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On group homomorphisms inducing mod-p cohomology isomorphisms

GUIDO MlSLIN

Let p F, -&gt; F2 be a homomorphism of finite groups Fx and F2 inducing an
isomorphism H*(F2, Z/p) -*H*(Fl9 Z/p), p a fixed prime By a resuit of S

Jackowski [5] ît îs known that then

(î) ker (p) îs of order pnme to p,
(a) îm (p) has index prime to p

Simple examples show that m gênerai (î) and (u) alone do not suffice for p to
induce a Z/p -cohomology isomorphism The purpose of this note îs to descnbe

necessary and sufficient conditions on p in group theoretic terms for p to induce an

//*Z//?-isomorphism It turns out to be natural to work in the more gênerai setting
of compact Lie groups The following notations and terminology will be used

throughout this note
For p G -+ H a morphism of compact Lie groups we wnte

C(p) {heH\ hp(g) p(g)h for ail g e G}

for the centrahzer of p,

N(p) {heH\hp(G)=p(G)h}

for the normahzer of p, and

W(p) N(p)/C(p)

for the Weyl group of p Note that W(p) îs a compact Lie group It îs a finite group,
if for instance p(G) îs a finite subgroup of H In case p T-+G stands for the

inclusion of a maximal torus into a compact connected Lie group, W(p) W(G),
the classical Weyl group of G As usual
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stands for the représentations of G in //, that is, the set of //-conjugacy classes of
continuous homomorphisms G -? H. For p a prime we write

QP(G)

for the Quillen-category of finite /&gt;-subgroups of G; its objects are the finite
p-subgroups of G, and morphisms Px -? P2 are homomorphisms of the form
cg : x -+g~~lxg for some g eG.

Our theorem then takes the following form.

THEOREM. Let p : G -+ H be a morphism of compact Lie groups and let p be a
prime, Then the following are équivalent:

(A) H*Bp : H*(BH; Z/p)-&gt; H*(BG; Z/p) is an isomorphism.

(B) Rep (p) : Rep (n, G) -? Rep (n, H) is a bijection for every finite p-group n.

(C) Qp(p) : QP(G) -&gt;Qp(H) is an équivalence of catégories.

REMARK. The reader vérifies easily that (B) implies
(Bi): ker (p) contains no élément of order /?.

(Bii): every finite p-subgroup in H is conjugate to a subgroup in p(G) c H.
Thèse statements generalize (i) and (ii) above to the case of compact Lie groups.

Before proving the Theorem, we want to recall some basic facts on homotopy
fixed-points. Ail spaces considered are supposed to be of the homotopy type of
Cff-complexes. If A&quot; dénotes a ;r-space, n a group, one writes Xhn for the homotopy
fixed-point space of the n action on X. It is by définition equal to maprc (En, X), the

space of rc-maps from the universai n -space En to X. The space of fixed-points Xn

maps naturally to Xhn and the induced map

(Z/p)œ(X*)^((Z//&gt;)00*)/&quot;t, (1)

is known to be an équivalence, if tu is a finite p -group and X a finite dimensional

n -space (Theorem of Carlsson, Miller and Lannes, cf. [2]). The functor (Z/p)^—)
dénotes the Bousfield-Kan Z//?-completion functor [1]. It has the basic property
that it turns H+( ; Z/p)-isomorphisms into homotopy équivalences. The following
lemma is implicit in Carlsson&apos;s paper [2].

LEMMA 1. Let X be a finite dimensional n-space, n a finite p-group. Then the

natural map

induces a bijection of connected components.
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Proof. From the équivalence (1) we see that

By[2,VI.12],

where the space ((Z/pY^X)* consists of a disjoint union of certain partial complétions

of the components of Xn (cf. [2, IV.3]). Therefore,

and the lemma follows.

We will also need the following resuit which applies to arbitrary (not necessarily
finite dimensional) spaces X.

LEMMA 2. Suppose X is an i-connected n-space, n a finite p-group and i ^ 2.

Then the canonical map

induces a n0-bijection, and isomorphisms

n^X»*, x) -+nJ(((Z/p)aoX)h\ &amp;x)

for j &lt; i and ail x e Xhn.

Proof. Since X is i-connected, (Zjp)&lt;X)X is i-connected too and it follows that
the fibre F of X-+(Z/p)a0X is (/ — l)-connected, with uniquely /^-divisible homo-

topy groups. The (homotopy) fibre Fy of © over a point y € ((Z/p)oc&gt;X)hn may be

identified with Fhn for some action of n on F. Since Fis 1-connected mod-p acyclic,
Fhn is p-acyclic too [3, 2.3]. Thus Fy is non-empty and connected, which implies that
&amp; is a 7r0-bijection. The obstruction theory spectral séquence

then collapses, because the groups nkF are ail uniquely p-divisible, and it follows
that
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for ail k. In particular, nk(Fhn) nk(Fy) 0 for k &lt; i since F is (i — l)-connected.
It follows then that © is a n} -isomorphism for j &lt; i.

Proof of the Theorem. (A) =&gt; (B). By Dwyer-Zabrodsky [3] one has a natural
bijection

Rep (7i, G) -+ n0 map (Bn, BG), (2)

associating with a homomorphism &lt;p : tc -+ G the component of map (Bn, BG)
containing Bip; we dénote that component by map (Bn, BG)^. As Bp : BG-+BH is

an Ht( ; Z/p)-isomorphism, the induced map

map (Bn, (Z/p)^ BG) -&gt; map (Bn, (Z/p)œBH\ (3)

is an équivalence. Thus, to prove (B) it suffices to show that for a gênerai compact
Lie group G

7ro(map (Bn, BG)) -&gt; 7ro(map (Bn, (Z/p)^ BG)), (4)

is a bijection. This is certainly so for G SU(n) as we see from Lemma 2 (trivial
Tt-action on BSU(n)). In the gênerai case we choose an embedding e : G -? SU(n) for
some n, and we look at the fibration

SU(n)/G -+BG-+ BSU(n), (5)

If we fix a map a : n -? S(7(«) which factors through G c S£/(rt), then we obtain a

fibration séquence

Z -?II map (5tc, tfG)^ -^ map (J?7t, BSU(n))a, (6)

where aa : n -+ G runs over ail G-conjugacy classes for which eaa is ^(/(nj-conjugate
to (j. We can identify Z with the space of sections of the fibration

SU(n)/G-+En X (SU(n)/G) -+Bn

which is obtained by pulling back (5) along Ba : Bn-+BSU(n). As a resuit

Z s mapn (£*, SU(n)/G) (SUWIG)**

where tt acts on SU(n)/G via a. Since BSU(n) is simply connected, (Z/p)œ( -) turns
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(5) into a fibration séquence

(Z/p^iSUW/G) -+(Zlp)O0BG-+{Z/p)a0BSU(n)9 (7)

which will give rise, as before, to a fibration

(((Z/pUSl/W/G))** -&gt;map (Bn, (Z/p^BG)*^^ map (Bn, (Zlp)^BSU(n))a,

(8)

where map (Bn, (Z/p)^ BG)R{(T) dénotes the disjoint union of those connected com-
ponents of map(#7r, (Z/p^BG) which map to map (Bn,(Z/p)o0BSU(n))a, the

component of (Z/p)ODBa of map (Bn,(Zjp)o0BSU(n)). To ensure that the map in
(4) is bijective it obviously suffices to check that

njll map (Bit, (Z/p)^ BG)aa J -&gt; 7ro(map (Bn, (Zip),»BG)R{ff)), (9)

is bijective for every a : n -&gt; SU(n) which factors through G c SU(n). For this,
consider the natural map of the fibration (6) to that of (8). Because

n} map (Bn, BSU(n))a - nx map (Bn, (Zlp)a:)BSU(n))a

is an isomorphism (Lemma 2) we see that (9) is a bijection, if the map on fibres

no(SU(n)IG)h«

is a bijection. But this is the case by Lemma 1.

(B) =&gt; (C). We first check that Qp(p) induces a bijection on isomorphism classes

of objects. Let A, B be finite p-subgroups of G with p(A) and p(B) isomorphic as

objects of QP(H) so that there exists an h e H with ch : p(A) -+p(B) a group
isomorphism. Note that A -+p(A) is injective in view of (B). Thus, there is a group
isomorphism 0 : A -&gt;B rendering the diagram

A -^ p(A)

0 1

commutative; we will show that 0 cg for some g e G, proving that A is isomor-
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phic to B in QP(G). Namely, because the bijection

Rep (p) : Rep (A, G) -? Rep (A, H)

maps the class of § : A -&gt; G, (x -&gt; @x), to pë chp : A-&gt; H, which is the same as
the image under Rep (p) of the inclusion A c G, we infer that ë is G-conjugate to
this inclusion; thus 0 =cg:A^Bfov some g g G. This shows that gp(G) -? £?,(#)
is one-one on isomorphism classes of objects. Actually, the same argument shows
that Qp(p) is full: for any objects A, B e QP(G), the induced map of Qp -morphisms

Mor (A, B)^ Mor (p(A),p(B))

is surjective.
If P is any fini te /?-subgroup of H, we apply (B) with n P to infer a

commutative diagram

&apos;( 1-

Thus P g QP(H) is isomorphic, as object of QP{H), to p(/P), showing that
QP(G) -? QP(H) is onto on isomorphism classes of objects.

It remains to check that Qp(p) is faithful, i.e., that for any A, B g Qp(G)

Mor {A, B) -&gt; Mor (pA9 pB)

is injective. But this is obvious because Mor {A, B) c Hom {A, B), Mor (pyi,
Hom(p^, p5) and p : B ^ p{B) is a group isomorphism as observed earlier.

(C) =&gt; (A). Define a cofunctor F : 0P(G) -^^* by mapping P to H*(BP; Z/p).
The natural map

Res://*(£G;Z//?)-&gt;limF

is then an isomorphism. In the case of a finite group G this follows from the
classical resuit describing H*(BG\ Z/p) in terms of the stable éléments in the

cohomology of a p-Sylow subgroup of G; the gênerai case was dealt with in
[4, Theorem 2.3]. The implication (C) =&gt; (A) is then plain.

The next resuit is an immédiate conséquence of the Theorem. It relates Weyl-

groups of maps with group cohomology.
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COROLLARY 1. Let p : G -+H be a map of compact Lie groups inducing an

isomorphism H*(BH; Zjp) -* H*(BG, Z/p). Thenfor every homomorphism q&gt; :n-+G
with n a finite p-group, the induced map of Weyl-groups

p, : W{cp) - W{pcp)

is a group isomorphism.

Proof. Note that W{&lt;p) is the automorphism group of the object q&gt;(n) g Qp(G)\
similarly for W(nq&gt;). Thus part (C) of the theorem shows that the natural map
W(&lt;p) -? W(p(p) is an isomorphism.

It seems surprising that Z//&gt;-cohomology information can contain such précise
information on Weyl-groups, which are in gênerai not p -groups. The following
application shall illustrate this; as a variation of the thème we use rational
cohomology information as input.

COROLLARY 2. Let p :G -*H be a map of connected compact Lie groups
inducing an isomorphism

H*(BH;Q)-+H*(BG;Q).

Then p induces an isomorphism of Weyl-groups W(G) -» W(H).

Proof. Choose a prime p large enough such that H*Bp : H*(BH\ Z/p)
-+H*(BG; Z/p) is an isomorphism (any prime which does not divide the order of
the kernel and cokernel of the map H+(G; Z) -? H+(H; Z) will do). Clearly, G and

H hâve the same rank and, because in addition there is no élément of order p in
the kernel of p, p maps a maximal torus T(G) c G onto a maximal torus
pT(G) T(H) c H. The union of the finite p-subgroups is dense in T(G) and

T(H). As a resuit, we can find a finite p-subgroup n c T(G) with centralizer

C(n) C(T(G)) T(G), and C(pn) C(T(H)) T(H); hère we used the fact that
in a compact Lie group closed subgroups satisfy the descending chain condition and
that in a connected compact Lie group, a maximal torus is its own centralizer.

Similarly, we may assume that the normalizer of n satisfies N(n) N(T(G)), and

N(pn) N(T(H)). Then it follows that the induced map of Weyl-groups
W{G) -* W(H) is an isomorphism as one sees by applying the previous Corollary to
the given map p :G -+H and the inclusion map q&gt; :n-+G.

Of course, this corollary could also be proved in a more conventional way by
observing that the hypothesis implies that p :G -+H induces an isomorphism of
associated Lie algebras.
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