Link invariants via the eta invariant.

Autor(en): Levine, J.P.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 69 (1994)

PDF erstellt am: 22.07.2024

Persistenter Link: https://doi.org/10.5169/seals-52249

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Link invariants via the eta invariant

J. P. Levine

Introduction

In their fundamental work on the Index Theorem for bounded manifolds, ATIYAH-PATODI-SINGER introduce a real-valued invariant $\tilde{\eta}(M, \theta)$, associated with a closed oriented odd-dimensional Riemannian manifold M (say connected) and a unitary representation θ of its fundamental group; a basic observation is that $\tilde{\eta}$ gives a diffeomorphism invariant of (M, θ) - see [APS II]. It is a consequence of the Index Theorem that if (M, θ) is the boundary of $(V, \bar{\theta})$, then $\tilde{\eta}(M, \theta)=$ signature $(V, \bar{\theta})-k$ signature V, where k is the dimension of the representation. In the present work we consider pairs (M, α), where M is a (connected) closed oriented odd-dimensional manifold equipped with a G-structure α, i.e. a homomorphism from $\pi_{1}(M)$ to a group G. We interpret $\tilde{\eta}(M, \theta \alpha)$ as a function $\rho(M, \alpha): R_{k}(G) \rightarrow \mathbb{R}$, where $R_{k}(G)$ is the (real) variety (or inverse limit of such, if G is countably generated) of representations of G into the unitary group $U(k), k \geq 1$. In (II.2) we show that $\rho(M, \alpha)$ is piecewise-continuous-more precisely, $R_{k}(G)$ admits a stratification by subvarieties so that $\rho(M, \alpha)$ is continuous on each open stratum. With an eye to the use of this invariant to study link concordance, we examine the invariance of $\rho(M, \alpha)$ under homology cobordism - in (II.3) we show that $\rho(M, \alpha)$ depends only on the homology cobordism class of (M, α) except on the points of some proper subvariety of a particular type that we call special. For example, if $\theta \in R_{k}(G)$ factors through some group of prime power order then θ cannot lie on any special subvariety. Thus for such $\theta \rho(M, \alpha) \cdot \theta$ is a homology cobordism invariant of (M, α) - these are essentially the signature invariants of SMOLINSKY [S]. But the global nature of ρ, and its continuity property, gives this invariant more power than the individual evaluations, as is illustrated by the examples in (III.4,5).

In order to apply ρ to links we first point out that the complements of certain classes of links admit "canonical" G-structures, where G is either a free abelian group \mathbb{Z}^{m}, a free group F, or an "algebraic closure" \bar{F} of F, depending on which
class of links. The representation varieties of \mathbb{Z}^{m} and F are well-understood, but we need to study $R_{k}(\bar{F})$. Our approach, motivated by the use of the dihedral group in [CO], considers certain quotients of F whose algebraic closures are more easily understood. In particular we can construct some rather explicit analytic curves in $R_{k}(\bar{F})$. This is all done in Chapter I.

To illustrate the scope of these invariants we give two realization theorems (III.3) which, for certain groups G and Hermitian matrices λ with entries in $\mathbb{Z} G$, construct links with G-structures on their complements such that $\rho(M, \alpha) \cdot \theta$ can be computed from the signature of $\theta(\lambda)$. We then make two particular applications. In the first we construct two one-dimensional links which are seen to be non-concordant only by looking at ρ on a proper lower stratum of $R_{1}\left(\mathbb{Z}^{m}\right)$, the m-torus - the more traditional signature invariants, as well as the ALEXANDER polynomial, fail to detect this. By contrast we prove (in (II.4)) that such examples cannot exist for higher-dimensional links or for one-dimensional links with a mild triviality property - i.e. for such links, ρ contains concordance information only on the open principal stratum of continuity. In the second example we exhibit the phenomenon, first detected by COCHRAN-ORR [CO], of links of any odd-dimension (with vanishing $\bar{\mu}$-invariants in dimension one) which are not concordant to boundary links. For these examples we compute ρ on the analytic curves in $R_{k}(\bar{F})$ constructed in Chapter I.

Many of the results of this paper were announced in [L4]. In a future work (see also [L4]) we will use signature functions on representation varieties to study the CAPPELL-SHANESON homology surgery Γ-groups of infinite groups. The WALL surgery groups of finite groups are understood largely through the use of this technique but, for infinite groups, the locally constant nature of the signature function makes it less useful - on the other hand this property allows one to globalize and obtain K-theory invariants (see e.g. [Mi]). By contrast, for homology surgery groups the signature function has discontinuities and so is more likely to yield useful information - for the same reason it is unlikely that globalization is possible.

Chapter I: Unitary representation varieties

1. If G is a (discrete) group, then we let $R_{k}(G)$ denote the set of all k-dimensional unitary representations of G. It is a standard fact that, when G is finitely-generated, $R_{k}(G)$ is a real algebraic variety. If x_{1}, \ldots, x_{n} is a set of generators of G, then $\rho \mapsto\left(\rho\left(x_{1}\right), \ldots, \rho\left(x_{n}\right)\right)$ imbeds $R_{k}(G)$ into $U(k) \times \cdots \times U(k)$. Each relation in $\left\{x_{1}, \ldots, x_{n}\right\}$ defines a real polynomial equation (using $A^{-1}=\bar{A}^{T}$) and so, if G is finitely-presented, we see $R_{k}(G)$ displayed as the zeroes of a finite set of real
polynomials. In the infinitely presented case we appeal to the Noetherian property of the real polynomial ring. $R_{k}(G)$ is the zero set of an infinite set of polynomials, but since the ideal these polynomials generate is finitely generated, we can equally well regard $R_{k}(G)$ as the zero set of a finite set of polynomials. It is easy to check that the variety obtained is independent (up to isomorphism) of the presentation of G.

Since we will often have to do with infinitely-generated groups, we wish to give $R_{k}(G)$ the "algebraic" structure induced by the finitely-generated subgroups of G. In other words a function $f: R_{k}(G) \rightarrow \mathbb{R}$ is regular if $f=g \circ i^{*}$ where $i: H \rightarrow G$ is a homomorphism from some finitely-generated group $H, i^{*}: R_{k}(G) \rightarrow R_{k}(H)$ the induced function and $g: R_{k}(H) \rightarrow \mathbb{R}$ is regular. Functions into $R_{k}(G)$ - from some real algebraic variety, or $R_{l}(H)$, for another group H - are regular if their composition with every regular function $R_{k}(G) \rightarrow \mathbb{R}$ is regular. We adopt similar definitions for (real) analytic functions into or out of $R_{k}(G)$. It is easy to see that any homomorphism $\phi: G \rightarrow H$ induces a regular map $\phi^{*}: R_{k}(H) \rightarrow R_{k}(G)$ and the "suspension" $R_{k}(G) \rightarrow R_{k+1}(G)$, defined by the inclusion $U(k) \subseteq U(k+1)$, is regular.

The topology on $R_{k}(G)$ will always be the "classical" (rather than the Zariski) topology, i.e. that inherited as a subspace of $U(k) \times \cdots \times U(k)$ if G is finitely-generated, or the direct limit topology if G is infinitely-generated.

Examples

(a) $R_{1}(G)$ is the usual character group of G. If $G=\mathbb{Z}^{m}$ (free abelian group of rank m), then $R_{1}(G)$ is the m-torus.
(b) If $G=F^{m}$, the free group of rank m, then $R_{k}(G)=U(k) \times \cdots \times U(k)$ the m-fold product.
(c) If G is finite, then $R_{k}(G)$ is the disjoint union of a finite number of conjugacy classes of sums of irreducible representations.
(d) Suppose $G=D$, the infinite dihedral group with presentation $\{x, t$: $\left.t^{2}=1, t x t^{-1}=x^{-1}\right\}$. Then $R_{2}(D)$ has nine components. Eight of them are single conjugacy classes - pull-backs of eight of the ten conjugacy classes of $U(2)$-representations of $\mathbb{Z} / 2 \times \mathbb{Z} / 2$ via the abelianization $D \rightarrow \mathbb{Z} / 2 \times \mathbb{Z} / 2$. The ninth component is the union of the conjugacy classes of the algebraically imbedded circle $i: S^{1} \subseteq R_{2}(D)$ defined by $i(\omega) \cdot t=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, $i(\omega) \cdot x=\left(\begin{array}{cc}\omega & 0 \\ 0 & \bar{\omega}\end{array}\right)$. This component contains the pull-back of the remaining two conjugacy classes of representations of $\mathbb{Z} / 2 \times \mathbb{Z} / 2$.
(e) For any subring Λ of the real numbers \mathbb{R}, we consider an enlargement of the dihedral group D_{Λ}, defined to be the semi-direct product $\Lambda \times \mathbb{Z} / 2$. More specifically D_{Λ} is the split extension of Λ by $\mathbb{Z} / 2$, where conjugation of Λ by the generator t of $\mathbb{Z} / 2$ is given by: $t \lambda t^{-1}=-\lambda$ for any $\lambda \in \Lambda$. Then there is an analytic map $i: \mathbb{R} \rightarrow R_{2}\left(D_{\Lambda}\right)$, defined by $i(s) \cdot t=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\grave{l}(s) \cdot \lambda=\left(\begin{array}{ll}e^{2 \pi i s \lambda} & 0 \\ 0 & e^{-2 \pi i s \lambda}\end{array}\right)$ for $\lambda \in \Lambda$. If Λ contains \mathbb{Z} properly, then \check{l} is an imbedding. Note that, under the restriction map $R_{2}\left(D_{A}\right) \rightarrow R_{2}(D)$, we obtain an infinite cyclic cover $\bar{i}(\mathbb{R}) \rightarrow i\left(S^{1}\right)$.
(f) The preceding examples in (d) and (e) can be further generalized. Let Π be a finite group; and Λ a subring of \mathbb{R}. Consider the wreath product $\Lambda \S \Pi$ which is, by definition, the semi-direct product $\Lambda \Pi \times \Pi$, where $\Lambda \Pi$ is the group algebra and conjugation of an element λ of $\Lambda \Pi$ by an element $g \in \Pi$ is defined to be $g \cdot \lambda \in \Lambda \Pi$.

For $\Lambda=\mathbb{Z}$, we define an algebraic imbedding $i: T^{k} \hookrightarrow R_{k}(\Lambda \S \Pi)$, where $k=|\Pi|$, and T^{k} is the k-dimensional torus. For the definition we identify the coordinates of \mathbb{C}^{k} (or \mathbb{R}^{k}) with the elements of Π. This induces an identification $\mathbb{C}^{k}=\mathbb{C} \Pi$ and $T^{k}=\mathbb{R} \Pi / \mathbb{Z} \Pi$. Thus there is an induced multiplication $T^{k} \times \mathbb{Z} \Pi \rightarrow T^{k}$. We also use the obvious identification of T^{k} with the diagonal unitary matrices (maximal torus of $U(k)$).

We now define i by the formulae:
(i) $(i(\tau) \cdot g) \cdot \gamma=g \gamma$ for $\tau \in T^{k}, g \in \Pi \subseteq \mathbb{Z} \S \Pi, \gamma \in \mathbb{C} \Pi$
(ii) $(i(\tau) \cdot \lambda) \cdot \gamma=(\tau \lambda) \cdot \gamma$ for $\tau \in T^{k}, \lambda \in \mathbb{Z} \Pi \subseteq \mathbb{Z} \S \Pi, \gamma \in \mathbb{C} \Pi$.

If $\Lambda=\mathbb{R}$ we can define an analytic imbedding $\check{\imath}: \mathbb{R}^{k}=\mathbb{R} \Pi \hookrightarrow R_{k}(\mathbb{R} \S \Pi)$ by the formulae:
(iii) $(\mathfrak{i}(\alpha) \cdot g) \cdot \gamma=g \gamma$ for $\alpha \in \mathbb{R} \Pi, g \in \Pi \subseteq \mathbb{R} \S \Pi, \gamma \in \mathbb{C} \Pi$
(iv) $(\grave{\imath}(\alpha) \cdot \lambda) \cdot \gamma=e(\alpha \lambda) \cdot \gamma$ for $\alpha \in \mathbb{R} \Pi, \lambda \in \mathbb{R} \Pi \subseteq \mathbb{R} \S \Pi, \gamma \in \mathbb{C} \Pi$
where $e: \mathbb{R} \Pi \rightarrow T^{k}=\mathbb{R} \Pi / \mathbb{Z} \Pi$ is the (exponential) quotient map.
As in (e), the restriction $R_{k}(\mathbb{R} \S \Pi) \rightarrow R_{k}(\mathbb{Z} \S \Pi)$ induces an infinite cyclic cover $\grave{l}\left(\mathbb{R}^{k}\right) \rightarrow i\left(T^{k}\right)$.
(g) Finally we mention the flurry of recent activity in the study of $S U(2)$ (and $S U(n)$) representations of knot groups, much of it aimed at the calculation of the Casson invariant and instanton homology of 3-manifolds (see e.g. [B], [F], [K], [KF], [KK]).
2. In this section we recall the notion of algebraic closure of a group and after some preparation in sections 3 and 4 , give some examples of unitary representations of some of these groups using $1(\mathrm{e})$, (f). A group G is said to be algebraically closed if any contractible system of equations over G has a unique solution in G. A system of equations over $G: x_{i}=w_{i}\left(x_{1}, \ldots, x_{n}\right), 1 \leq i \leq n$, where $w_{i}=w_{i}\left(x_{1}, \ldots, x_{n}\right)$ $\in F * G, F$ the free group generated by the indeterminates $\left\{x_{i}\right\}$, is said to be contractible if $p\left(w_{i}\right)=1$, where $p: F * G \rightarrow F$ is projection. In other words, w_{i} is a product of conjugates of elements of G. A solution of such a system is a collection of elements g_{1}, \ldots, g_{n} in some overgroup of G, such that $g_{i}=w_{i}\left(g_{1}, \ldots, g_{n}\right)$ for all i. The term algebraically closed appears often in group theory literature (see e.g. [Ne]) with rather different meaning than ours. (If we replace the contractible condition with a weaker one - acyclic - which means $p\left(w_{i}\right) \in[F, F]$, one obtains a similar theory. It is not known if these two notions of algebraically closed actually differ.)

In [L1] it is shown that every group G admits an essentially unique homomorphism $i: G \rightarrow \hat{G}$, where \hat{G} is algebraically closed and i is "initial" among such homomorphisms. \hat{G} is called the algebraic closure of G. If $f: X \rightarrow Y$ is a map between finite polyhedra and its cofiber is contractible, i.e. f is a homology equivalence and $f_{*} \pi_{1}(X)$ normally generates $\pi_{1}(Y)$, then f induces an isomorphism $\widehat{\pi_{1}(X)} \underset{\rightarrow}{\approx} \widehat{\pi_{1}(Y)}$. For any group G, its nilpotent completion \tilde{G} is algebraically closed (see [L]). We denote by $\bar{G} \subseteq \widetilde{G}$ the subgroup of all elements which are part of a solution to some contractible system of equations over G, i.e. \bar{G} is the image of the canonical map $\hat{G} \rightarrow \tilde{G}$ extending $G \rightarrow \tilde{G}$. We call \bar{G} the residually nilpotent algebraic closure of G.

Despite the size of \hat{G} it does seem to have a reasonable collection of unitary representations. In [V1] it is proved, for example, that any unitary representation of a free group F extends to a unitary representation of \hat{F} (in fact, of \bar{F}). It will be proved, in a future paper, that for any finitely-generated group G, any unitary representation of G which lies in the "component" of $R_{k}(G)$ containing the trivial representation, extends over \hat{G}. We will be interested in some examples where representations of G extend to many different representations of \hat{G}. The topological implications of this phenomenon will arise later in Section (III.5).

Our construction of representations of algebraic closure will rely on the relationship of the algebraic closure of certain groups to the groups D_{Λ} and $\Lambda \S \Pi$ discussed in example (e) and (f) in Section 1. In fact it is shown in [L] and [CO] that, for the dihedral group $D, \hat{D}=D_{\Lambda}$ where $\Lambda=\mathbb{Z}\left[\frac{1}{2}\right]$. We will show that, more generally, for any p-group $\Pi, \mathbb{Z} \S \Pi \subseteq \overline{\mathbb{Z}} \Pi \subseteq \mathbb{Z}[1 / p] \S \Pi$.
3. We will consider a general semi-direct product $G=A \times \Pi$, where Π is any group, A is a left $\mathbb{Z} \Pi$-module and the conjugation action of Π on A in G coincides
with the left multiplication of $\Pi \subseteq \mathbb{Z} \Pi$ on A. Our aim is to give a description of \bar{G} in terms of $\bar{\Pi}$ and the I-adic completion of A, where $I=I \Pi$ is the augmentation ideal of $\mathbb{Z} \Pi$.

Let $\tilde{A}=\lim A / I^{q} A$. We show that \tilde{A} is a module over $\mathbb{Z}[\tilde{\pi}]$. First note that $I\left(\Pi_{q}\right) \subseteq(I \Pi)^{q}$, where $I\left(\Pi_{q}\right)$ is the augmentation ideal of Π_{q}, the q-th term of the lower central series of Π (defined recursively by $\Pi_{1}=\Pi, \Pi_{q}=\left[\Pi, \Pi_{q-1}\right]$). To see this, by induction on q, consider a generator $[g, h]$ of Π_{q}, where $g \in \Pi, h \in \Pi_{q-1}$. Then we have

$$
[g, h]-1=((g-1)(h-1)-(h-1)(g-1)) g^{-1} h^{-1} \in(I \Pi) I\left(\Pi_{q-1}\right)
$$

But $I\left(\Pi_{q-1}\right) \subseteq(I \Pi)^{q-1}$, by induction.
Now $A / I^{q} A$ is a module over $\mathbb{Z}[\Pi] /(I \Pi)^{q}$ so it is also a module over $\mathbb{Z}[\Pi] /$ $I\left(\Pi_{q}\right) \cdot \mathbb{Z}[\Pi]$. But this is the same as $\mathbb{Z}\left[\Pi / \Pi_{q}\right]$ - for any group G and normal subgroup $N, \mathbb{Z}[G / N]=\mathbb{Z} G / I(N) \cdot \mathbb{Z} G$. Since $\tilde{\Pi}$ is the inverse unit of $\left\{\Pi / \Pi_{q}\right\}$, we conclude that \tilde{A} is a module over $\mathbb{Z}[\tilde{\Pi}]$.

PROPOSITION 3.1. $\tilde{A} \times \tilde{\Pi}$ is the nilpotent completion of $A \times \Pi$.
Proof. First note that $(A \times \Pi)_{q}=I^{q-1} A \times \Pi_{q}$. This is a straightforward recursive calculation, using the fact that $I\left(\Pi_{q}\right) \subseteq(I \Pi)^{q}$. Therefore the lower central series quotients $G / G_{q}=A \times \Pi / I^{q-1} A \times \Pi_{q} \approx\left(A / I^{q-1} A\right) \times\left(\Pi / \Pi_{q}\right)$ and the result follows by letting $q \rightarrow \infty$.

Suppose $\left(\lambda_{i j}\right)$ is an $(n \times n)$-matrix over $\mathbb{Z} \tilde{\Pi}$ with the property $\epsilon\left(\lambda_{i j}\right)=\delta_{i j}$ (ϵ is the usual augmentation $\mathbb{Z} \tilde{\Pi} \rightarrow \mathbb{Z}$). Then the linear system of equations:
(i) $\sum_{j=1}^{n} \lambda_{i j} X_{j}=\alpha_{i}, \quad 1 \leq i \leq n$,
has a unique solution in \tilde{A} for any $\alpha_{i} \in \tilde{A}$. In fact, the recursive formulae:

$$
X_{i, q+1}=\alpha_{i}-\sum_{j=1}^{n}\left(\lambda_{i j}-\delta_{i j}\right) X_{j, q}, \quad X_{i o}=0
$$

define $\left\{X_{i q}\right\} \subseteq A$ satisfying $X_{i q+1} \equiv X_{i q} \bmod I^{q} A$ and $\Sigma_{j=1}^{n} \lambda_{i j} X_{j q} \equiv \alpha_{i} \bmod I^{q} A$. If $R \subseteq \mathbb{Z} \tilde{\Pi}$ is any subring and B an R-submodule of \tilde{A}, we denote by \bar{B} the R-submodule of \tilde{A} consisting of all elements which appear as part of the solutions of a system (i) with $\lambda_{i j} \in R$ and $\alpha_{i} \in B$. This can be alternatively described using the Cohn localization [Co]. If S denotes the set of matrices over R which become
non-singular over \mathbb{Z} after augmentation, then R_{s} is the "localization" of R in which the matrices of S become non-singular. The observation above means that the inclusion $B \subseteq \tilde{A}$ extends to a unique homomorphism $R_{s} \otimes_{R} B=B_{s} \rightarrow \tilde{A}$ and \bar{B} is its image.

PROPOSITION 3.2. $\overline{A \times \Pi}=\overline{(\mathbb{Z} \bar{\Pi}) A} \times \bar{\Pi}$.

Note. In this formula, $\overline{A \times \Pi}$ and $\bar{\Pi}$ mean the residually nilpotent algebraic closures, while $\overline{(\mathbb{Z} \bar{\Pi}) A}$ is the module localization defined just above.

Proof. Suppose $(\alpha, g) \in \overline{A \times \Pi} \subseteq A \times \Pi=\tilde{A} \times \tilde{\Pi}$. To understand α and g we examine a system of equation over $A \times \Pi$, denoting the indeterminates $\left(X_{i}, x_{i}\right)$. The system breaks up into two systems - corresponding to the variables $\left\{X_{i}\right\},\left\{x_{i}\right\}$. The system over Π, obtained by projecting the original system, is contractible if the original system is and, in this case, will have unique solutions $x_{i}=g_{i} \in \bar{\Pi}$. Making this substitution in the original system results in a system of linear equations (i), where $\alpha_{i} \in(\mathbb{Z} \bar{\Pi}) A, \lambda_{i j} \in \mathbb{Z} \bar{\Pi}$. The contractibility of the original system implies $\epsilon\left(\lambda_{i j}\right)=\delta_{i j}$ and so the solutions lie in $\overline{(\mathbb{Z} \bar{\Pi}) A}$.

To complete the proof we will show that, for any $\alpha \in(\mathbb{Z} \bar{\Pi}) A$, the element $(\alpha, 1) \in \overline{(\mathbb{Z} \bar{\Pi}) A} \times \bar{\Pi}$ is part of a solution of some contractible system of equations over $A \times \Pi$. Suppose we have a linear system (i) with $\lambda_{i j} \in \mathbb{Z} \bar{\Pi}, \alpha_{i} \in(\mathbb{Z} \bar{\Pi}) A$ and $\epsilon\left(\lambda_{i j}\right)=\delta_{i j}$ whose solution set contains α. Since $\overline{(\mathbb{Z} \bar{\Pi}) A}$ is a $\mathbb{Z} \bar{\Pi}$-module it suffices to consider the case where every $\alpha_{i} \in A$. Write out $\lambda_{i j}=\delta_{i j}+\Sigma_{r} c_{i j r}\left(g_{i j r}-1\right)$, where $c_{i j r} \in \mathbb{Z}$ and $g_{i j r} \in \bar{\Pi}$. Then consider the following system of equations:

$$
\begin{equation*}
\left(X_{i}, 1\right) \prod_{j, r}\left(\left(0, g_{i j r}\right)\left(X_{j}, 1\right)\left(0, g_{i j r}^{-1}\right)\left(-X_{j}, 1\right)\right)^{c_{i j r}}=\left(\alpha_{i}, 1\right) \tag{ii}
\end{equation*}
$$

where the ordering of the terms in the product can be chosen at will. This is a contractible system over $(\mathbb{Z} \bar{\Pi}) A \times \bar{\Pi}$ with indeterminates $\left\{\left(X_{i}, 1\right)\right\}$ which corresponds precisely to the linear system (i). Now there is some contractible system of equations over Π :
(iii) $\quad x_{i}=w_{i}\left(x_{1}, \ldots, x_{n}\right), \quad 1 \leq i \leq n$
such that each $g_{i j r}$ is a member of the solution set of (iii). (The single system (iii) is obtained by putting together the individual systems which give rise to each $g_{i j r}$.) We may now substitute for each $g_{i j r}$ appearing in (ii) the variable x_{l} from (iii) such that $x_{l}=g_{i j r}$ is part of the solution. Now (ii) contains two sets of indeterminates: $\left\{\left(X_{i}, 1\right),\left(0, x_{l}\right)\right\}$. If we identify the variable $\left(0, x_{l}\right)$ in (ii) with x_{l} in (iii), then the
combined system (ii), (iii) is a contractible system over $A \times \Pi$ whose solution set contains ($\alpha, 1$), as desired.
4. We now specialize to the case of Π a p-group. As a consequence of Propositions 3.1 and 3.2 we prove:

THEOREM 4.1. If Π is a p-group and A a left $\mathbb{Z} \Pi$-module, then there is a natural inclusion $A \times \Pi \subseteq A_{p} \times \Pi$, extending the identity on $A \times \Pi$, under which $\overline{A \times \Pi} \subseteq A_{(p)} \times \Pi$.

Notation. $A_{p}=\mathbb{Z}_{p} \otimes_{\mathbb{Z}} A=\mathbb{Z}_{p} \Pi \otimes_{\mathbb{Z} \Pi} A \quad$ and $\quad A_{(p)}=\mathbb{Z}_{(p)} \otimes A=\mathbb{Z}_{(p)} \Pi \otimes A$, where \mathbb{Z}_{p} is the ring of p-adic integers and $\mathbb{Z}_{(p)}$ is the ring of rational p-adic integers i.e. $\mathbb{Z}_{p} \cap \mathbb{Q}$.

LEMMA 4.2. If Π is a p-group, then $(I \Pi)^{n} \subseteq p I \Pi$, for some positive integer n, and $p^{k}(I \Pi) \subseteq(I \Pi)^{2}$, for some positive integer k.

Proof. Let $R=\mathbb{Z} / p$; we must prove that the augmentation ideal $I \Pi \subseteq R \Pi$ is nilpotent, i.e. $(I \Pi)^{n}=0$ for some n. Suppose Π is cyclic of order p with generator t. Then $I \Pi=(t-1)$ and so $(I \Pi)^{p}=\left((t-1)^{p}\right)=\left(t^{p}-1\right)=0$. We now proceed by induction on the order of Π. Let N be a cyclic central subgroup of order p and set $\Pi^{\prime}=\Pi / N$. By induction $(I \Pi)^{n} \subseteq \operatorname{Ker}\left\{R \Pi \rightarrow R \Pi^{\prime}\right\}=\mathbb{Z} \Pi \cdot I N$, for some n. So $(I \Pi)^{n p} \subseteq(\mathbb{Z} \Pi \cdot I N)^{p}=\mathbb{Z} \Pi \cdot(I N)^{p}=0$, since N is central and of order p.

To prove the second inclusion we first note the simple formula: for any $g \in \Pi$, $g^{r}-1 \equiv r(g-1) \bmod (I \Pi)^{2}$. This follows by induction on $r: g^{r}-1=g\left(g^{r-1}-1\right)+$ $g-1 \equiv g^{r-1}-1+g-1\left(\bmod (I \Pi)^{2}\right) \equiv(r-1)(g-1)+g-1\left(\bmod (I \Pi)^{2}\right)$. Now suppose $g^{p^{k}}=1$ for every $g \in \Pi$. Then $p^{k}(g-1) \in(I \Pi)^{2}$ for any $g \in \Pi$.

As a consequence of this lemma the p-adic topology and the (III)-adic topology on $\mathbb{Z} \Pi$ coincide on $I \Pi$. Thus $\widetilde{I \Pi}=\lim _{q} I \Pi /(I \Pi)^{q}$ coincides with $(I \Pi)_{p}=$ $\lim _{k} I \Pi / p^{k}(I \Pi)$. Since $\widetilde{\mathbb{Z}} / \widetilde{\Pi \Pi}=\mathbb{Z}$ and $(\mathbb{Z} \Pi)_{p} /(I \Pi)_{p}=\mathbb{Z}_{p}$, we have $\widetilde{\mathbb{Z} \Pi} \subseteq(\mathbb{Z} \Pi)_{p}$. Now, by Proposition 3.1, $A \widetilde{\times} \Pi=\tilde{A} \times \tilde{\Pi}=\tilde{A} \times \Pi$, since Π is a p-group. Recall $\Pi=\bar{\Pi}=\tilde{\Pi}$ for any nilpotent group. So $\tilde{A}=\widetilde{\mathbb{Z}} \mathbb{\Pi}_{\mathbb{Z} \Pi} A \subseteq(\mathbb{Z} \Pi)_{p} \otimes_{\mathbb{Z} \Pi} A=A_{p}$ and the first assertion of Theorem 4.1 follows.

To prove the second assertion we need:

LEMMA 4.3. Let Π be a p-group and A a left $\mathbb{Z} \Pi$-module such that $\mathbb{Z} \otimes_{\mathbb{Z} \Pi} A=0$. Then $\mathbb{Z}_{(p)} \otimes_{\mathbb{Z}} A=0$. In particular, if $\left(\lambda_{i j}\right)=\lambda$ is a square matrix over $\mathbb{Z} \Pi$ such that $\epsilon(\lambda)$ is non-singular over \mathbb{Z}, then λ is non-singular over $\mathbb{Z}_{(p)} \Pi$.

This lemma implies immediately that, under the inclusion $\mathbb{Z} \Pi \rightarrow \mathbb{Z}_{p} \Pi$ established above, we have $\overline{\mathbb{Z} \Pi} \subseteq \mathbb{Z}_{(p)} \Pi$. Thus the second assertion of Theorem 4.1 follows from Proposition 3.2.

Proof of Lemma 4.3. We first note that the second assertion follows from the first by considering A to be the $\mathbb{Z} \Pi$-module with presentation matrix λ.

Let $R=\mathbb{Z} / p$ again and let $A^{\prime}=R \otimes_{\mathbb{Z}} A=R \Pi \otimes_{\mathbb{Z} \Pi} A$. So $R \otimes_{R \Pi} A^{\prime}=0$. We will prove that, for any $R \Pi$-module B, that $R \otimes_{R \Pi} B=0$ implies $B=0$. If $A^{\prime}=0$, then A consists entirely of elements of finite order prime to p. But then $\mathbb{Z}_{(p)} \otimes A=0$.

Suppose Π is cyclic of order p with generator t, then $R \otimes_{R \Pi} B=0$ implies that $t-1$ is an epimorphism of B. But $(t-1)^{p}=t^{p}-1=0$ and so $B=0$. We proceed by induction on $|\Pi|$. Again let N be a central cyclic subgroup of order p and $\Pi^{\prime}=\Pi / N$. Let $B^{\prime}=R \Pi^{\prime} \otimes_{R \Pi} B$; then $R \otimes_{R \Pi^{\prime}} B^{\prime}=R \otimes_{R \Pi} B=0$ and so, by induction, we have $B^{\prime}=0$. If we now consider B as an $R N$-module and note that $R \otimes_{R N} B=R \Pi^{\prime} \otimes_{R \Pi} B=B^{\prime}=0$. But we know the lemma is true for N and so we conclude $B=0$.

We can now combine Theorem 4.1 with the representations of $1(\mathrm{f})$, to define the analytic map $\check{\imath}: \mathbb{R}^{k} \rightarrow R_{k}(\overline{\mathbb{Z} \S \Pi})$, where $k=|\Pi|$, using $\check{\imath}$ defined in $1(\mathrm{f})$ followed by the restriction of representations $\mathbb{R} \S \Pi$ to $\overline{\mathbb{Z}} \S \Pi$ via ϕ from Theorem 4.1.

Chapter II: The signature invariant

1. In [APS I, II] an invariant, which we denote $\tilde{\eta}_{\alpha}(M)$, is defined for a closed smooth oriented connected odd-dimensional manifold M and a unitary representation $\alpha: \pi_{1}(M) \rightarrow U(k)$. We give a brief outline. If M is Riemannian, an invariant $\eta_{\alpha}(M) \in \mathbb{R}$ is defined from the spectrum of a certain self-adjoint elliptic linear differential operator. The following theorem is of paramount importance:

INDEX THEOREM [APS II]. If $M=\partial N$ where N is a connected compact Riemannian oriented manifold, and α extends over $\Pi_{1}(N)$ then:

$$
\operatorname{sign}_{\alpha}(N)=k \int_{N} L(p)-\eta_{\alpha}(M)
$$

where $\operatorname{sign}_{\alpha}(N)$ is the (twisted) α-signature of $N(\alpha$ is also used to denote its extension over $\Pi_{1}(N)$) and $L(p)$ is the Hirzebruch L-polynomial in the Pontriagin forms of N.

We will recall the definition of $\operatorname{sign}_{\alpha}(N)$ below. As an immediate consequence of the Index Theorem, one concludes that $\tilde{\eta}_{\alpha}(M)=\eta_{\alpha}(M)-k \eta_{o}(M)$, where o denotes the trivial representation, is a diffeomorphism invariant of (M, α). Then the Index Theorem implies the formula:
(1) $\quad \tilde{\eta}_{\alpha}(M)=k \operatorname{sign}(N)-\operatorname{sign}_{\alpha}(N)$.

Thus $\tilde{\eta}_{\alpha}(M)$ is an integer if M bounds but, by contrast, [APS II] supplies the following example:
(2) If $M=S^{1}$ and $\alpha: \Pi_{1}\left(S^{1}\right) \rightarrow U(1)$ is defined by $\alpha(t)=\left(e^{2 \pi i a}\right)$, for a suitable generator t of $\Pi_{1}\left(S^{1}\right)$ and a real number a, then:

$$
\tilde{\eta}_{x}(M)\left\{\begin{array}{ll}
1-2 a & 0<a<1 \\
0 & a=1
\end{array} .\right.
$$

Let's recall the definition of $\operatorname{sign}_{\alpha}(N)-$ see [APS II] or [N] also.
We adopt the following convention. If $\alpha: \Pi \rightarrow U(k)$ is a representation and A is a left $\mathbb{Z} \Pi$ or $\mathbb{C} \Pi$-module, then $\mathbb{C}^{k} \otimes_{\alpha} A$ denotes $C_{\alpha}^{k} \otimes_{\mathbb{C} \Pi} A$ where \mathbb{C}_{α}^{k} is \mathbb{C}^{k} with the right $\mathbb{C} \Pi$-module structure defined by the formula $v \cdot g=v \alpha(g) ; v$ is interpreted as a row-vector.

Now we can define $H_{*}(N ; \alpha)$ to be the homology of the chain complex $\mathbb{C}^{k} \otimes_{\alpha} C_{*}(\tilde{N})$, where \tilde{N} is the universal covering space of N, if $\Pi=\Pi_{1}(N)$. $H_{*}(N ; \alpha)$ supports an intersection pairing via the following pairing on the chain level:

$$
\begin{equation*}
\left\langle v_{1} \otimes c_{1}, v_{2} \otimes c_{2}\right\rangle=v_{1} \alpha\left(\left\langle c_{1}, c_{2}\right\rangle\right) \bar{v}_{2}^{\tau} \tag{3}
\end{equation*}
$$

where $\left\langle c_{1}, c_{2}\right\rangle$ is the equivariant intersection pairing on \tilde{N} with values in $\mathbb{Z} \Pi, v^{\tau}$ is the transpose of v and ${ }^{-}$denotes complex conjugation. If $\operatorname{dim} N=2 q$, then (3) induces a $(-1)^{q}$-Hermitian pairing on the complex vector space $H_{q}(N ; \alpha)$. More generally, one obtains a non-singular pairing of $H_{i}(N ; \alpha)$ with $H_{2 q-i}(N, \partial N ; \alpha)$ using Poincaré duality.

If G is a group, then a G-manifold will be a pair (M, α), where M is a compact oriented manifold and α a collection of homomorphisms $\alpha_{i}: \pi_{1}\left(M_{i}\right) \rightarrow G$, where $\left\{M_{i}\right\}$ are the components of M, each α_{i} defined up to an inner automorphism of G.

Now suppose (M, α) is a G-manifold, where M is also closed and odd-dimensional. For any $\theta \in R_{k}(G)$, the composition $\theta \alpha$ gives a unitary representation of $\pi_{1}(M)$ (or $\pi_{1}\left(M_{i}\right)$, for each component of M) and so $\tilde{\eta}_{\theta \alpha}(M) \in \mathbb{R}$ is defined. We
can thus define:

$$
\rho(M, \alpha): R_{k}(G) \rightarrow \mathbb{R}
$$

by $\rho(M, \alpha) \cdot \theta=\tilde{\eta}_{\theta \alpha}(M)$.
2. Our first result is that $\rho(M, \alpha)$ is "piecewise continuous." The discontinuities will be subvarieties of $R_{k}(G)$. When G is finitely-generated, and so $R_{k}(G)$ is an ordinary (real) algebraic variety, then a subvariety is the zero set of a regular function (or, equivalently, a finite set of functions). To cover the case of G infinitely-generated we define a subvariety to be, in general, the zero set of a regular function.

THEOREM 2.1. If (M, α) is a G-manifold, M closed odd-dimensional, then there exists a stratification: $R_{k}(G)=\Sigma_{0} \supseteq \Sigma_{1} \supseteq \cdots \Sigma_{i} \supseteq \Sigma_{i+1} \supseteq \cdots$ of finite length (i.e. Σ_{i} is empty for some i, where each Σ_{i} is a subvariety of $R_{k}(G)$, such that $\rho(M, \alpha) \mid \Sigma_{i}-\Sigma_{i+1}$ is continuous for every $i \geq 0$. The discontinuities of $\rho(M, \alpha)$ are all given by integer jumps, i.e. when reduced $\bmod \mathbb{Z}, \rho(M, \alpha)$ is continuous.

We will call $\left\{\Sigma_{i}\right\}$ a continuity stratification for $(M, \alpha) . \Sigma_{1}$ will be called a singular locus and $\Sigma_{0}-\Sigma_{1}$ a domain of continuity, if Σ_{1} is a proper subvariety. Of course there are many possible continuity stratifications, although it is possible to define a minimal one when G is finitely generated.

Proof. The particular continuity stratification we propose is obtained as follows. Consider, for any $\theta \in R_{k}(G)$, the number:

$$
\begin{equation*}
r(\theta)=\sum_{i=0}^{\infty} \operatorname{dim}_{\mathbb{C}} H_{i}(M ; \theta \alpha) \tag{1}
\end{equation*}
$$

We will prove that, for any r, the subset of $R_{k}(G)$ defined by
(2) $\Sigma_{r}=\left\{\theta \in R_{k}(G): r(\theta) \geq r\right\}$
is a subvariety of $R_{k}(G)$. Note that $\Sigma_{0}=R_{k}(G)$ and $\Sigma_{r}=\phi$ if $r>k N$, where N is the total number of simplices in a triangulation of M.

To see that Σ_{r} is a subvariety, consider the free $\mathbb{Z} G$-chain complex $\left\{C_{i}(\tilde{M}), \partial_{i}\right\}$, where \tilde{M} is the regular G-covering of M defined by α. Each $\partial_{s}: C_{s}(\tilde{M}) \rightarrow C_{s-1}(\tilde{M})$ is represented by a matrix $\left(\lambda_{i j}^{s}\right)$ over $\mathbb{Z} G$, and so $H_{*}(M ; \theta \alpha)$ is the homology of the chain complex $\mathbb{C}^{k} \otimes_{\theta} C_{*}(\tilde{M})$ whose boundary operators are represented by the
complex matrices $\left(\theta\left(\lambda_{i j}^{s}\right)\right)$. Each $\theta\left(\lambda_{i j}^{s}\right)$ is, itself, a matrix and these form blocks in the larger matrix. Since

$$
\operatorname{dim} H_{s}(M ; \theta \alpha)=\operatorname{dim}\left(\mathbb{C}^{k} \otimes_{\theta} C_{s}(\tilde{M})\right)-\operatorname{rank}\left(\theta\left(\lambda_{i j}^{s}\right)\right)-\operatorname{rank}\left(\theta\left(\lambda_{i j}^{s+1}\right)\right)
$$

we have $r(\theta)=k N-2 \Sigma_{s} \operatorname{rank}\left(\theta\left(\lambda_{i j}^{s}\right)\right)$. If $T(\theta)$ is the block sum of the matrices $\left(\theta\left(\lambda_{i j}^{s}\right)\right)$, over all s, then

$$
\begin{equation*}
\Sigma_{r}=\left\{\theta: \operatorname{rank} T(\theta) \leq \frac{1}{2}(k N-r)\right\} . \tag{3}
\end{equation*}
$$

Since the entries of $T(\theta)$, and therefore its minors, are regular functions of θ, and Σ_{r} is defined, according to (3), by the vanishing of minors, we conclude that Σ_{r} is a subvariety.

We must now prove that $\rho(M, \alpha)$ is continuous on the sets $V_{r}=\{\theta$: $\left.\operatorname{dim} H_{*}(M ; \theta \alpha)=r\right\}$. We may as well assume that M is connected (since $\rho(M, \alpha)$ is additive under disjoint union) and $G=\pi_{1}(M), \alpha=$ identity, since, if we use the notation $\rho(M)$ for $\rho(M, \alpha)$ in this special case, we have $\rho(M, \alpha)=\rho(M) \circ \alpha^{*}$, where $\alpha^{*}: R_{k}(G) \rightarrow R_{k}\left(\pi_{1}(M)\right)$ - the function induced by α - is regular.
$R_{k}\left(\pi_{1}(M)\right)$ is well-known to be closely related to the class of k-dimensional flat bundles over M. For each principal $U(k)$-bundle ξ over M, let $A(\xi)$ denote the space of flat connexions on ξ and $B(\xi)=A(\xi)$ modulo the action of the gauge group of bundle automorphisms of ξ. Then the disjoint union of $\{B(\xi)\}$ is homeomorphic to the quotient $R_{k}\left(\pi_{1}(M)\right) /$ conjugation. Suppose we choose a Riemannian metric for M. Then the η-invariant $\eta_{c}(M)$ can be defined, for any $c \in A(\xi)$, by considering the linear elliptic self-adjoint differential operator $E_{c}= \pm\left(* D_{c}-D_{c} *\right)$ on $\Omega_{\text {even }}(\xi)$, where D_{c} is the covariant derivative defined by c, * the duality involution defined by the metric.

Let $\theta_{0} \in V_{r}$ and $c_{0} \in A(\xi)$ a corresponding connexion. To show continuity of $\rho(M) \mid V_{r}$ at θ_{0}, we can instead consider $\eta_{c}(M)$ as a function of $c \in V_{r}^{\prime}$ near c_{0}, where V_{r}^{\prime} is the set of c such that E_{c} has nullity r. Note that $\eta_{c}(M)-\rho(M) \cdot \theta$ is constant, for corresponding c, θ, and the nullspace of E_{c} corresponds to $H_{*}(M, \theta)$ by Hodge Theory (see [APSII]). Now choose $\epsilon>0$ so that $E_{c_{0}}$ has no non-zero eigenvalues λ with $|\lambda| \leq \epsilon$ and let W be a neighborhood of c_{0} so that $\pm \epsilon$ is not an eigenvalue of E_{c} for any $c \in W$. We can follow [APS III, p. 74ff] and write $\eta_{c}(M)=\eta_{c}^{\prime}+\eta_{c}^{\prime \prime}$ for $c \in W$, corresponding to eigen-values λ with $|\lambda|<\epsilon$ and $|\lambda|>\epsilon$, respectively. Now $\eta_{c}^{\prime \prime}$ is, up to a constant, the η-function of an invertible operator if $c \in W$ and, as shown in [APS III], is therefore a differentiable function of c. On the other hand, η_{c}^{\prime} is just a finite sum of the signs of those eigenvalues λ of E_{c} with $|\lambda|<\epsilon$. If $d(c)$ denotes the total dimension of the eigenspaces of E_{c} for eigen-values λ with $|\lambda|<\epsilon$, then d is locally constant on W. Since $d\left(c_{0}\right)=r$, we have $d(c)=r$ in
some neighborhood $W^{\prime} \subseteq W$ of c_{0}. But then, if $c \in W^{\prime} \cap V_{r}^{\prime}, E_{c}$ has no eigenvalues λ with $0<|\lambda|<\epsilon$ and so $\eta_{c}^{\prime}=0$. So we conclude that $\eta_{c}(M)$ is continuous in $W^{\prime} \cap V_{r}^{\prime}$.

The continuous function $\tilde{\rho}(M, \alpha): R_{k}(G) \rightarrow \mathbb{R} / \mathbb{Z}$, defined by reducing $\rho(M, \alpha)$ $\bmod \mathbb{Z}$, is well-understood. It is locally constant when $\operatorname{dim} M \equiv 3 \bmod 4$ and differs from a locally constant function by an explicit formula depending only on the determinant $R_{k}(G) \rightarrow R_{1}(G)$. (See, e.g. a forthcoming paper of M. Farber and the author.) Furthermore $\tilde{\rho}(M, \alpha)$ depends only on the G-bordism class of (M, α), by the Index theorem.
3. We propose to investigate the extent to which $\rho(M, \alpha)$ is an invariant of homology G-bordism. We say (M, α) and $\left(M^{\prime}, \alpha^{\prime}\right)$ are homology G-bordant if there is G-manifold (N, β) such that $\partial N=M^{\prime}-M$ and $\beta \mid \pi_{1}(M)=\alpha, \beta ; \pi_{1}\left(M^{\prime}\right)=\alpha^{\prime}$, up to inner automorphism, and $H_{*}(N, M)=H_{*}\left(N, M^{\prime}\right)=0$. It will turn out that, in this case, $\rho(M, \alpha)=\rho\left(M^{\prime}, \alpha^{\prime}\right)$ except on a subvariety of $R_{k}(G)$ of a certain type.

Let A be a finitely-presented $\mathbb{C} G$-module. We define a subvariety Σ_{A} of $R_{k}(G)$ by

$$
\Sigma_{A}=\left\{\theta: \mathbb{C}^{k} \otimes_{\theta} A \neq 0\right\}
$$

To see that this is a subvariety, consider a presentation matrix $\left(\lambda_{i j}\right)$ for A. Then, if $\left(\lambda_{i j}\right)$ is an ($m \times n$)-matrix - i.e. A has n generators and m relations $-\mathbb{C}^{k} \otimes_{\theta} A$ is the quotient of $\mathbb{C}^{n k}$ by the row-space of the complex $(m k) \times(n k)$-matrix $\left(\theta\left(\lambda_{i j}\right)\right)$. Thus Σ_{A} is the zero set of all the $n k \times n k$ minors of $\left(\theta\left(\lambda_{i j}\right)\right)$, and each minor is clearly a regular function on $R_{k}(G)$.

We define a special subvariety of $R_{k}(G)$ to be a subvariety of the form Σ_{A}, where $A=\mathbb{C} \otimes_{\mathbb{Z}} A^{\prime}$ for some finitely-presented $\mathbb{Z} G$-module A^{\prime} satisfying:
(1) $\mathbb{Z} \otimes_{\mathbb{Z} G} A^{\prime}=0$.

In particular, if $\left(\lambda_{i j}\right)$ is any square matrix over $\mathbb{Z} G$ such that $\left(\epsilon\left(\lambda_{i j}\right)\right)$ is unimodular, where $\epsilon: \mathbb{Z} G \rightarrow \mathbb{Z}$ is the usual augmentation, then $\left\{\theta: \operatorname{det}\left(\theta\left(\lambda_{i j}\right)\right)=0\right\}$ is a special subvariety. If $f(\theta)=\operatorname{det}\left(\theta\left(\lambda_{i j}\right)\right)$, we refer to f as a special function. Since $\Sigma_{A \oplus B}=\Sigma_{A} \cup \Sigma_{B}$, the union of two special subvarieties is special. Note that a special subvariety of $R_{k}(G)$ is invariant under conjugation by any element of $U(k)$. If $k=1$, then for any special subvariety Σ_{A} there is an element $\lambda \in \mathbb{Z} G$ such that $\epsilon(\lambda)=1$ and $\theta(\lambda)=0$ for any $\theta \in \Sigma_{A}$. If $\left(\lambda_{i j}\right)$ is an $m \times n$ presentation matrix of A then some integral linear combination of the $(n \times n)$-minors of $\left(\epsilon\left(\lambda_{i j}\right)\right)$ equals 1 . This is just a polynomial in the entries of $\left(\epsilon\left(\lambda_{i j}\right)\right)$ and we choose λ to be the same polynomial, replacing each occurrence of $\epsilon\left(\lambda_{i j}\right)$ of $\lambda_{i j}$. Because $k=1, \theta(\lambda)$ is a linear combination of the $(n \times n)$-minors of $\left(\theta\left(\lambda_{i j}\right)\right)$, for any $\theta \in R_{1}(G)$.

We point out the following important property:
PROPOSITION 3.1. A special subvariety contains no point of $R_{k}(G)$ which factors through a representation of a group of prime power order.

Proof. This is an immediate consequence of lemma (I.4.3). Suppose we have a homomorphism $G \rightarrow P$, where P is a p-group, and θ is induced by $\theta^{\prime} \in R_{k}(P)$. If A^{\prime} is a $\mathbb{Z} G$-module satisfying (1), let $B^{\prime}=\mathbb{Z} P \otimes_{\mathbb{Z} G} A^{\prime}$. Then it follows from lemma (I.4.3) that $B=\mathbb{C} \otimes_{\mathbb{Z}} B^{\prime}=0$. Therefore $\mathbb{C}^{k} \otimes_{\theta} A=C^{k} \otimes_{\theta^{\prime}} B=0$.

Denote by $P_{k}(G) \subseteq R_{k}(G)$ the set of all θ which factor through some group of prime power order. $P_{k}(G)$ is often a dense subset of $R_{k}(G)-$ e.g. If $G=\mathbb{Z}^{m}$, then $P_{1}(G) \subseteq R_{1}(G)=T^{m}$, the m-torus, is the set of all m-tuples $\left(z_{1}, \ldots, z_{m}\right)$ where each z_{i} is a p-th power root of unity (some prime p). In $U(k)$ the elements of prime-power order are dense - they are the elements whose eigen-values are all powers of some single prime. Thus $P_{k}(F)$ is dense in $R_{k}(F)$ for a free group F. Also $P_{2}(D)$ is dense in $R_{2}(D)$ but, by contrast, $P_{2}\left(D_{A}\right)$ consists only of those representations induced from $R_{2}(\mathbb{Z} / 2)$ by the canonical homomorphism $D_{A} \rightarrow \mathbb{Z} / 2$, if $\frac{1}{2} \in \Lambda-$ see (I.1(e)). For finite groups G which are not a product of groups of prime power order, it is easy to see that $P_{k}(G)$ is smaller than (and, therefore, not dense in) $R_{k}(G)$.

Our interest in special subvarieties stems from:
PROPOSITION 3.2. Suppose C is a free chain complex over $\mathbb{Z} G$, finitely generated in each dimension, and suppose $\bar{C}=\mathbb{Z} \otimes_{\mathbb{Z G}} C$ satisfies:
(2) $H_{q}(\bar{C})=0, \quad$ for $m \geq q>n$, and $H_{n}(\bar{C})$ is torsion-free.

Then there is a special subvariety $\Sigma \subseteq R_{k}(G)$ such that $H_{q}(C ; \theta)=0$, for $m \geq q>n$, if $\theta \notin \Sigma$.

Proof. We begin with the standard construction of a chain contraction: $\bar{s}_{q}: \bar{C}_{q} \rightarrow \bar{C}_{q+1}$, for $m \geq q \geq n$, satisfying

$$
\begin{equation*}
\partial \bar{s}_{q}+\bar{s}_{q+1} \partial=1 \quad \text { for } m \geq q>n \quad \text { and } \quad \partial \bar{s}_{n} \mid \partial C_{n+1}=1 . \tag{3}
\end{equation*}
$$

Define $\bar{s}_{n}: \partial \bar{C}_{n+1} \rightarrow \bar{C}_{n+1}$ so that $\partial \bar{s}_{n}=1$; since $H_{n}(\bar{C})$ is torsion-free, $\partial \bar{C}_{n+1}$ is a direct summand of \bar{C}_{n} and so we can extend \bar{s}_{n} over \bar{C}_{n}. Now assume \bar{s}_{q} is defined for $n \leq q<l \leq m$, so that (3) holds for $l>q>n$. As a consequence $\partial \circ\left(s_{l-1} \partial-1\right)=0$. Since $H_{l}(\bar{C})=0, \operatorname{Im}\left(\bar{s}_{l-1} \partial-1\right) \subseteq \partial \bar{C}_{l+1}$ and so, since \bar{C}_{l} is free, we can construct \bar{s}_{l} as desired.

Now choose homomorphisms $s_{q}: C_{q} \rightarrow C_{q+1}$, for $m \geq q \geq n$, so that $1 \otimes s_{q}=\bar{s}_{q}$ (C_{q} is free). For any $\theta \in R_{k}(G)$ define $s_{q}^{\theta}: \mathbb{C}^{k} \otimes_{\theta} C_{q} \rightarrow \mathbb{C}^{k} \otimes_{\theta} C_{q}$ to be $1 \otimes s_{q}$. The endomorphism $\partial s_{q}^{\theta}+s_{q+1}^{\theta} \partial$ is an isomorphism - in fact, the identity-for $m \geq q>n$ when θ is the trivial representation, since it is then just k copies of $\partial \bar{s}_{q}+\bar{s}_{q+1} \partial$. If we define $f_{q}(\theta)=\operatorname{det}\left(\partial s_{q}^{\theta}+s_{q+1}^{\theta} \partial\right)$, then f_{q} is a special function for $m \geq q>n$. If we define $\Sigma=\Sigma_{n+1} \cup \cdots \cup \Sigma_{m}$, where Σ_{q} is the zero set of f_{q}, then Σ is a special subvariety and $\partial s_{q}^{\theta}+s_{q+1}^{\theta} \partial$ is an isomorphism for $m \geq q>n$ if $\theta \notin \Sigma$. We see that this implies $H_{q}(C ; \theta)=0$ (for $m \geq q>n$). Let $\phi_{q}^{\theta}=\partial s_{q}^{\theta}+s_{q+1}^{\theta} \partial$, an isomorphism if $\theta \notin \Sigma$. It is clear that $\phi_{q}^{\theta}(\operatorname{Ker} \partial) \subseteq \operatorname{Im} \partial$ and so $\operatorname{dim}_{\mathbb{C}} \operatorname{Ker} \partial \leq$ $\operatorname{dim}_{\mathbb{C}} \operatorname{Im} \partial$. On the other hand $\operatorname{Im} \partial \subseteq \operatorname{Ker} \partial$, and so $\operatorname{Im} \partial$ must equal $\operatorname{Ker} \partial$.

COROLLARY 3.3. Suppose (M, α) and (N, β) are homology cobordant G-manifolds. Then, for some large subset (i.e. complement of a special subvariety) L of $R_{k}(G), \rho(M, \alpha)|L=\rho(N, \beta)| L$.

Combining this Corollary with Proposition 3.1, we have the following. Suppose $i: V \rightarrow R_{k}(G)$ is an analytic map from a connected analytic manifold V such that $i(V)$ contains at least one point of $P_{k}(G)$ - for example, the maps i and \check{i} of (I.1.(d), (e), (f)) and (I.4) have this property. Then $\rho(M, \alpha) \circ i=\rho(N, \beta) \circ i$ off some proper analytic subvariety of V - in particular $\rho(M, \alpha) \circ i=\rho(N, \beta) \circ i$ on an open, dense subset of V.

Proof of Corollary. Let (W, γ) be a homology cobordism between (M, α) and (N, β). Then $H_{*}(W, M)=H_{*}(W, N)=0$ and so, by Prop. 3.2, $H_{*}(W, M: \theta \gamma)=0$ in a large subset of $R_{k}(G)$. In particular $\operatorname{sign}_{\theta \gamma}(W)=0$, for all such θ, since this is the signature of a Hermitian form actually defined on Image $\left\{H_{*}(W ; \theta \gamma) \rightarrow\right.$ $\left.H_{*}(W, M ; \theta \gamma)\right\}$ - similarly $\operatorname{sign}(W)=0$. It then follows immediately from the Index Theorem (II.1(1)) that $\rho(M, \alpha) \cdot \theta=\rho(N, \beta) \cdot \theta$.
4. In this section we will show that in many cases, including all our applications to higher-dimensional links and some classical links (see Proposition (III.2.2))), $\rho(M, \alpha)$ has a singular locus Σ which is a special subvariety. When this is the case, $\rho(M, \alpha) \mid \Sigma$ gives no information about the homology bordism class of (M, α). In other words, as long as $\rho(M, \alpha)=\rho(N, \beta)$ on the complement of Σ, there is no way to use the results of the previous section to show that (M, α) and (N, β) are not homology bordant. (We will, however, give some examples, in (III.4), in the context of classical links, where $\rho(M, \alpha)$ and $\rho(N, \beta)$ coincide on any domain of continuity but differ in any large subset of $R_{k}(G)$ - and so, by Corollary 3.3, are not homology bordant.)

We need a preliminary definition. Denote by $R_{k}^{0}(G)$ the set of all $\theta \in R_{k}(G)$ such that there exists a common non-zero fixed vector $v \in \mathbb{C}^{k}$ for every $\theta(g), g \in G$. In other words $R_{k}^{0}(G)$ is the conjugacy class of the subvariety $R_{k-1}(G) \subseteq R_{k}(G)$. This inclusion is defined by $\theta \mapsto \bar{\theta}$ where $\bar{\theta}(g) \cdot\left(z_{1}, \ldots, z_{k}\right)=\left(\theta(g) \cdot\left(z_{1}, \ldots, z_{k-1}\right), z_{k}\right)$. Let $\tilde{R}_{k}(G)$ denote the complement of $R_{k}^{0}(G)$.

THEOREM (4.1). Let (M, α) be an odd-dimensional connected oriented G-manifold which satisfies:
(i) $H_{i}(M)=0$ for $1<i<n-1(n=\operatorname{dim} M)$
(ii) $H_{1}(M) \xrightarrow{\alpha_{*}} H_{1}(G)$ is an isomorphism, and $H_{1}(G)$ is torsion-free
(iii) If $n=3$, then α factors through a finitely-presented group $\pi: \pi_{1}(M) \xrightarrow{\alpha^{\prime}}$ $\pi \rightarrow G$, with $H_{1}(\pi) \approx H_{1}(G)$ and $H_{2}(\pi)=0$.
Then, for some large subset L of $R_{k}(G), L \cap \tilde{R}_{k}(G)$ is contained in some domain of continuity for (M, α).

Remark. (a) If $n>3$, (iii) is automatically satisfied for $\pi=\pi_{1}(M)$.
(b) I do not know whether $\rho(M, \alpha)$ is continuous on some large subset.

Before proving Theorem (4.1) we point out a corollary.

COROLLARY (4.2). Suppose (M, α) and (N, β) are G-manifolds of the same dimension satisfying (i)-(iii) in Theorem (4.1). Suppose that, for every domain of continuity D in any $R_{k}(G)$, there exists a large subset L such that $\rho(M, \alpha)$ and $\rho(N, \beta)$ agree on $D \cap L$. Then for every k there exists a large subset L_{k} of $R_{k}(G)$ such that $\rho(M, \alpha)\left|L_{k}=\rho(N, \beta)\right| L_{k}$.

In other words, if ρ can detect that (M, α) and (N, β) are not homology cobordant, then it can, in fact, detect it in some domain of continuity.

Proof of Corollary. Set $A_{k}=\left\{\theta \in R_{k}(G): \rho(M, \alpha) \cdot \theta \neq \rho(N, \beta) \cdot \theta\right\}$. We show, by induction on k, that A_{k} is contained in a special subvariety of $R_{k}(G)$. By the theorem $A_{k} \subseteq \Sigma \cup R_{k}^{0}(G)$, for some special subvariety Σ. By induction $A_{k-1}=A_{k} \cap$ $R_{k-1}(G)$ is contained in a special subvariety Σ^{\prime} of $R_{k-1}(G)$. It is an immediate consequence of the definition of special subvariety that $\Sigma^{\prime}=R_{k-1}(G) \cap \Sigma^{\prime \prime}$, for some special subvariety $\Sigma^{\prime \prime}$ of $R_{k}(G)$. Since $R_{k}^{0}(G)$ is the conjugacy class of $R_{k-1}(G)$ and $\Sigma^{\prime \prime}$ is invariant under conjugation, we have $A_{k} \cap R_{k}^{0}(G) \subseteq \Sigma^{\prime \prime}$, and so $A_{k} \subseteq \Sigma \cup \Sigma^{\prime \prime}$. Since $\Sigma \cup \Sigma^{\prime \prime}$ is special, the proof is complete.

Proof of Theorem (4.1). By (i), (ii) we can choose $X \subseteq M, X$ a one-point union of circles, so that $H_{i}(M, X)=0$ for $i<n-1$. Thus, by Proposition (3.2), there is
a special subvariety Σ of $R_{k}(G)$ so that $H_{i}(M, X ; \theta \alpha)=0$ for $\theta \notin \Sigma, i<n-1$. So $H_{i}(M ; \theta \alpha) \approx H_{i}\left(X ; \theta \alpha_{j}\right)$ for $i<n-2, \theta \in \Sigma$, where $j: \pi_{1} X \rightarrow \pi_{1} M$ is induced by inclusion. If $n \geq 5$, then $H_{n-2}(M ; \theta \alpha)=0$ for $\theta \in \Sigma$, since $H_{n-2}(M ; \theta \alpha)=$ $H_{2}(M ; \theta \alpha)$, by duality, and $2<n-2$.

Consider the continuity stratification $\left\{\Sigma_{i}\right\}$ constructed in the proof of Theorem (2.1): $\Sigma_{d}=\left\{\theta: \operatorname{dim}_{\mathbb{C}} H_{*}(M, \theta \alpha) \geq d\right\}$. By the above considerations and duality, we have, for $n \geq 5$:
(1) $\operatorname{dim}_{\mathbb{C}} H_{*}(M ; \theta \alpha)=2\left(\operatorname{dim}_{\mathbb{C}} H_{0}(X ; \theta \alpha)+\operatorname{dim}_{\mathbb{C}} H_{1}(X ; \theta \alpha)\right) \quad$ for $\theta \notin \Sigma$.

Furthermore

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{C}} H_{1}(X ; \theta \alpha)=\operatorname{dim}_{\mathbb{C}} H_{0}(X ; \theta \alpha)-k \chi(X)=\operatorname{dim}_{\mathbb{C}} H_{0}(X ; \theta \alpha)+k(m-1) ; \\
& \quad m=\operatorname{rank} H_{1}(X) .
\end{aligned}
$$

So (1) becomes $\operatorname{dim}_{\mathbb{C}} H_{*}(M ; \theta \alpha)=4 \operatorname{dim} H_{0}(X ; \theta \alpha)+2 k(m-1)$, if $\theta \in \Sigma$. But a simple computation shows that $H_{0}(X ; \theta \alpha)=0$ exactly when $\theta \in R_{k}^{0}(G)$. Thus we have shown that, for $d=2 k(m-1), R_{k}(G)=\Sigma_{d} \cup \Sigma$ and $\Sigma_{d+1} \subseteq R_{k}^{0}(G) \cup \Sigma$. The theorem now follows, for $n \geq 5$, using the continuity stratification:

$$
R_{k}(G) \supseteq \Sigma_{d+1} \cup \Sigma \supseteq \Sigma_{d+2} \cup \Sigma \supseteq \cdots \supseteq \Sigma \supseteq \Sigma \cap \Sigma_{1} \supseteq \Sigma \cap \Sigma_{2} \supseteq \cdots
$$

We now look at $n=3$. By duality:
(2) $\operatorname{dim}_{\mathbb{C}} H_{*}(M ; \theta \alpha)=2\left(\operatorname{dim} H_{1}(M ; \theta \alpha)+\operatorname{dim} H_{0}(M ; \theta \alpha)\right)$

We will also use the following exact homology sequences:
(3) $0 \rightarrow H_{1}(M ; \theta \alpha) \rightarrow H_{1}(M, * ; \theta \alpha) \rightarrow H_{0}(* ; \theta \alpha) \rightarrow H_{0}(M ; \theta \alpha) \rightarrow 0$

$$
\begin{equation*}
H_{2}(M, X ; \theta \alpha) \xrightarrow{\partial} H_{1}\left(X, * ; \theta \alpha_{j}\right) \rightarrow H_{1}(M, * ; \theta \alpha) \rightarrow H_{1}(M, X ; \theta \alpha) \rightarrow 0 . \tag{4}
\end{equation*}
$$

Note that $H_{0}(* ; \theta \alpha)=\mathbb{C}^{k}$ for all $\theta, H_{1}\left(X, * ; \theta \alpha_{j}\right)=\mathbb{C}^{m k}$ for all $\theta, H_{0}(M ; \theta \alpha)=0$ if $\theta \in R_{k}^{0}(G)$, and $H_{1}(M, X ; \theta \alpha)=0$ if $\theta \notin \Sigma$.

From (iii) we can construct maps:
$M \rightarrow B \Pi \rightarrow B G$, whose composition induces α.
This enables us to factor ∂, in (4), as a composition:

$$
H_{2}(M, X ; \theta \alpha) \rightarrow H_{2}(B \pi, X ; \theta \alpha) \rightarrow H_{1}\left(X, * ; \theta \alpha_{j}\right)
$$

But $H_{2}(\pi)=0$ implies $H_{2}(B \pi, X)=0$ and so, by Prop. 3.2, we can choose a special subvariety Σ^{\prime} of $R_{k}(G)$ so that $H_{2}(B \pi, X ; \theta \alpha)=0$ if $\theta \notin \Sigma^{\prime}$. Note that $H_{i}(B \pi, X)=0$ if $i \leq 1$ and, since π is finitely-presented, the chain complex $\left\{C_{q}(B \pi, X ; \mathbb{Z} G)\right\}$ is of finite type for $i \leq 2$.

Let $d=2 k(m-1)$ again. Then we have $R_{k}(G)=\Sigma_{d} \cup \Sigma \cup \Sigma^{\prime}$, since if $\theta \notin \Sigma \cup \Sigma^{\prime}$ we have, by (4), that $\operatorname{dim}_{\mathbb{C}} H_{1}(M, * ; \theta \alpha)=m k$, using $\partial=0$, and thus, by (3), that $\operatorname{dim}_{\mathbb{C}} H_{1}(M ; \theta \alpha) \geq k(m-1)$. By (2), $\theta \in \Sigma_{d}$. We also see that $\Sigma_{d+1} \subseteq R_{k}^{0}(G) \cup$ $\Sigma \cup \Sigma^{\prime}$, since if $\theta \notin R_{k}^{0}(G) \cup \Sigma \cup \Sigma^{\prime}$ we have from the preceding argument and (3) that $\operatorname{dim}_{\mathbb{C}} H_{1}(M ; \theta \alpha)=k(m-1)$. Thus, by (2), $\operatorname{dim}_{\mathbb{C}} H_{*}(M ; \theta \alpha)=2 k(m-1)$ since $\theta \notin R_{k}^{0}(G)$.

Now the conclusion of Theorem (4.1) follows using the continuity stratification:

$$
R_{k}(G) \supseteq \Sigma_{d+1} \cup \Sigma \cup \Sigma^{\prime} \supseteq \Sigma_{d+2} \cup \Sigma \cup \Sigma^{\prime} \supseteq \cdots \supseteq \Sigma \cup \Sigma^{\prime} \supseteq\left(\Sigma \cup \Sigma^{\prime}\right) \cap \Sigma_{1} \supseteq \cdots
$$

An examination of the proof of Theorem (4.1) shows that condition (iii) is required only to assure that, for some special subvariety Σ in $R_{k}(G)$, $\operatorname{dim}_{\mathbb{C}} H_{1}(M, * ; \theta \alpha)=m k$ if $\theta \notin \Sigma$. Thus we can look for substitutes - for example:

ADDENDUM TO THEOREM (4.1). The Theorem holds if (iii) is replaced by:
(iii)' G is free abelian and the $\mathbb{Z} G$-module $H_{1}(\tilde{M}, \tilde{*})$ has rank m.

Proof. Since $H_{1}(\tilde{M}, \tilde{X}) \otimes_{\mathbb{Z} G} \mathbb{Z} \approx H_{1}(M, X)=0$ we can apply Nakayama's lemma to construct $\Delta \in \mathbb{Z} G$, with $\epsilon(\Delta)=1$, so that $\Delta H_{1}(\tilde{M}, \tilde{X})=0$. Thus, if $\Lambda=\mathbb{Z} G[1 / \Delta]$, then $H_{1}(X, * ; \Lambda) \rightarrow H_{1}(M, * ; \Lambda)$ is onto. Since $H_{1}(X, * ; \Lambda)$ is free (over Λ) of rank m and $H_{1}(M, * ; \Lambda) \approx H_{1}(\tilde{M}, \tilde{*}) \otimes_{\mathbb{Z} G} \Lambda$ still has rank m, we conclude that $H_{1}(M, * ; \Lambda)$ is free of rank m. Now let $\Sigma=\{\theta: \operatorname{det} \theta(\Delta)=0\}$ a special subvariety. If $\theta \notin \Sigma$, then we can extend θ to a representation of Λ, $\theta^{\prime}: \Lambda \rightarrow M(k, \mathbb{C})$, by defining $\theta^{\prime}(1 / \Delta)=\theta(\Delta)^{-1}$. For such θ we have $H_{1}(M, * ; \theta \alpha) \approx$ $H_{1}(\tilde{M}, \tilde{*}) \otimes_{\theta} \mathbb{C}^{k} \approx H_{1}(M, * ; \Lambda) \otimes_{\theta^{\prime}} \mathbb{C}^{k}$ which is clearly of complex dimension $m k$.

Chapter III: Application to links

1. We now apply the invariants $\rho(M, \alpha)$, defined in Chapter II, to obtain several invariants of links. We first fix terminology and notation. By an n-link we will mean a smooth imbedding $f: S_{1}^{n}+\cdots+S_{m}^{n} \rightarrow S^{n+2}$, where $\left\{S_{i}^{n}\right.$) are m copies of $S^{n} ; m$ is the multiplicity of $f . L_{i}(f)=f\left(S_{i}^{n}\right)$ is the i-th component of $f . L(f)=\bigcup_{i} L_{i}(f)$ admits a unique (up to homotopy) trivialization of its normal bundle (0 -framing of f) agreeing with the orientation induced by the natural orientations of S^{n+2} and $\left\{S_{i}^{n}\right\}$ and satisfying the extra condition, if $n=1$, that the translate $L_{i}^{\prime}(f)$ of $L_{i}(f)$
along either normal field in the 0 -framing has zero linking number with $L_{i}(f)$. We will also only consider links f with the property that the linking number of any two components of f is zero.

We recall the notions of meridian and, for $n=1$, longitude. Given an n-link f, let

$$
F: S_{1}^{n} \times D^{2}+\cdots+S_{m}^{n} \times D^{2} \rightarrow S^{n+2}
$$

be an imbedding such that $F\left|S_{i}^{n} \times 0=f\right| S_{i}^{n}$, for all i, and such that the associated trivialization of the normal bundle of $L(f)$ agrees with the 0 -framing. Choose $x_{i} \in S_{i}^{n}$ and $x \in S^{1}$ and let $m_{i}=F \mid x_{i} \times S^{1}$ and, if $n=1, l_{i}=F \mid S_{i}^{n} \times x$. Choose γ_{i} from the base-point of $S^{n+2}-L(f)$ to $F\left(x_{i}, x\right)$. Then $\gamma_{i} \cdot m_{i} \cdot \gamma_{i}^{-1}$ and $\gamma_{i} \cdot l_{i} \cdot \gamma_{i}^{-1}$ define elements $\mu_{i}, \lambda_{i} \in \pi_{1}\left(S^{n+2}-L(f)\right)$ which depend only on f and the choice of γ_{i}. If we make another choice of $\left\{\gamma_{i}\right\}$ then we obtain $\xi_{i} \mu_{i} \xi_{i}^{-1}, \xi_{i} \lambda_{i} \xi_{i}^{-1}$ for some $\xi_{i} \in \pi_{1}\left(S^{n+2}-L(f)\right)$ and, conversely, for any ξ_{i} we can choose a corresponding $\left\{\gamma_{i}\right\}$. The set $\left\{\mu_{i}, \lambda_{i}\right\}$ is a meridian-longitude pair $-\mu_{i}$ is a meridian, λ_{i} a longitude (for $n=1$).

The surgery manifold $M(f)$ is defined to be:

$$
M(f)=\overline{S^{n+2}-\operatorname{Image}(F)} \cup_{F} \coprod_{i=1}^{m} D_{i}^{n+1} \times S^{1}
$$

Clearly

$$
\pi_{1}(M(f))= \begin{cases}\pi_{1}\left(S^{n+2}-L(f)\right) & \text { if } n>1 \\ \pi_{1}\left(S^{n+2}-L(f)\right) /\left\langle\lambda_{1}, \ldots, \lambda_{m}\right\rangle & \text { if } n=1\end{cases}
$$

There are four ways in which we can consider $M(f)$ as a G-manifold, for different choices of G and with varying restrictions on f. Three will depend on a choice of meridans.
(a) $G=\mathbb{Z}^{m}$ (free abelian group of rank m), $\alpha: \pi_{1}(M(f)) \rightarrow \mathbb{Z}^{m}$ defined by $\alpha(\xi)=\left(l\left(\xi, L_{i}(f)\right)\right.$, where l denotes linking number, or, alternatively, by the Hurewicz homomorphism followed by the identification of $H_{1}(M(f)) \approx \mathbb{Z}^{m}$ defined by $\Sigma_{i=1}^{m} n_{i}\left[\mu_{i}\right] \leftrightarrow\left(n_{1}, \ldots, n_{m}\right)$. This does not depend on a particular choice of meridians.
(b) Suppose that f is a boundary link (see e.g. [Gu], [CS]). This means that the $L_{i}(f)$ bound disjoint submanifolds (SEIFERT "surfaces") of S^{n+2} or, more algebraically, that for some choice of meridians, the homomorphism $\mu: F^{m} \rightarrow \pi_{1}\left(S^{n+2}-L(f)\right)$, where F^{m} is the free group with basis $\left\{x_{1}, \ldots, x_{m}\right\}$, defined by $\mu\left(x_{i}\right)=\mu_{i}$, admits a left inverse α^{\prime} :
$\pi_{1}\left(S^{n+2}-L(f)\right) \rightarrow F^{m}$ - i.e. $\alpha^{\prime} \circ \mu=$ identity. Note α^{\prime} induces $\alpha: \pi_{1}(M(f))$ $\rightarrow F^{m}$ since it is easy to see that $\alpha^{\prime}\left(\lambda_{i}\right)=1$. An F^{m}-structure on f is a choice of such α^{\prime}. The F^{m}-structure is determined by the choice of meridians since μ induces an isomorphism $F^{m} \approx \pi_{1}\left(S^{n+2}-L(f)\right) /\left(\pi_{1}\left(S^{n+2}-L(f)\right)_{\omega}\right.$ where, for any group G, G_{ω} is the intersection of all terms in the lower central series of G (see [Gu]). Not every choice of meridians for a boundary link will determine an F^{m}-structure, though, since not every set of conjugates of a basis of F^{m} is again a basis. Two different F^{m}-structures on a boundary link differ by a special automorphism of F^{m} i.e. one which sends each x_{i} to a conjugate of itself. The structure of the group of special automorphisms of F^{m} is known - see [Ko].
(c) Suppose that $n>1$, or $n=1$ and the $\bar{\mu}$-invariants of f vanish. This means that $\left\{\lambda_{i}\right\} \subseteq \pi_{1}\left(S^{3}-L(f)\right)_{\omega}$, or, alternatively by [M], that any meridian choice $\mu: F^{m} \rightarrow \pi_{1}\left(S^{3}-L(f)\right)$ induces an isomorphism $\tilde{F}^{m} \approx \pi_{1}\left(S^{3}-L(f)\right)$, where \tilde{G} denotes the nilpotent completion of G. It is then also true that μ induces isomorphism $\overline{F^{m}} \approx \overline{\pi_{1}\left(S^{3}-L(f)\right)} \approx \overline{\pi_{1}(M(f))}$, where \bar{G} denotes the residually nilpotent algebraic closure of G (see (I.2)). An \bar{F}^{m}-structure on f will mean any homomorphism $\alpha: \pi_{1}(M(f)) \rightarrow \bar{F}^{m}$ such that $\alpha\left(\mu_{i}\right)$ is a conjugate of x_{i}, for each meridian of f. Such α induces an isomorphism $\overline{\pi_{1}(M(f))} \approx \bar{F}^{m}$ but it is not necessarily true that $\alpha\left(\mu_{i}\right)=x_{i}$ for some choice of meridians. It is true, however, that any link with an \bar{F}^{m}-structure has vanishing $\bar{\mu}$-invariants. Any two \bar{F}^{m}-structures on f differ by a special automorphism of \bar{F}^{m} i.e. an automorphism which sends x_{i} to a conjugate of x_{i}, for every i. Also note that, for any sequence of elements $g_{1}, \ldots, g_{m} \in \bar{F}^{m}$, there is a unique automorphism of \bar{F}^{m} defined by $x_{i} \mapsto g_{i} x_{i} g_{i}^{-1}$ (see [L1]). Since the centralizer of x_{i} in \bar{F}^{m} is the cyclic group generated by x_{i}, it is easy to describe the group of special automorphisms of \bar{F}^{m}.
(d) A refinement of (c) is possible if $n>1$ or, for $n=1$, when f has vanishing $\hat{\mu}$-invariants. This means that the longitudes $\left\{\lambda_{i}\right\}$ lie in the kernel of the map $\pi_{1}\left(S^{3}-L(f)\right) \rightarrow \overline{\pi_{1}\left(S^{3}-L(f)\right)}$ to the algebraic closure (see (I.2)). This is equivalent to requiring that the map $\mu: F^{m} \rightarrow \pi_{1}\left(S^{3}-L(f)\right)$ defined by any choice of meridians induces an isomorphism $\hat{F}^{m} \approx \pi_{1}\left(\widehat{S^{3}-L(f)}\right) \approx$ $\widehat{\pi_{1}(M(f)) \text {. An } \hat{F}^{m} \text {-structure of } f \text { is a homomorphism } \alpha^{\prime}: \pi_{1}\left(S^{n+2}-L(f)\right), ~(f)}$ $\rightarrow \hat{F}^{m}$ (and, therefore, inducing $\alpha: \pi_{1}(M(f)) \rightarrow \hat{F}^{m}$) such that, for any choice of meridians, $\alpha^{\prime}\left(\mu_{i}\right)$ is conjugate to x_{i}, for all i. As in (c), there may not exist a meridian choice so that $\alpha^{\prime}\left(\mu_{i}\right)=x_{i}$. If $n>1$, or if f is a sublink of a homology boundary link (see [C], [L1]), f admits an \hat{F}^{m}-structure. This may, in fact, be true for every link with vanishing $\bar{\mu}$-invariants - it may even be true that $\hat{F}^{m}=\bar{F}^{m}$. Again any two \hat{F}^{m}-structures differ by a special automorphism of \hat{F}^{m} (each x_{i} is sent to a conjugate of itself). As in (c) for any
$\left\{g_{i}\right\} \subseteq \hat{F}^{m}, x_{i} \mapsto g_{i} x_{i} g_{i}^{-1}$ defines a unique special automorphism of \hat{F}^{m}, but it is not known whether the centralizer of x_{i} consists only of powers of x_{i}. Thus the group of special automorphisms is not completely known.

Two links f, f^{\prime} are concordant if there exists a proper smooth imbedding:

$$
F: I \times\left(S_{1}^{n}+\cdots+S_{m}^{n}\right) \rightarrow I \times S^{n+2}
$$

with $F\left(t \times S_{i}^{n}\right) \subseteq t \times S^{n+2}$, for $t=0,1$ and $F\left|0 \times S_{i}^{n}=f\right| S_{i}^{n}$ and $F \mid 1 \times S_{i}^{n}=$ $f^{\prime} \mid S_{i}^{n}$. If f, f^{\prime} are links with a G-structure ($G=F^{m}, \bar{F}^{m}$ or \hat{F}^{m}), then F is a G-concordance if it is equipped with a homomorphism $\check{\alpha}: \pi_{1}\left(\left(I \times S^{n+2}\right)\right.$ - Image $\left.F\right) \rightarrow G$ which restricts to the given G-structures of f, f^{\prime} up to an inner automorphism of G. (We will generally identify G-structures which differ by an inner automorphism.) When $G=\mathbb{Z}^{m}$ it is clear that any concordance admits a unique $\check{\alpha}$.

PROPOSITION (1.1). If f, f^{\prime} are G-concordant G-links, then $M(f)$ and $M\left(f^{\prime}\right)$ are homology G-bordant. Moreover, there exists a homology G-bordism ($V, \breve{\alpha}$) such that the inclusions induce homomorphisms $\pi_{1}(M(f)) \rightarrow \pi_{1}(V), \pi_{1}\left(M\left(f^{\prime}\right)\right) \rightarrow \pi_{1}(V)$ which are normally surjective.

Proof. If F is a G-concordance, then we can extend F to an imbedding $F^{\prime}: I \times\left(S_{1}^{n} \times D^{2}+\cdots+S_{m}^{n} \times D^{2}\right) \rightarrow I \times S^{n+2}$ and then we define $V=$ $\overline{\left(I \times S^{n+2}\right)-\text { Image } F^{\prime}} \cup_{F^{\prime}}\left(I \times\left(D_{1}^{n+1} \times S^{1}+\cdots+D_{m}^{n+1} \times S^{1}\right)\right)$. If $\check{\alpha}$ is induced from the G-structure on F, then the assertions of the Proposition follow easily.

PROPOSITION (1.2). Suppose f is a G-link and fis a concordant to another link $f^{\prime}-$ if $G=F^{m}$, suppose f^{\prime} is a boundary link and f is boundary concordant to f^{\prime}. Then f^{\prime} admits a G-structure so that f and f^{\prime} are G-concordant.

A boundary concordance between two boundary links is a concordance $F: I \times\left(S_{1}^{n}+\cdots+S_{m}^{n}\right) \rightarrow S^{n+2}$ such that some choice of meridians $\mu: F^{m} \rightarrow$ $\pi_{1}\left(S^{n+2}-\right.$ Image $\left.F\right)$ admits a left inverse $\check{\alpha}: \pi_{1}\left(S^{n+2}-\right.$ Image $\left.F\right) \rightarrow F^{m}$ i.e. $\breve{\alpha} \mu=1$.

Proof. Consider the homomorphism

$$
\pi=\pi_{1}\left(S^{n+2}-L(f)\right) \rightarrow \pi_{1}\left(I \times S^{n+2}-\operatorname{Im} F\right)=\theta
$$

induced by inclusion. It follows from [L1] that the induced map $\bar{\pi} \rightarrow \hat{\theta}$ and $\hat{\pi} \rightarrow \hat{\theta}$ are isomorphisms. When $G=F^{m}, f$ is a boundary link and F a boundary concordance, then $\pi / \pi_{\omega} \rightarrow \theta / \theta_{\omega}$ is an isomorphism. In fact μ induces isomorphisms $F^{m} \approx \pi / \pi_{\omega}$ and
$F^{m} \approx \theta / \theta_{\omega}$ by Stallings Theorem. Since the G-structure on f gives an identification of $\pi / \pi_{\omega}, \bar{\pi}$ or $\hat{\pi}$ with G, we obtain, via the inclusion, an identification of $\theta / \theta_{\omega}, \bar{\theta}$ or $\hat{\theta}$ with G. By the same argument we obtain from the G-structure on F an identification of $\pi^{\prime} / \pi_{\omega}^{\prime}$ or $\bar{\pi}^{\prime}$ or $\hat{\pi}^{\prime}$ with G, where $\pi^{\prime}=\pi_{1}\left(S^{n+2}-L\left(f^{\prime}\right)\right)$. To see that this identification defines a G-structure on f^{\prime}, which then is clearly G-concordant to f, we only need note that any meridian choices for f^{\prime} are conjugate, in θ, to meridians of f. When $G=F^{m}$, we note that any meridian choice for F corresponds, under $\theta / \theta_{\omega} \approx \pi^{\prime} / \pi_{\omega}^{\prime}$, to a meridian choice for f^{\prime}.
2. Suppose f is an n-link with a G-structure, where $G=\mathbb{Z}^{m}, F^{m}, \bar{F}^{m}$ or \hat{F}^{m} (a \mathbb{Z}^{m}-structure means no extra structure). We will use the G-structure α^{\prime}, or rather the induced $\alpha: \pi_{1}(M(f)) \rightarrow G$, to define an invariant for f from $\rho(M(f), \alpha)$: $R_{k}(G) \rightarrow \mathbb{R}$. We will denote this invariant $\underline{\sigma(f)}, \underline{\sigma_{b}(f)}, \underline{\bar{\sigma}(f)}$ or $\underline{\hat{\sigma}(f)}$, respectively, when $G=\mathbb{Z}^{m}, F^{m}, \bar{F}^{m}$ and \hat{F}^{m}.

Although these invariants take values in \mathbb{R}, the non-integral part is determined in most - and probably all - cases by a classical signature invariant of the component knots. For any link f let $s_{i}(f)$ denote the signature of $L_{i}(f)$, i.e. the signature of any Seifert surface bounded by $L_{i}(f)$ - thus $s_{i}(f)=0$ if $n \not \equiv 3 \bmod 4$. For a complex number z, with $|z|=1$, we define $\arg z \in \mathbb{R} / \mathbb{Z}$ by $z=e^{2 \pi i \arg z}$.

THEOREM (2.1). Let f be any $(2 q-1)$-link. Then:
(a) $\sigma(f) \cdot \theta \equiv(-1)^{q+1} 2 \sum_{i=1}^{m} s_{i}(f) \arg \theta\left(x_{i}\right) \bmod \mathbb{Z}$
for any $\theta \in \mathscr{R}_{1}\left(\mathbb{Z}^{m}\right)$.
(b) Iff is also a sublink of a homology boundary link with an \bar{F}^{m}-structure, then:

$$
\bar{\sigma}(f) \cdot \theta \equiv(-1)^{q+1} 2 \sum_{i=1}^{m} s_{i}(f) \arg \operatorname{det} \theta\left(x_{i}\right) \quad \bmod \mathbb{Z}
$$

for any $\theta \in \mathscr{R}_{k}\left(\bar{F}_{m}\right)$.
In (a), (b), $\left\{x_{i}\right\}$ are the standard generators of \mathbb{Z}^{m} or $F^{m} \subseteq \bar{F}^{m}$.
Proof. (a) If we define $V(f)=D^{n+3} \cup_{F}\left(D_{1}^{n+1} \times D^{2}+\cdots+D_{m}^{n}+D^{2}\right)$ then $M(f)=\partial V(f)$. By pushing the interior of a Seifert surface for $L_{i}(f)$ into D^{n+3} and attaching to its boundary $D^{n+1} \times 0$, we obtain a closed oriented $(n+1)$-manifold $V_{i} \subseteq \operatorname{int} V(f)$. We can arrange that the $\left\{V_{i}\right\}$ are mutually disjoint by choosing the pushoffs carefully. Now remove the tubular neighborhoods of $\left\{V_{i}\right\}$ from $V(f)$ to obtain a cobordism V between $M(f)$ and $S^{1} \times V_{1}+\cdots+S^{1} \times V_{m}$. Note that
$H_{1}(M(f)) \approx H_{1}(V)$ with a basis represented by $\left\{S^{1} \times x_{i}\right\}, x_{i} \in V_{i}$. By the index theorem we have:

$$
\sigma(f)=\sum_{i} \rho\left(S^{1} \times V_{i}, \alpha_{i}\right) \quad \bmod \mathbb{Z}
$$

where $\alpha_{1}: \pi_{1}\left(S^{1} \times V_{i}\right) \rightarrow \mathbb{Z}^{m}$ is induced by the inclusion $S^{1} \times V_{i} \subseteq V$ and the identification $H_{1}(V) \approx H_{1}(M(f)) \approx \mathbb{Z}^{m}$ defined by the ordering and orientation of the components of f. Note that α_{i}, on $\pi_{1}\left(S^{1} \times V_{i}\right) \approx \pi_{1}\left(S^{1}\right) \times \pi_{1}\left(V_{i}\right)$, is of the form $e_{i} \times \beta_{i}$, where $e_{i}: \pi_{1}\left(S^{1}\right) \rightarrow \mathbb{Z}^{m}$ is an isomorphism onto the i-th summand in \mathbb{Z}^{m} and $\beta_{i}: \pi_{1}\left(V_{i}\right) \rightarrow \mathbb{Z}^{m}$ is induced by the inclusion $V_{i} \subseteq V$. According to [APS II] - see also [$\mathrm{N}, \mathrm{Th} .1 .2$], we have the formula:

$$
\rho\left(S^{1} \times V_{i}, a_{i}\right) \cdot \theta=\left\{\begin{array}{ll}
(-1)^{q} \operatorname{sign}\left(V_{i}, \theta \beta_{i}\right) \cdot\left(1-2 \arg \theta\left(x_{i}\right)\right) & \text { if } \theta\left(x_{i}\right) \neq 1 \\
0 & \text { if } \theta\left(x_{i}\right)=1
\end{array} .\right.
$$

The desired formula will follow if we show that $\operatorname{sign}\left(V_{i}, \theta \beta_{i}\right)=\operatorname{sign} V_{i}$.
First note that $\operatorname{sign}\left(V_{i}, \theta \beta_{i}\right)$, considered as a function $\mathscr{R}_{1}\left(\mathbb{Z}^{m}\right) \rightarrow \mathbb{Z}$, depends only on the bordism class of (V_{i}, β_{i}) in $\Omega^{n+1}\left(\mathbb{Z}^{m}\right)$ and so defines an additive function on $\Omega^{n+1}\left(\mathbb{Z}^{m}\right)$. Now consider the familiar isomorphism:

$$
\Omega^{q}\left(\mathbb{Z}^{m}\right) \approx \Omega^{q}\left(\mathbb{Z}^{m-1}\right) \oplus \Omega^{q-1}\left(\mathbb{Z}^{m-1}\right)
$$

where $\left[M^{q}, \beta\right] \in \Omega^{q}\left(\mathbb{Z}^{m-1}\right)$ corresponds to $\left[M^{q}, \beta \times o\right] \in \Omega^{q}\left(\mathbb{Z}^{m}\right)$ and $\left[M^{q-1}, \beta\right] \in$ $\Omega^{q-1}\left(\mathbb{Z}^{m-1}\right)$ corresponds to $\left[S^{1} \times M^{q-1}, 1 \times \beta\right] \in \Omega^{q}\left(\mathbb{Z}^{m}\right)$. But $\operatorname{sign}\left(S_{1} \times M^{q-1}, \rho\right)$ $=0$, for any ρ, since intersection numbers are all zero in $S^{1} \times M=\mathbb{R} \times \tilde{M}$, and, as a result, we see that $\operatorname{sign}\left(M^{q}, \beta\right)=\operatorname{sign}\left(M^{q}, p \beta\right)$, if $\beta \in \pi_{1}\left(M^{q}\right) \rightarrow \mathbb{Z}^{m}$ and $p: \mathbb{Z}^{m} \rightarrow \mathbb{Z}^{m-1}$ is projection on the first ($m-1$) factors. The result now follows by induction on m.
(b) Suppose f is a homology boundary link, i.e. we have an epimorphism $\phi: \pi_{1}(M(f)) \rightarrow F^{m}$ so that $\phi\left(\mu_{i}\right) \equiv x_{i} \bmod \left[F^{m}, F^{m}\right]$, for any i-th meridian μ_{i}. Applying the Pontriagin construction to ϕ yields disjoint "singular" Seifert surfaces, i.e. closed oriented disjoint submanifolds $M_{i} \subseteq M(f)$. We can make the $\left\{M_{i}\right\}$ connected by a simple surgery argument using the fact that ϕ is an epimorphism. Two different components of M_{i} can be joined by a path whose image under ϕ, a closed path in $K\left(F^{m}, 1\right)$, is null-homotopic - such a path can be used to form a connected sum of the two components. By pushing the $\left\{M_{i}\right\}$ slightly into int $V(f)$ we obtain $\left\{V_{i}\right\}$ and define V to be the complement in $V(f)$ of the union of disjoint tubular neighborhoods of the $\left\{V_{i}\right\}$. Now $\pi_{1}(V) \approx F^{m}$ with a basis $\left\{x_{i}\right\}$ consisting of meridians of the $\left\{V_{i}\right\}$-in fact, there is a standard construction of the universal
cover of V with fundamental domain $V(f)$, attached together along copies of $\left\{I \times V_{i}\right\}$, similar to the construction of Viro [Vi] for finite branched covers. Imbed [$-1,1] \times M_{i}$ into $M(f)$ disjointly, so that $0 \times M_{i}$ is identified with $M_{i} \subseteq M(f)$. For each $w \in F^{m}$ define $D(w)$ to be a copy of $V(f)$. Attach $D(w)$ to $D\left(x_{i}^{\epsilon} w\right), \epsilon= \pm 1$ by the attaching diffeomorphism $(t, x) \leftrightarrow(-t, x), x \in M_{i}, \frac{1}{2} \leq t t \leq 1$. Then $V(f)=$ $\bigcup_{w \in F^{m}} D(w)$ is simply-connected and a free cover of $V(f)$.

The inclusion $M(f) \subseteq V$ induces the homomorphism ϕ under this identification $\pi_{1}(V) \approx F^{m}$. Since $\partial V=M(f)-\left(S^{1} \times V_{1}+\cdots+S^{1} \times V_{m}\right)$, the Index Theorem tells us that:

$$
\rho(M(f), \phi)=\sum_{i=1}^{m} \rho\left(S^{1} \times V_{i}, \phi_{i}\right)
$$

where ϕ_{i}, induced by the inclusion $S^{1} \times V_{i} \subseteq V$, is easily seen to be projection onto $\pi_{1}\left(S^{1}\right)$ followed by the inclusion $e_{i}: \pi_{1}\left(S^{1}\right) \rightarrow \mathbb{Z}^{m}$ defined by $e_{i}(t)=x_{i}$, where t is the appropriate generator. The product formula of [$\mathrm{N}, \mathrm{Th} .1 .2$) gives $\rho\left(S^{1} \times V_{i}, \phi_{i}\right)=$ $(-1)^{q} \operatorname{sign}\left(V_{i}\right) \rho\left(S^{1}, e_{i}\right)$. If $\left\{e^{2 \pi i a_{j}}\right\}$ are the eigenvalues of $\theta\left(x_{i}\right)$ for $\theta \in R_{k}\left(F^{m}\right)-0 \leq a_{j} \leq 1-$ then, by [APS, II]:

$$
\rho\left(S^{1}, e_{i}\right) \cdot \theta=\sum_{a_{j} \neq 0}\left(1-2 a_{j}\right)=-2 \arg \operatorname{det} \theta\left(x_{i}\right) \bmod \mathbb{Z} .
$$

Since $x_{i}=\phi\left(\mu_{i}\right) \bmod \left[F^{m}, F^{m}\right]$ and the determinant of a commutator is 1 , we have:

$$
\begin{equation*}
\rho(M(f), \phi) \cdot \theta \equiv(-1)^{q+1} 2 \sum_{i} \operatorname{sign}\left(V_{i}\right) \arg \operatorname{det} \theta \phi\left(\mu_{i}\right) \bmod \mathbb{Z} \tag{1}
\end{equation*}
$$

Now suppose f is a sublink of a homology boundary link g. Suppose, in addition, that f is equipped with an \bar{F}^{m}-structure ψ and g has an F^{n}-structure ϕ as above ($n \geq m$). Let x_{1}, \ldots, x_{m} be a basis of F^{m} and y_{1}, \ldots, y_{n} a basis of F^{n}. We construct a commutative diagram:

W is the manifold obtained from $I \times M(f)$ by adding handles along the components of g not in f; thus $\partial W=M(f)-M(g)$. Note that i_{*} and i_{*}^{\prime}, induced by
inclusions, are both onto - we can, in effect, identify base points of these three spaces by choosing them on an arc $I \times x_{0}$ for some $x_{0} \in M(f)$ away from the components of g. Choose meridians $\mu_{1}, \ldots, \mu_{m} \in \pi_{1}(M(f))$ and $\mu_{1}^{\prime}, \ldots, \mu_{n}^{\prime} \in$ $\pi_{1}(M(g))$ so that $i_{*}\left(\mu_{i}\right)=i_{*}^{\prime}\left(\mu_{i}^{\prime}\right)$ for $i \leq m$. We show that there is a unique homomorphism $e: F^{n} \rightarrow \bar{F}^{m}$ satisfying:

$$
e\left(\phi\left(\mu_{i}^{\prime}\right)\right)= \begin{cases}\psi\left(\mu_{i}\right) & i \leq m \tag{3}\\ 1 & i>m\end{cases}
$$

Write $y_{i}=w_{i}\left(\phi\left(\mu_{i}^{\prime}\right), \ldots, \phi\left(\mu_{n}^{\prime}\right) ; y_{1}, \ldots, y_{n}\right)$, where $w_{i}\left(z_{1}, \ldots, z_{n} ; y_{1}, \ldots, y_{n}\right)$ is a product of conjugates of the $\left\{z_{i}\right\}$ as a word in the free group on $\left\{z_{i}, y_{i}\right\}$. Thus the system of equations:
(4) $u_{i}=w_{i}\left(\psi\left(\mu_{1}\right), \ldots, \psi\left(\mu_{m}\right), 1, \ldots, 1 ; u_{1}, \ldots, u_{n}\right)$
is contractible over \bar{F}^{m} and so has a unique solution $\left\{u_{i}\right\}$ in \bar{F}^{m}. We define e by $e\left(y_{i}\right)=u_{i}$ for $1 \leq i \leq n$. We now show that e satisfies (3). By (4), e extends to a homomorphism: $e^{\prime}: G \rightarrow \bar{F}^{m}$, where G is the group with presentation $\left\{y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}: y_{i}=w_{i}\left(z_{1}, \ldots, z_{n}, y_{1}, \ldots, y_{n}\right)\right\}$, by defining

$$
e^{\prime}\left(z_{i}\right)=\left\{\begin{array}{cl}
\psi\left(\mu_{i}\right) & i \leq m \\
1 & i>m
\end{array}\right.
$$

Let $\gamma: G \rightarrow F^{n}$ be the epimorphism defined by $\gamma\left(y_{i}\right)=y_{i}, \gamma\left(z_{i}\right)=\phi\left(\mu_{i}^{\prime}\right)$. We need to show that $e^{\prime}=e \circ \gamma$. But this will follow from two observations:
(1) $e^{\prime}\left(y_{i}\right)=e \circ \gamma\left(y_{i}\right)$, and
(2) Kernel $\gamma=G_{\omega}$ (the intersection of the lower central series), by STALLINGS theorem [St], and \bar{F}^{m} is residually nilpotent.

Since Kernel $i_{*}^{\prime}=\left\langle\mu_{m+1}^{\prime}, \ldots, \mu_{n}^{\prime}\right\rangle$, then, by (3), ψ^{\prime} is defined by the requirement that the bottom square of (2) commute. It remains to show that $\psi^{\prime} \circ i_{*}=\psi$. But $\psi^{\prime} \circ i_{*}\left(\mu_{i}\right)=\psi^{\prime} i_{*}^{\prime}\left(\mu_{i}^{\prime}\right)=e \phi\left(\mu_{i}^{\prime}\right)=\psi\left(\mu_{i}\right)$, if $i \leq m$. Moreover π / π_{q} is generated by $\left\{\mu_{i}\right\}$ for every q, where $\pi=\pi_{1}(M(f))$, since f has vanishing $\bar{\mu}$-invariants if $n=1$ (see [M]) or by [St] if $n>1$. Thus ψ and $\psi^{\prime} \circ i_{*}$ induce the same homomorphism on every nilpotent quotient. Since \bar{F}^{m} is residually nilpotent $\psi=\psi^{\prime} \circ i_{*}$.

We now apply the Index Theorem and (2) to conclude that:

$$
\bar{\sigma}(f)=\rho(M(f), \psi) \equiv \rho(M(g), e \circ \phi)=e^{*} \rho(M(g), \phi) \quad \bmod \mathbb{Z}
$$

Thus, by (1) and (3) we have:

$$
\tilde{\sigma}(f) \cdot \theta \equiv \rho(M(g), \phi) \cdot \theta e \equiv(-1)^{q+1} 2 \sum_{i=1}^{m} \operatorname{sign}\left(V_{i}\right) \arg \operatorname{det} \theta \psi\left(\mu_{i}\right) \bmod \mathbb{Z}
$$

Since $\psi\left(\mu_{i}\right)$ is conjugate to x_{i}, it only remains to check that $\operatorname{sign}\left(V_{i}\right)=s_{i}(f)$. Now $s_{i}(f)$ is defined to be the signature of any Seifert surface for $L_{i}(f)=L_{i}(g)$. We may add a disk to its boundary to obtain a closed submanifold V_{i}^{\prime} of $M(f)$ and, furthermore, since the linking numbers of the components of g are all zero, we may assume V_{i}^{\prime} misses the other components of g and so $V_{i}^{\prime} \subseteq M(g)$. It now suffices to observe that V_{i} and V_{i}^{\prime} are homologous in $M(g)$, since this means that they determine homotopic mappings $M(g) \rightarrow S^{1}$ via the Pontriagin construction, and so are (oriented) cobordant.

This completes the proof of Theorem (2.1).

There is a completely analogous result for F^{m}-links but, in fact, this is already contained in (b) as a consequence of the result of Vogel [V1] that every unitary representation of F^{m} extends to one of \bar{F}^{m}.

Some unsolved questions are:
(i) Does (b) hold for \widehat{F}^{m} in place of \bar{F}^{m} ? The proof uses residual nilpotence of \bar{F}^{m}. It is open whether $\hat{F}^{m}=\bar{F}^{m}$ and, of course, whether every unitary representation of \hat{F}^{m} induces one of \bar{F}^{m}.
(ii) Is (b) true for every \bar{F}^{m}-link? It is open whether every \bar{F}^{m}-link is a sublink of a homology boundary link. There are precise homotopy and group-theoretic obstructions to an \hat{F}^{m}-link being concordant to a sublink of a homology boundary link (see [L1], [Le], [LMO]). For example if $H_{3}\left(\hat{F}^{m}\right)=0$ (for $n=1$) or if the "Vogel localization" of the m-fold wedge of circles is aspherical (for $n \geq 4$) then every \hat{F}^{m}-link is concordant to a sublink of a homology boundary link.

We conclude this section by observing that for many links f the invariants $\sigma(f)$, $\sigma_{b}(f), \bar{\sigma}(f)$ or $\hat{\sigma}(f)$ satisfy the conclusion of Theorem (II.4.1), i.e. they are continuous on $L \cap \widetilde{R}_{k}(G)$, for some large subset L of $R_{k}(G)$.

PROPOSITION (2.2). (a) If f is any link of (odd) dimension $n>1$, or an \hat{F}^{m}-link with $n=1$ (or a boundary link), then $\hat{\sigma}(f), \bar{\sigma}(f)$ and $\sigma(f)\left(\right.$ or $\left.\sigma_{b}(f)\right)$ have a domain of continuity in $R_{k}(G)$ which contains $L \cap \tilde{R}_{k}(G)$ for some large subset L of $R_{k}(G)$.
(b) If f is a one-dimensional link with Alexander invariant of rank $m-1$, then $\sigma(f)$ has a large domain of continuity.

The Alexander invariant is $H_{1}(\tilde{X})$, where \tilde{X} is the universal abelian covering of $S^{3}-L(f)$, regarded as a module over $\mathbb{Z}\left[\mathbb{Z}^{m}\right]$. If $m=2$, for example, the condition in (b) means the Alexander polynomial is zero.

Proof. (a) is an immediate consequence of Theorem (II.4.1) for $n>1$ $\left(H_{1}(G) \approx \mathbb{Z}^{m}\right)$. For $n=1$, recall from [Le] that, for an \hat{F}^{m}-link, the \hat{F}^{m}-structure
$\pi_{1}\left(S^{3}-L(f)\right) \rightarrow \hat{F}^{m}$ factors through a finitely-presented group satisfying (iii). To prove (b), we apply the Addendum to Theorem (4.1).

Putting Proposition (2.2) together with Corollary (II.4.2) we conclude that, for the class of links described in the Proposition, no additional concordance information can be obtained from $\hat{\sigma}, \bar{\sigma}, \sigma, \sigma_{b}$ on any singular locus that cannot be already obtained on a domain of continuity. On the other hand we will show by examples that, for some one-dimensional links $f, \sigma(f)$ can detect concordance on a singular locus when it is useless on the domains of continuity.
3. We will now concern ourselves with some general methods of constructing links to display the possible values of these signature invariants. We present two such realization theorems.

THEOREM (3.1). Let G be a finitely-generated group with a set of normal generators $\left\{g_{1}, \ldots, g_{m}\right\}$ and $\lambda=\left(\lambda_{i j}\right) a(-1)^{q+1}$-Hermitian matrix over $\mathbb{Z} G$ - i.e. $\lambda_{i j}=(-1)^{q+1} \lambda_{j i}$, where $\lambda \mapsto \bar{\lambda}$ is the anti-involution of $\mathbb{Z} G$ defined by $g \mapsto g^{-1}$ for every $g \in G$ - satisfying:
(i) $H_{1}(G)$ is free abelian of rank m
(ii) $\epsilon(\lambda)$ is non-singular and, in addition, $\epsilon\left(\lambda_{i j}\right)= \pm \delta_{i j}$ for all i, j if $q=1$, and $\epsilon\left(\lambda_{i i}\right)$ is even for all i, if $q \neq 1,3$, or $7 .(\epsilon: \mathbb{Z} G \rightarrow \mathbb{Z}$ is the usual augmentation.)
(iii) The coefficients, in any $\lambda_{i i}$, of all elements of order 2 in G are even.

Then there exists $a(2 q-1)$-dimensional sublink f of a homology boundary link, and a G-structure α on $M(f)$ such that $\alpha\left(\mu_{i}\right)=g_{i}$, for some set $\left\{\mu_{i}\right\}$ of meridians of f and such that:
(1) $\rho(M(f), \alpha) \cdot \theta=k \operatorname{sign} \epsilon(\lambda)-\operatorname{sign} \theta(\lambda)$
for all $\theta \in R_{k}(G)$ if $q>1$, or for all θ in some large subset of $R_{k}(G)$ if $q=1$.

Note that $(M(f), \alpha)$ has a large domain of continuity, namely the set of all θ with $\operatorname{det} \theta(\lambda) \neq 0$. To obtain examples of links f where $\sigma(f)$ does not have a large domain of continuity we will use:

THEOREM (3.2). Let $\lambda=\left(\lambda_{i j}\right)$ be a Hermitian matrix over $\mathbb{Z}\left[\mathbb{Z}^{2}\right]$ satisfying:
(i) $\epsilon\left(\lambda_{i j}\right)= \pm \delta_{i j}$ for $i, j \geq 2$
(ii) $\lambda_{11}=0$.

Then there exists a one-dimensional 2-component link f such that:

$$
\begin{equation*}
\sigma(f) \cdot \theta=\operatorname{sign} \epsilon(\lambda)-\operatorname{sign} \theta(\lambda), \quad \text { for all } \theta \in R_{1}\left(\mathbb{Z}^{2}\right) \tag{2}
\end{equation*}
$$

Proof of Theorem (3.1). Let f_{0} be the trivial m-component link in $S^{2 q+1}$ and so $L\left(f_{0}\right)$ bounds the trivial disk link Δ_{0} in $D^{2 q+2}$. Choose a set of generators h_{1}, \ldots, h_{n} for G. By assumption there exist words $w_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$, for $1 \leq i \leq n$, satisfying $w_{i}\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right)=1$ such that $h_{i}=w_{i}\left(h_{1}, \ldots, h_{n}\right.$, g_{1}, \ldots, g_{m}). Let E be the "finite E-group" (see [C]) with generators: $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ and relations $x_{i}=w_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)(1 \leq i \leq n)$. Clearly E is normally generated by y_{1}, \ldots, y_{m} and $H_{1}(E) \approx \mathbb{Z}^{m}$. Let $\phi: E \rightarrow G$ be the epimorphism defined by $\phi\left(x_{i}\right)=h_{i}, \phi\left(y_{i}\right)=g_{i}$.

We start by constructing a slice link f_{1} with an E-structure on $M\left(f_{1}\right)$. Attach n 1-handles to $D^{2 q+2}$ along $S^{2 q+1}-L\left(f_{0}\right)$ to produce X_{0} so that $\pi_{1}\left(X_{0}-\Delta_{0}\right)$ is free on generators $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\}$ where $\left\{x_{i}\right\}$ are the classes of the cores of the 1 -handles and $\left\{y_{i}\right\}$ are meridians of f_{0}. Now attach n 2-handles to X_{0} along normally framed smooth curves in $\partial X_{0}-L\left(f_{0}\right)$ representing $w_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) x_{i}^{-1} \epsilon \pi_{1}\left(X_{0}-\Delta_{0}\right)$ to obtain X. If $n=1$ we may choose these curves to be isotopic in ∂X_{0} to the curves which go once around the 1-handles, since $w_{i}\left(x_{1}, \ldots, x_{n}, 1, \ldots, 1\right)=1$ (if $n>1$, this is automatic) - see [L2] for example. Thus we may choose the normal framings so that these 2 -handles cancel the 1 -handles on $D^{2 q+2}$ - and so $X \approx D^{2 q+2}$. Let f_{1} be the slice link defined by f_{0} in ∂X and Δ_{1}, in $D^{2 q+2}$, the slice disk defined by $\Delta_{0} \subseteq X$. Note that $D^{2 q+2}-\Delta_{1}=X-\Delta_{0} \simeq K$ the standard 2-complex associated to the presentation: $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}: x_{i}=w_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right\}$ of E. Thus $D^{2 q+2}-\Delta_{1}$ $\simeq K$ and $M\left(f_{1}\right) \subseteq D^{2 q+2}-\Delta_{1}$ are G-manifolds via $\phi: E \rightarrow G$. If $q>1$, then $H_{q+1}(K ; \theta)=0$ for all θ. If $q=1$, we can apply Proposition (II.3.2) to conclude that $H_{2}(K ; \theta)=0$ for all θ in some large subset of $R_{k}(G)$.

We also note that f_{1} is a sublink of a homology boundary link. Let f_{1} be the link obtained by adding to f_{1} the transverse spheres of the 2 -handles used to construct $X . M\left(\tilde{f}_{1}\right)$ is the boundary of the manifold Y obtained by removing from X the transverse disks of the 2 -handles and $\pi_{1}(Y) \approx \pi_{1}\left(X_{0}-\Delta_{0}\right)$ is the free group on $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\}$. Under the induced homomorphism $\pi_{1}\left(M\left(f_{1}\right)\right) \rightarrow \pi_{1}(Y)$, meridians map to $\left\{y_{1}, \ldots, y_{m}, x_{i}^{-1} w_{i}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right\}$ which normally generate $\pi_{1}(Y)$. Thus \tilde{f}_{1} is a homology boundary link.

We now produce the desired link f from f_{1} by adding handles of index $q+1$ to $D^{2 q+2}$ along $S^{2 q+1}-L\left(f_{1}\right)$. Suppose $\left\{S_{i}^{\prime}\right\}$ is a collection of k disjoint q-spheres, with normal framings $\left\{t_{i}^{\prime}\right\}$, in $S^{2 q+1}-L\left(\tilde{f_{1}}\right)$ satisfying:
(a) S_{i}^{\prime} is null-homotopic in $S^{2 q+1}-L\left(\tilde{f_{1}}\right)$
(b) the linking numbers $l\left(S_{i}^{\prime}, S_{j}^{\prime}\right)=\epsilon\left(\lambda_{i j}\right)$ if $i \neq j$
(c) if $q=1,\left\{S_{i}^{\prime}\right\}$ is the trivial link in $S^{2 q+1}$
(d) if t_{i}^{\prime} differs from the standard normal framing on S_{i}^{\prime} by $\alpha_{i} \in \pi_{q}\left(S O_{q+1}\right)$ note that S_{i}^{\prime} is unknotted in $S^{2 q+1}$ by (c) or a classical theorem of WHITNEY if $q>1$ - then $h\left(\alpha_{i}\right)=\epsilon\left(\lambda_{i i}\right)$ where $h: \pi_{q}\left(S O_{q+1}\right) \rightarrow \pi_{q}\left(S_{q}\right) \approx \mathbb{Z}$
is the standard evaluation map. Recall that h is onto for $q=1,3,7$ and onto $2 \mathbb{Z}$ for all other odd q. (Also note that S_{i}^{\prime} is oriented by t_{i}^{\prime}.)
Let W^{\prime} be the manifold produced by surgery on $S^{2 q+1}$ along $\left\{S_{i}^{\prime}, t_{i}^{\prime}\right\}$. Then W^{\prime} is homeomorphic to $S^{2 q+1}$ by (b) and (d) if $q>1$ since $\left(\epsilon\left(\lambda_{i j}\right)\right)$ is non-singular, and by (c) and (d) if $q=1$, since $\epsilon\left(\lambda_{i i}\right)= \pm 1$ (see [L5], [L6]). If f^{\prime} is the link defined by f_{1} in W^{\prime}, then $M\left(f^{\prime}\right)=\partial X^{\prime}$, where X^{\prime} is produced from $D^{2 q+1}-\Delta_{1}$ by adding handles along $\left\{S_{i}^{\prime}, t_{i}^{\prime}\right\}$. By (a), $X^{\prime} \simeq K \vee S_{i}^{q+1} \vee \cdots \vee S_{k}^{q+1}$ and so $M\left(f^{\prime}\right)$ and X^{\prime} are G-manifolds via ϕ and the cores of the handles represent a basis $\left\{\alpha_{i}^{\prime}\right\}$ of a free summand of the $\mathbb{Z} G$-module $H_{q+1}\left(\tilde{X}^{\prime}\right)$, where \tilde{X}^{\prime} is the G-covering of X^{\prime}. Then $H_{q+1}\left(X^{\prime} ; \theta\right) \approx \mathbb{C}^{n} \otimes_{\theta} H_{q+1}\left(\tilde{X}^{\prime}\right) \approx \mathbb{C}^{n k}$ for any $\theta \in R_{n}(G)$ if $q>1$, or for θ in some large subset L of $R_{n}(G)$ if $q=1$. The intersection pairing in $H_{q+1}\left(\tilde{X}^{\prime}\right)$ is represented, via the basis $\left\{\alpha_{i}^{\prime}\right\}$, by a matrix $\left\{\lambda_{i j}^{\prime}\right\}$ over $\mathbb{Z} R-$ by (b) and $(\mathrm{d}), \epsilon\left(\lambda_{i j}^{\prime}\right)=\epsilon\left(\lambda_{i j}\right)$. We conclude, from the Index theorem, that:

$$
\rho\left(M\left(f^{\prime}\right), \theta\right)=n \operatorname{sign}\left(\epsilon\left(\lambda_{i j}\right)\right)-\operatorname{sign}\left(\theta\left(\lambda_{i j}^{\prime}\right)\right)
$$

if $q>1$, or for $\theta \in L$ if $q=1$.
One way to construct a family of $\left\{S_{i}^{\prime}, t_{i}^{\prime}\right\}$ satisfying (a)-(d) is to choose a ball $B \subseteq S^{2 q+1}-L\left(\tilde{f_{1}}\right)$ and construct $\left\{S_{i}^{\prime}\right\} \subseteq B$. In fact such $\left\{S_{i}^{\prime}\right\}$ is completely determined by (b) -(d) and automatically satisfies (a) - note that $\lambda_{i j}^{\prime}=\epsilon\left(\lambda_{i j}\right)$. Our goal is then to modify $\left\{S_{i}^{\prime}, t_{i}^{\prime}\right\}$, without disturbing (a) - (d), but changing $\lambda_{i j}^{\prime}$ to the desired $\lambda_{i j}$. This can be done in almost the identical manner as in the argument in [L3: appendix]. If $q>1$, then one can change $\lambda_{i j}^{\prime}$ to $\lambda_{i j}^{\prime} \pm g$ if $i \neq j$, or to $\lambda_{i i}^{\prime} \pm\left(g+(-1)^{q+1} g^{-1}\right)$ if $i=j$, for some $g \neq 1$ in G and particular values of i, j, by changing S_{i}^{\prime} to $S_{i}^{\prime} \# s$, a connected sum of S_{i}^{\prime} with s a small sphere linking S_{j}^{\prime}, along an arc which, when lifted to \tilde{X}^{\prime}, connects a lift \tilde{B} of B to $g \widetilde{B}$. Such a change does not affect property (a). A sequence of such changes will realize $\lambda_{i j}$ - at each stage $l\left(S_{i}^{\prime}, S_{j}^{\prime}\right)=\epsilon\left(\lambda_{i j}^{\prime}\right)$ so (b) will hold at the end. To achieve (d) we simply construct t_{i} as stipulated. For $q=1$, we must be more careful in the construction in order to preserve property (c). We follow the argument in [L3] more closely. Note that the change from $\lambda_{i j}^{\prime}$ to $\lambda_{i j}$ can be broken up into a sequence of elementary changes of the form

$$
\lambda_{i j}^{\prime} \rightarrow \begin{cases}\lambda_{i j} \pm(g-1) & i=a, j=b, a \neq b \\ \lambda_{i j}^{\prime} \pm\left(g^{-1}-1\right) & i=b, j=a, a \neq b \\ \lambda_{i j} \pm\left[g+g^{-1}-2\right] & i=j=a=b \\ \lambda_{i j}^{\prime} & (i, j) \neq(a, b) \text { or }(b, a)\end{cases}
$$

for some $g \in G$ and $1 \leq a, b \leq k$. To effect this change we replace S_{a}^{\prime} by $S_{a}^{\prime} \# S_{0} \# S_{1}$, where S_{0}, S_{1} are two small circles in B linking S_{b}^{\prime}. The arc γ_{0}
connecting S_{a}^{\prime} to S_{0} is inside B, while the arc γ_{1} connecting S_{a}^{\prime} to S_{1} represents a product of conjugates of meridians in $\pi_{1}\left(S^{3}-L\left(f_{1}\right)\right)$ which maps to $g \in G$. To preserve property (c) it suffices to choose γ_{0} and γ_{1} so that they are isotopic in $S^{3}-\bigcup_{i} S_{i}^{\prime}$. The method for choosing γ_{1} is indicatd in Figure 1. We use the well known fact that $\pi_{1}\left(S^{3}-L\left(f_{1}\right)\right)$ is generated by conjugates of the meridians.

Finally note that f is a sublink of a homology boundary link. In fact \tilde{f}_{1}, as a link in W^{\prime}, is a homology boundary link.

This completes the proof of Theorem 3.1.

Proof of Theorem (3.2). We use the construction in [L3: Appendix] and point out the existence of the required 4-manifold W with $\partial W=M(f)$.

Let $M\left(f_{0}\right)=S^{1} \times S^{2} \# S^{1} \times S^{2}$, where f_{0} is the trivial 2-component link; $M\left(f_{0}\right)=\partial W_{0}$, where W_{0} is the boundary connected sum $S^{1} \times D^{3} \perp \perp S^{1} \times D^{3}$. Then, for the universal abelian covers, $\tilde{M}\left(f_{0}\right)$ and \tilde{W}_{0}, we have $H_{1}\left(\tilde{M}\left(f_{0}\right)\right) \approx$ $H_{1}\left(\widetilde{W}_{0}\right)$ the free $\mathbb{Z}\left[\mathbb{Z}^{2}\right]$-module of rank one generated by the element e as described in [L3]. We now add k 2-handles to W_{0} along framed circles $\sigma_{i} \subseteq S^{3}-L\left(f_{0}\right)$ $\subseteq M\left(f_{0}\right)$, whose lifts $\tilde{\sigma}_{i} \subseteq \tilde{M}\left(f_{0}\right)$ represent $\lambda_{i 1} e \in H_{1}\left(\tilde{M}\left(f_{0}\right)\right)$. We can choose $\left\{\sigma_{i}\right\}$ so

that they form a trivial link in S^{3} and so that the framing of σ_{i} has winding number $\epsilon\left(\lambda_{i i}\right)= \pm 1$. The resulting 4-manifold W^{\prime} has $\partial W^{\prime}=M\left(f^{\prime}\right)$ for a new link f^{\prime}. For convenience in analyzing the homology, let us further modify W^{\prime} by doing surgery along an interior curve γ representing e-call the resulting manifold $W^{\prime \prime}$. Now $H_{1}\left(\tilde{W}^{\prime \prime}\right)=0$ and $H_{2}\left(\tilde{W}^{\prime \prime}\right)$ is a free $\mathbb{Z}\left[\mathbb{Z}^{2}\right]$-module on $k+1$ generators s_{1}, \ldots, s_{k}, s where s is represented by a transverse 2 -sphere of the surgery and s_{i} has a representative cycle in $\tilde{W}^{\prime \prime} \Delta_{i}-\lambda_{i 1} \Delta+c_{i}$ as follows: Δ_{i} is the core of the (lifted) i-th 2-handle added to W_{0}, with boundary $\tilde{\sigma}_{i} ; \Delta$ is a disk, bounding a lift of a translate γ^{\prime} of γ, created by the surgery - and c_{i} is a homology in $\widetilde{W^{\prime}-\gamma}$ between $\tilde{\sigma}_{i}$ and $\lambda_{i 1} \tilde{\gamma}^{\prime}$. We now check some intersection numbers in $\tilde{W}^{\prime \prime}$. Clearly $s \cdot \Delta=1$ (i.e. we can so choose s) and $s \cdot \Delta_{i}=s \cdot c_{i}=0$; therefore $s \cdot s_{i}=\lambda_{i 1}$, and obviously $s \cdot s=0$. We set $\lambda_{i j}^{\prime}=s_{i} \cdot s_{j}$ - this is easily seen to agree with the definition of $\lambda_{i j}^{\prime}$ in [L3]. The modification of $\lambda_{i j}^{\prime}$ to achieve the desired $\lambda_{i j}$ is then exactly as in [L3], as well as the proof of Theorem (3.1). Thus the intersection matrix of $\tilde{W}^{\prime \prime}$ is ($\lambda_{i j}$). Since $H_{1}\left(\tilde{W}^{\prime \prime}\right)=0$ it will be true that $H_{2}\left(W^{\prime \prime} ; \theta\right) \approx \mathbb{C} \otimes_{\theta} H_{2}\left(\tilde{W}^{\prime \prime}\right)$, unless θ is the trivial representation. This follows from a universal coefficient argument using that the group ring $\mathbb{C}\left[\mathbb{Z}^{2}\right]$ has homological dimension 2 and $H_{2}\left(\mathbb{Z}^{2} ; \theta\right)=0$ unless θ is the trivial representation. Formula (2) now follows from the Index Theorem.

This completes the proof of Theorem (3.2).

ADDENDUM TO THEOREM (3.2). The Alexander polynomial of f is $(x-1)(y-1) D(x, y)$, where $D=\operatorname{det} \lambda$. The Alexander polynomials of the component knots of f are $\Phi(x, 1)$ and $\Phi(1, y)$, where Φ is the determinant of the matrix obtained from λ by removing the first row and column. Note that $\Phi(1,1)= \pm 1$.

This is all proved in [L3].
The continuity stratification of $R_{1}\left(\mathbb{Z}^{2}\right)$ for $\sigma(f)$ is easy to describe for the link constructed in Theorem (3.2). Let $\Sigma_{1} \subseteq R_{1}\left(\mathbb{Z}^{2}\right)=T^{2}$, the 2-torus, be the zero set of D and $\Sigma_{2} \subseteq T^{2}$ the zero set of Φ - thus Σ_{2} is a special subvariety but Σ_{1} is not, in general. Then $\sigma(f)$ is continuous on $T^{2}-\Sigma_{1}$ and on $\Sigma_{1}-\left(\Sigma_{1} \cap \Sigma_{2}\right)$. If Σ_{1} is not special, then we have the possibility that concordance might be detected by the values of $\sigma(f)$ on Σ_{1}. We will give some examples of this phenomenon in the next section.
4. We consider some examples of Theorem (3.2).

Consider the (2×2)-matrix over $\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\mathbb{Z}\left[x, x^{-1}, y, y^{-1}\right]$:

$$
\lambda=\left(\begin{array}{ll}
0 & \rho \\
\bar{\rho} & \tau
\end{array}\right)
$$

where

$$
\begin{aligned}
& \rho(x, y)=p\left(x+x^{-1}\right)-q \\
& \tau(x, y)=\left[1-N_{0}\left(2-x-x^{-1}\right)\left(2-y-y^{-1}\right)\right]\left[1-N_{1}\left(2-x-x^{-1}\right)\left(2-y-y^{-1}\right)\right]
\end{aligned}
$$

where p, q, N_{0}, N_{1} are integers to be specified. Let f be a one-dimensional link of 2 components with:

$$
\sigma(f) \cdot \theta=\operatorname{sign} \epsilon(\lambda)-\operatorname{sign} \theta(\lambda) \quad \text { for any } \theta \in R_{1}\left(\mathbb{Z}^{2}\right)
$$

as promised by Theorem (3.2).
If we project the torus $T^{2}=R_{1}\left(\mathbb{Z}^{2}\right)$ onto the square S in \mathbb{R}^{2} consisting of all (u, v) with $|u| \leq 1$ and $|v| \leq 1$ by setting $u=\operatorname{Re}(x), v=\operatorname{Re}(y)$, then the zero sets Σ_{1}, Σ_{2} of ρ, τ are pull-backs of the zero sets $\Sigma_{1}^{\prime}, \Sigma_{2}^{\prime}$ of $\rho^{\prime}, \tau^{\prime}$, respectively, where:

$$
\begin{aligned}
& \rho^{\prime}(u, v)=2 p u-q \\
& \tau^{\prime}(u, v)=\left(1-2 N_{0}(1-u)(1-v)\right)\left(1-2 N_{1}(1-u)(1-v)\right)
\end{aligned}
$$

So $\Sigma_{1}^{\prime}, \Sigma_{2}^{\prime}$ consist of a straight-line and a pair of hyperbolas, respectively. See Figure 2 - we assume $|\gamma|<2|p|, N_{0} \neq N_{1}$ and $4 N_{i}>2 p /(2 p-q)$ for the curves to intersect in the manner shown.

Clearly $\sigma(f) \cdot \theta=0$, if $\theta \in T^{2}-\Sigma_{1}$. If $\theta \in \Sigma_{1}-\Sigma_{2}$, then $\sigma(f) \cdot \theta=\operatorname{sign} \tau(\theta)$. Thus $\sigma(f) \cdot \theta=+1$ on points θ of Σ_{1} projecting to the upper and lower segments of $\Sigma_{1}^{\prime}-\Sigma_{2}^{\prime}$ and $\sigma(f) \cdot \theta=-1$ on points θ of Σ_{1} projecting to the middle segment of $\Sigma_{1}^{\prime}-\Sigma_{2}^{\prime}$.

Compare this to a link f^{\prime} satisfying:

$$
\sigma\left(f^{\prime}\right) \cdot \theta=\operatorname{sign} \epsilon\left(\lambda^{\prime}\right)-\operatorname{sign} \theta\left(\lambda^{\prime}\right) \quad \text { for } \theta \in R_{1}\left(\mathbb{Z}^{2}\right)
$$

where

$$
\lambda^{\prime}=\left(\begin{array}{cc}
0 & \rho \\
\bar{\rho} & \tau^{2}
\end{array}\right)
$$

using the same ρ, τ as for f. Then $\sigma\left(f^{\prime}\right) \cdot \theta=\sigma(f) \cdot \theta$, except when θ projects to the middle segment of $\Sigma_{1}^{\prime}-\Sigma_{2}^{\prime}$ in which case $\sigma\left(f^{\prime}\right) \cdot \theta=+1$.

To show that f and f^{\prime} are not concordant it suffices (see (II.3.3) and (III.1.1)) to show that no special subvariety can contain the entire middle segment J of $\Sigma_{1}-\Sigma_{2}$. Suppose $\phi(x, y) \in \mathbb{Z}\left[\mathbb{Z}^{2}\right]$ satisfies $\phi(1,1)= \pm 1$ and $\phi(J)=0$ (see the discussion

Figure 2
preceding (II.3.1)). We may assume ϕ is symmetric i.e. $\phi(x, y)=\phi\left(x^{-1}, y\right)=$ $\phi\left(x, y^{-1}\right)-$ e.g. replace ϕ by the product

$$
\phi(x, y) \phi\left(x^{-1}, y\right) \phi\left(x, y^{-1}\right) \phi\left(x^{-1}, y^{-1}\right) .
$$

Then we can write $\phi(x, y)=\psi\left(x+x^{-1}, y+y^{-1}\right)$. The integral polynomial $\psi(2 u, 2 v)=\psi^{\prime}(u, v)$ vanishes on J^{\prime}, the middle segment of Σ_{1}^{\prime} and satisfies $\psi^{\prime}(1,1)= \pm 1$. But, since $\psi^{\prime}(q / 2 p, v)=0$ for a non-trivial interval of v, we have $\psi^{\prime}(q / 2 p, v)=0$ for all v, and so $\psi^{\prime}(u, v)=(2 p u-q) \psi^{\prime \prime}(u, v)$, for some rational polynomial $\psi^{\prime \prime}$. If $2 p$ and q are assumed relatively prime, then $\psi^{\prime \prime}$ is integral. But now we have:

$$
\pm 1=\psi(1,1)=(2 p-q) \psi^{\prime \prime}(u, v)
$$

This is impossible if $|2 p-q|>1$.
Putting all the conditions on p, q, N_{0}, N_{1} together we have: q odd; $2 p<q+1 ; p$ relatively prime to $q ; N_{0} \neq N_{1} ;$ and $4 N_{i}>2 p /(2 p-q)$. There are certainly many
possibilities (an infinite number). It is also easy to see that Σ_{1} contains no points whose components are both roots of unity and so the p-signatures of SMOLINSKY [S] will not detect the difference between f and f^{\prime}. If $N_{i}>2 p^{2} /(2 p-q)^{2}$, one can check that J does not intersect the diagonal of T^{2} and so the TRISTRAM signatures [T] cannot detect the difference.
5. We now construct examples of links of every odd dimension which are sublinks of homology boundary links but not concordant to a boundary link. Such examples were first constructed by COCHRAN-ORR in [C-O]. We use Theorem (3.1).

Let G be the group with presentation: $\left\{x_{1}, x_{2}, y: y=x_{1} x_{2} y x_{1} y^{-1} x_{2}^{-1} x_{1}^{-2}\right\}$, and consider the following three matrices over $\mathbb{Z} G$:

$$
\begin{aligned}
& \lambda=\left(\begin{array}{lc}
\left.y+y^{-1}-1\right) \quad \lambda^{\prime}=\left(\begin{array}{cc}
2\left(y+y^{-1}-1\right) & 3 \\
3 & 4\left(y+y^{-1}-1\right)
\end{array}\right) \\
\lambda^{\prime \prime}=\left(\begin{array}{cc}
y-y^{-1} & -1 \\
-1 & y-y^{-1}
\end{array}\right) .
\end{array} .\right.
\end{aligned}
$$

These matrices satisfy conditions (ii) and (iii) - for λ when $q=1,3,7$, for λ^{\prime} when q is odd but not 1,3 or 7 and for $\lambda^{\prime \prime}$ when q is even. By Theorem (3.1) there exists a two-component link f of dimension $(2 q-1)$ with G-structure α on $M(f)$ and $\rho(M(f), \alpha)$ given by (1), substituting $\lambda, \lambda^{\prime}$ or $\lambda^{\prime \prime}$ for λ in that formula, corresponding to the values of q given above (using $x_{i}=g_{i}$).

Note that G contains the free group F generated by x_{1}, x_{2} and, by [L1; Prop. 5], the inclusion $F \subseteq G$ extends to an isomorphism $\bar{F}=\bar{G}$. Thus α defines an \bar{F}-structure $\bar{\alpha}: \pi_{1}(M(f)) \rightarrow \bar{F}$ with $\bar{\alpha}\left(\mu_{i}\right)=x_{i}$ for some choice of meridians $\left\{\mu_{1}, \mu_{2}\right\}$.

Let π be a cyclic group of prime-power order with generator t. We can define a $\operatorname{map} F \rightarrow \mathbb{Z} \S \pi=\mathbb{Z} \pi \times \pi$ by $x_{1} \mapsto t \in \pi$ and $x_{2} \mapsto 1 \in \mathbb{Z} \pi$. Since $\overline{\mathbb{Z} \S \pi} \subseteq Q \S \pi$, by Theorem (I.4.1), this map extends to $\phi: G \rightarrow \mathbb{Q} \S \pi$; so $\phi\left(x_{1}\right)=t, \phi\left(x_{2}\right)=1$ and it is not hard to explicitly solve for $\phi(y)$ - e.g. $\phi(y)=\frac{1}{3}(t-1)$ if $|\pi|=2$ and $\phi(y)=\frac{1}{2}(t-1)$ if $|\pi|=3$.

Now recall the analytic imbedding $\check{i}: \mathbb{R}^{k} \rightarrow R_{k}(\mathbb{R} \S \pi) \rightarrow R_{k}(\overline{\mathbb{Z} \S} \pi)$ from (I.1.(f)) and (I.4). In fact we can simply use $i: \mathbb{R} \rightarrow R_{k}(\mathbb{Z} \S \pi)$ defined by $i(t)=i(t, t, \ldots, t)$. Consider the function $\tau(f): \mathbb{R} \rightarrow \mathbb{R}$ defined as the composite:

$$
\mathbb{R} \xrightarrow{i} R_{k}(\overline{\mathbb{Z} \S \pi}) \xrightarrow{\bar{\phi}} R_{k}(\bar{G}) \rightarrow R_{k}(\bar{F}) \xrightarrow{\bar{\sigma}(f)} \mathbb{R} .
$$

Suppose that this \bar{F}-structure on f is induced by an F-structure; then, from the discussion in (I.1(f)), we conclude that $\tau(f)$ is the lift of a function $S^{1} \rightarrow \mathbb{R}$, i.e. $\tau(f)$
is periodic: $\tau(f) \cdot(s+1)=\tau(f) \cdot s$, for any $s \in \mathbb{R}$. If f is \bar{F}-concordant to an F-link, then $\tau(f)$ is periodic except perhaps on $i^{-1}(\Sigma)$ for some special subvariety of $R_{k}(\mathbb{Z} \S \pi)$; this follows from Corollary (II.3.3) and Proposition (III.1.1). Now $i^{-1}(\Sigma)$ is an analytic subvariety of \mathbb{R} and so is either discrete or all of \mathbb{R}. But $i(0)$ is the trivial representation, which belongs to no special subvariety, and so $i^{-1}(\Sigma)$ must be a discrete set. This shows that if f is \bar{F}-concordant to an F-link, then $\tau(f)$ is periodic of period one except on some discrete subset of \mathbb{R}.

We now compute $\tau(f)$ in the cases of q odd, $|\pi|=2$ and q even, $|\pi|=3$. First note that

$$
i(s) \cdot y=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
\exp \left(\frac{-2 \pi i s}{3}\right) & 0 \\
0 & \exp \left(\frac{2 \pi i s}{3}\right)
\end{array}\right) & \text { if }|\pi|=2 \\
\left(\begin{array}{cc}
\exp (-\pi i s) & 0 \\
0 & \exp (\pi i s) \\
0 & 0
\end{array}\right. & 1
\end{array}\right) \text { if }|\pi|=3 .
$$

This uses the solutions for $\phi(y)$ mentioned above. Set:

$$
\begin{aligned}
& A_{s}=\left(\begin{array}{cc}
\cos \left(\frac{-2 \pi s}{3}\right) & 0 \\
0 & \cos \left(\frac{2 \pi s}{3}\right)
\end{array}\right) \\
& B_{s}=\left(\begin{array}{ccc}
\sin (-\pi s) & 0 & 0 \\
0 & \sin (\pi s) & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Then it is immediate that:

$$
\text { (i) } i(s) \cdot \lambda=2 A_{s}-I \quad \text { for }|\pi|=2
$$

(ii) $\quad i(s) \cdot \lambda^{\prime}=\left(\begin{array}{cc}4\left(A_{s}-I\right) & 3 I \\ 3 I & 2\left(A_{s}-I\right)\end{array}\right) \quad$ for $|\pi|=2$
(iii) $i(s) \cdot \lambda^{\prime \prime}=\left(\begin{array}{cc}2 i B_{s} & I \\ -I & 2 i B_{s}\end{array}\right) \quad$ for $|\pi|=3$
and so $\tau(f) \cdot s$ is given by the signature of these matrices, respectively, in the cases
(i) $q=1,3,7$ and $|\pi|=2$; (ii) q odd $\neq 1,3$, or 7 and $|\pi|=2$; (iii) q even and $|\pi|=3$. Moreover $\tau(f) \cdot s$ is locally constant with jumps at the values of s for which the respective matrices are singular. Thus, if $\tau(f) \cdot s_{0} \neq \tau(f) \cdot\left(s_{0}+1\right)$ and the matrices are non-singular when $s=s_{0}$ and $s_{0}+1$, we conclude that $\tau(f) \cdot s \neq \tau(f) \cdot(s+1)$ for all s sufficiently close to s_{0}. It is therefore impossible for $\tau(f)$ to be periodic of period one except on a discrete set and we conclude that f is not \bar{F}-concordant to an F-link. But it is a straightforward computation that this is the case for (i) and (ii) with $s_{0}=0$, and for (iii) with $s_{0}=\frac{1}{2}$.

To show that f is not concordant to a boundary link, it now suffices by Prop. (1.2), to show that changing the \bar{F}-structure on f does not change $\tau(f)$ - and so $\tau(f)$ represents a concordance invariant of f. This will follow immediately from:

PROPOSITION (5.1). Let $\psi: \bar{F} \rightarrow \mathbb{Q § ~} \pi$ be a homomorphism with $\psi(x)=t \in \pi$ $\subseteq \mathbb{Q} \S \pi$ and $\psi(x)=\lambda \in \mathbb{Z} \pi \subseteq \mathbb{Q} \pi \subseteq \mathbb{Q} \S \pi$. If π is a p-group and t is in the center of π, then for any special automorphism α of F, there exists an inner automorphism α^{\prime} of $\mathbb{Q} \S \pi$ so that $\alpha^{\prime} \circ \psi=\psi \circ \alpha$.

Proof. Suppose $\alpha\left(x_{1}\right)=g x_{1} g^{-1}, \alpha\left(x_{2}\right)=h x_{2} h^{-1}$ and $\psi(g)=\xi u, \psi(h)=v \eta$, where $u, v \in \pi$ and $\xi, \eta \in \mathbb{Q} \pi$. Set $\gamma=\xi v$; then we have:

$$
\begin{aligned}
& \gamma \psi\left(x_{1}\right) \gamma^{-1}=\gamma t \gamma^{-1}=\xi v t v^{-1} \xi^{-1}=\xi t \xi^{-1} \\
& \psi\left(g x_{1} g^{-1}\right)=\xi u t u^{-1} \xi^{-1}=\xi t \xi^{-1} \\
& \gamma \psi\left(x_{2}\right) \gamma^{-1}=\gamma \lambda \gamma^{-1}=\xi v \lambda v^{-1} \xi^{-1}=\xi+v \cdot \lambda-\xi=v \cdot \eta \in \mathbb{Q} \pi \\
& \psi\left(h x_{2} h^{-1}\right)=v \eta \lambda \eta^{-1} v^{-1}=v \cdot(\eta+\lambda-\eta)=v \cdot \lambda
\end{aligned}
$$

Figure 3

Figure 4

Thus the inner automorphism α^{\prime} defined by conjugation by γ satisfies the equation $\alpha^{\prime} \circ \psi=\psi \circ \alpha$ on x_{1} and x_{2}. Since $\psi(F) \subseteq \mathbb{Z} \S \pi$, we have $\psi(\bar{F}) \subseteq \overline{\mathbb{Z} \S \pi}$ and $\psi(g) \in \overline{\mathbb{Z} \S \pi}$. Thus $\gamma=\psi(g) u^{-1} v$ also belongs to $\overline{\mathbb{Z} \S \pi}$. As a result we see that $\alpha^{\prime} \circ \psi$ and $\psi \circ \alpha$ are homomorphisms $\bar{F} \rightarrow \overline{\mathbb{Z} \S \pi}$ which agree on F. But then they induce the same homomorphisms on the nilpotent completions: $\tilde{F} \rightarrow \mathbb{Z} \S \pi$. Since $\bar{F} \subseteq \tilde{F}$ and $\overline{\mathbb{Z}} \S \subseteq \subseteq \mathbb{Z} \S \pi$, we conclude that $\alpha^{\prime} \circ \psi=\psi \circ \alpha$ on all of \bar{F}.

When $q=1$, we can draw a picture of a link corresponding to this example. First note that the ribbon link f_{0} of Figure 3 admits an epimorphism α from its group to G. The meridians in Figure 3, which generate the group of f_{0}, map to G as follows: $\mu_{1} \mapsto x_{1}, \mu_{2} \mapsto x_{2}, \mu \mapsto y x_{1}$. Now a +1 -surgery on the complement of f_{0}, along the curve γ in Figure 3 will produce a new link f such that, according to the proof of Theorem 3.1 and preceding discussion:

$$
\tau(f) \cdot s-\tau\left(f_{0}\right) \cdot s=\operatorname{sign}\left(2 A_{s}-I\right)
$$

Since f_{0} is slice, $\tau\left(f_{0}\right)$ is periodic of period one (except on a discrete set) and so $\tau(f)$ cannot be. The link f is given in Figure 4.

REFERENCES

[APS I, II, III] M. Atiyah, V. Patodi, I. Singer: Spectral asymmetry and Riemannian geometry, Math. Proc. Camb. Phil. Soc: (I) 77(1975a), 43-69; (II) 78 (1975b), 405-32; (III) 79 (1976), 71-99.
[B] G. Burde: $\operatorname{SU}(2)$ representation spaces for two-bridge knot groups, Math. Annalen 288 (1990), 103-119.
[C] T. Cochran: Link concordance invariants and homotopy theory, Invent. Math. 90 (1987), 635-46.
[Co] P. Cohn: Inversive localization in Noetherian rings, Comm. Pure \& Applied Math. XXXVI (1973), 679-91.
[CO] T. Cochran, K. Orr: Not all links are concordant to boundary links, Bull. AMS 23 (1990), 99-106.
[CS] S. Cappell, J. Shaneson: Link cobordism, Comm. Math. Helv. 55 (1980), 20-49.
[F] C. Frohman: Unitary representations of knot groups, Topology (to appear).
[Gu] M. Gutierrez: Boundary links and an unlinking theorem, Trans. AMS 171 (1972), 491-9.
[K] E. Klassen: Representations of knot groups in SU(2), Trans. AMS 326 (1991), 795-828.
[KF] E. Klassen, C. Frohman: Deforming representations of knot groups in $\operatorname{SU}(2)$, Comm. Math. Helv. 66 (1991), 340-61.
[KK] P. Kirk, E. Klassen: Chern-Simons invariants of 3-manifolds and representation spaces of knot groups, Math. Annalen 287 (1990), 343-67.
[Ko] K. H. Ko: Seifert matrices and boundary link cobordism, Trans. AMS 299 (1987), 657-681.
[Le] J. Y. Ledimet: Cobordisme d'enlacements de disques, Mem. Soc. Math. France No. 32, T. 116, F. 2 (1988).
[L] J. Levine: Link concordance and algebraic closure of groups, Comm Math. Helv. 64 (1989), 236-55.
[L1] J. Levine: Link concordance and algebraic closure II, Invent. Math. 96 (1989), 571-92.
[L2] J. Levine: A method for generating link polynomials, Amer. J. Math. 89 (1967), 69-84.
[L3] J. Levine: The module of a 2-component link, Comment. Math. Helv. 57 (1982), 377-99.
[L4] J. Levine: Signature invariants of homology bordism with applications to links, Knots 90: Proceedings of Osaka Knot Theory Conference, 1990; W. de Gruyter, Berlin; 395-406.
[L5] J. Levine: Characterization of knot polynomials, Topology 4 (1965), 135-41.
[L6] J. Levine: Polynomial invariants of knots of codimension two, Annals of Math. 84 (2) (1966), 537-54.
[LMO] J. Levine, W. Mio, K. Orr: Links with vanishing homotopy invariants, Comm. Pure \& Applied Math. XLVI (1993), 213-20.
[M] J. Milnor: Isotopy of Links, Algebraic Geometry and Topology, Princeton U. Press, 1957, pp. 280-306.
[Mi] A. S. Mischenko: Hermitian K-theory: The theory of characteristic classes and methods of functional analysis, Russian Math. Surveys 31 (2) (1976), 71-138.
[N] W. Neumann: Signature related invariants of manifolds-I: Monodromy and γ-invariants, Topology 18 (1979), 147-72.
[Ne] B. H. Neumann: A note on algebraically closed groups, J. London Math. Soc. 27 (1952), 227-42.
[S] L. Smolinsky: Invariants of link cobordism, Topology and its applications 32 (1989), 161-8.
[St] J. Stallings: Homology and central series of groups, Journal of Algebra 2 (1965), 170-81.
[T] A. Tristram: Some cobordism invariants of links, Proc. Camb. Phil. Soc. 66 (1969), 257-64.
[V1] P. Vogel: Representations of link groups, Knots 90: Proceedings of Osaka Knot Theory Conference, 1990; W. de Gruyter, Berlin; 381-8.
[Vi] O. Viro: Branched coverings of manifolds with boundary and link invariants I, Math. USSR - I2V. 17 (1973), 1239-56.

Brandeis University
Department of Mathematics
Waltham, MA 02254-9110
USA

Received August 28, 1992

