a Pin &quot; manifold using our fixed
Pin~ structure on RP4n + 2. Note il*(Y(J, 2n)) Y(J, 2n - 2). By Lemma 11 we can

identify the image of Y(J,2n) rather well in 7i#(MSpin a M(s)) where s is any
integer so that RP2n cornes from n2n(M(s)). With our fixed décomposition of
MSpin, Y(J, 2n) vanishes in ail components of the décomposition except for the

/th.
To proceed further, we need to analyze cases. Begin with the 8A: case. If k 0,

then we just hâve Mj which is a generator of 7c4n(y)(bo(4w(/)» localized at 2, and
hence a generator of 7r4w(y)(bo&lt;4/î(7)&gt; a M(Z/2,0)). From the second table in

Proposition 9, we see that this élément continues to hâve order 2 in Pin + bordism.
Fix any s as in Lemma 11 for r %k, and note that this s also satsifies the

hypothèses of Lemma 11 for r 8k — 8. Consider Pin+ bordism as

7i %( MSpin a M(s)). Under our décomposition of MSpin, Y(J, Sk) goes to 0 in ail
the pièces except for n^(bo(J) aM(s)). We claim that in this summand it is a

generator of order 24k + l. Notice first that by Proposition 9 the élément lives in a

cyclic group of order 24k + l. The four-fold iterate of ^ defines a homomorphism
from this group to the corresponding one for Sk - 8, and Y(J9 Sk) goes to
Y(J, &amp;k — 8). If we assume by induction that Y(J, 8A: — 8) is a generator, then it
follows that Y(J, Sk) is also a generator and has the desired order.

Now suppose that n(J) is odd. The manifold M, still represents a generator of
7i4w(y)(bo&lt;4«(/) - 2&gt; a M(Z/2, 0)), but this time, consulting table two in Proposition

10, we see that M, is divisible by 2. Let s 3 mod 4 and identify Pin + bordism
with ^(MSpin a M(j)). Let X(s&gt; /, 0) dénote a choice of élément in Pin + bordism
which lives in the bo&lt;/&gt; a M(s) summand so that 2X(s, /, 0) Y(J, 0) M,. Fix

any s as in Lemma 11 for r 8/c, and suppose that we defined X(s, J, %k — 8) which
lives in the bo&lt;/&gt; a M(s) summand of MSpin a M(^) and which satisfies

2X(s9 /, 8A: - 8) Y(J9 Sk - 8) and X(s, /, 8A: - 8) is a generator. From Proposition
10 this means that X(s, J, Sk - 8) has order 24k ~2. As above, consider the four-fold
itération of ij/. Restricted to the bo&lt;/&gt; a M(s) factor, the map is just the epimor-
phism Z/24k + 2 -? Z/24k ~2 and Y(J, Sk) goes to Y(J, Sk - 8). It is now easy to sélect

X(s, J, Sk) satisfying the required conditions. (Note that there are always two
choices.)
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The other cases are similar so we only discuss the key points. Begin with
the next case, 8/c + 2 and start with k 0. This means we are trying to identify RP2

in MPin 2 Z/8. Applying ifr and consulting the first table from Proposition 9, we
see that it is a generator. We can now use induction and the four-fold iterate of ifr

to handle the case n(J) even. In the case n(J) is odd, we need to identify Mj x RP2.

It lives in a group of order 4, and table one of Proposition 10, shows that ^ is an
isomorphism, so M3 x RP2 is of order 2 in Pin ~ bordism, since M, has order 2 in
Pin + bordism. Hence we define X(s9 J, Sk + 2) as above using the four-fold iterate
of \j/. The cases Sk + 4 and Sk + 6 are done in the same way.

Now let us define X(J, 2n) Y(J, 2n) if n(J) is even; for n(J) odd, define
X(J,2n)=X(2&lt;f&gt;(2n)+ï-(2n + \),J,2n). From the above discussion, we know
the orders of each of the X(J,2n) &apos;s: let C{J,2ri) dénote a cyclic group of this
order with a fixed generator and map C(J, 2ri) to MPin± by sending the fixed

generator to X(J, 2n). We get maps

®j,n C(J, 4n) -+ MPin + and ®^C(/, An + 2) -&gt; MPin ~

For n fixed we see from above that ®JnC(J,4n)-+MPin£ and

®j,nC(J,4n +2) -&gt;MPin~ are split injective. Theorem 3 asserts that thèse maps
are still split injective when we also sum over the n.

We do the Pin+ case. Fix a dimension r Sk. Note that C(/, 4n) lands in
dimension r iff r 4«(/) + 4n. If «(/) is even, then C(J, 4n) has order 22n + l and if
rc(/) is odd, C(/, 4«) has order 22w + 2. In particular, two C(J, 4w)&apos;s which land in
the same dimension and hâve the same order hâve the same n and the same n(J).
If r Sk + 4 we get différent numbers but the same conclusion. Finally note that
both ®r 4w(/) + 4wC(y, 4n) and Mpinf hâve the same number of Z/2* summands
for ail k &gt; 1, and if we restrict the map (Br=t4n(J) + 4nC(J94n)-&gt;MPin?~ to the
summands of order 2k we get a split injection. It is an elementary algebra exercise

to verify that this means that the map is a split injection and the complementary
summand is a Z/2 vector space.

The Pin ~ case is entirely similar.

The proof of Corollary 5

We begin with a gênerai discussion of characteristic numbers. Let BG be a space
such as BSO, BPin +, etc. equipped with a map to BO. Let M be a manifold with
a G structure; i.e. the tangent bundle map M-*BO has a fixed lift to a map
t M-+BG. Then Mn détermines a homomorphism Hn(BG;Z/2)-+Z/2 given by
sending x € Hn{BG\ Z/2) to t*(x) evaluated on the fundamental class of M. This
defines a homomorphism T : ÇlGn -&gt;Hom (Hn(BG; Z/2), Z/2). If we let Af(G) dénote
the Thom spectrum for the inverse to the universal bundle over BO pulled-back to
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BG, the Thom isomorphism shows that we can equally regard T as a homomor-
phism T:n&lt;Z-+Hom(Hn(Af(Gy9Z/2)9Z/2). If a homomorphism b: Hn(M(G);
Z/2) -? Z/2 is to be in the image of T, then b(ax) 0 for any a in the mod 2

Steenrod algebra of dimension at least 1 and any x e H*(M(G); Z/2). If we let se
dénote the mod 2 Steenrod algebra, we can turn Z/2 into an se module by letting
ail the Sql act trivially. Then Hom^ (Hn(M(G); Z/2), Z/2) czHom (Hn(M(G);
Z/2), Z/2) is precisely the set of homomorphisms satisfying our condition and
Condition P of [ABP2] merely says that the image of T is precisely
Hom^ (Hn(M(G); Z/2), Z/2). (It is also true that Hom^ (Hn(M(G); Z/2), Z/2)
E2&apos;n(M(G)) in the Adams spectral séquence for n^(M(G)). Moreover,
E°£(M(G)) c E°2n(M(G)) is precisely the image of T. Hence the collapse of the
Adams spectral séquence is sufficient for M(G) to hâve Property P.)

Now Hom^(//&apos;I(A/(G);Z/2), Z/2) behaves like any other Hom, so we can
apply it to the short exact séquences of cohomology groups coming from (8).
It is not hard to see directly that E%r(M(Z/2,0) a bo&lt;0» Z/2 if r 0;
£^&apos;r(M(Z/2, 0) a bo&lt;2» Z/2 if r 2 and both groups are 0 otherwise. Theorem
4.4 of [ABP2] says that E°/(M(\) a bo&lt;0» =Z/2 if r=0 or r=2 (mod4);
£§-r(M( 1) a bo&lt;2» Z/2 if r 2 or r 0 (mod 4) and both groups are 0 otherwise.

One can also check by hand that E%r(M(3) a bo&lt;0» Z/2 if r 0 and is 0

for r &lt; 3 and that £^r(M(3) a bo&lt;2» Z/2 if r 2 and is 0 otherwise for r &lt; 5.

By comparing the two exact séquences coming from (8) we can compute
E°2r(M(3) a bo&lt;0» and £^r(M(3) a bo&lt;2». More importantly, we can see

that ij/: E°/(M(\) a bo&lt;0» -&gt;E°2&gt;r~2(M(3) a bo&lt;0» and ij/: E°/(M(l) a bo&lt;2» -
E°2r-2(M(3) Abo&lt;2» are both epic. Since M(l) a bo&lt;0» and ^ : E°/(M(l) a
bo&lt;2»-*£^r-2(M(3) Abo&lt;2» are both epic. Since M(l)Abo&lt;0&gt; and

M(l) a bo&lt;2&gt; satisfy Property P by [ABP2], this shows that M(3) a bo&lt;0&gt; and

M(3) a bo&lt;2&gt; also satisfy Property P. The Eilenberg-MacLane summands also

satisfy Property P, hence so does MPin +

Since H*(BO; Z/2)-+H*(BPin + ; Z/2) is onto, it follows formally that a mani-
fold, Mn9 is unoriented bordant to a Pin+ manifold iff ail the characteristic
numbers in the kernel of Hn(BO; Z/2) -» Hn(BPin + ; Z/2) vanish on M. This
kernel is the idéal in H*(B0; Z/2) generated by w2 and its images under the
Steenrod algebra: e.g. h&gt;3 is in the kernel. It is always the case however that, if ail
the characteristic BO -numbers of a manifold which involve x € Hr(B0; Z/2) vanish,

then ail the numbers involving a(x) for any as se also vanish. Hence M is

bordant to a Pin + manifold iff ail tangential characteristic numbers involving w2

vanish.
We may as well finish by remarking that MSpin a Z/2 satisfies Property P and

that a manifold is unoriented bordant to an élément in MSpin a Z/2 iff ail the
numbers involving a&gt;2 and co2 vanish.
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The tables

Hère are the promised Pin* bordism groups through dimension 95, arranged in
two tables. The second table gives A(n), the number of Z/2 summands in MPin*.
The first table gives numbers n(ri) which enable us to find the other summands in
dimensions congruent to 0mod4. For MPinjfn + 4, the summands of order greater
than 2 are @n(i)Z/24n + 4~2l beginning with *=0 and continuing until
4« + 4 — 2i 2. For MPin%n + s, the summands of order greater than 2 are ©tc(j)Z/
2*n + 5- ii beginning with i 0 and continuing until 4n + 4 — 2i 3. As an example,
28 8 • 3 + 4 so MPinà 4Z/2 © 1Z/216 © OZ/214 © 1Z/212 © 1Z/210 © 2Z/28

© 2Z/26 © 4Z/24 © 4Z/22)
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