New applications of Luttinger's surgery.

Autor(en): Eliashberg, Y. / Polterovich, L.
Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 69 (1994)

PDF erstellt am: 22.07.2024
Persistenter Link: https://doi.org/10.5169/seals-52274

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

New applications of Luttinger's surgery

Yakov Eliashberg and Leonid Polterovich

§1. Introduction and main results

Recently Karl Luttinger [L] made a remarkable observation that certain surgeries along a Lagrangian 2 -torus in the standard symplectic space $\left(\mathbb{C}^{2}, \omega\right)$ do not change the ambient topology. As a consequence he found restrictions on isotopy classes of embeddings $\mathbb{T}^{2} \rightarrow \mathbb{C}^{2}$ which can be represented by Lagrangian ones.

In the present paper, we discuss some new applications of this technique to linking of Lagrangian 2-tori in \mathbb{C}^{2}, to contact geometry on the 3 -torus as well as to study of complex structures with pseudo-convex boundary on $\mathbb{T}^{2} \times \mathbb{D}^{2}$.

1.1. Linking class of totally real tori

A field of lines on a 2-torus is called homotopically trivial if it is homotopic to the kernel of a non-singular closed 1-form. All homotopically trivial line fields are homotopic. A 2-torus in \mathbb{C}^{2} is called totally real if it has no complex tangent lines. From now on we denote by $\ell k(\cdot, \cdot)$ the linking number, and by J the standard complex structure on \mathbb{C}^{2}. All (co)homology groups considered below are integer.

Assume that $L \subset \mathbb{C}^{2}$ is an embedded oriented totally real 2 -torus. Take an arbitrary non-singular tangent vector field, say v on L which generates a homotopically trivial field of lines. For a 1 -cycle α on L set

$$
\sigma(\alpha)=\ell k(\alpha+\varepsilon J v, L)
$$

where ε is sufficiently small.
One can easily check that σ is a well defined element of $H^{1}(L)$, in particular σ does not depend on the choice of v. We call σ the linking class of a totally real torus L (see [P1], [P2]). Note that this class is closely related to the Viro quadratic form.

[^0]As it was shown in [P1] for each cohomology class $\sigma \in H^{1}(L)$ there exists a totally real embedding $L \rightarrow \mathbb{C}^{2}$ whose linking class is equal to σ. However for Lagrangian submanifolds the situation is quite different. Namely, we prove the following result which was conjectured in [P1], [P2].

THEOREM 1.1.A. The linking class of every embedded Lagrangian torus in \mathbb{C}^{2} vanishes.

The theorem is proved below in 3.1.
As a consequence we obtain the following
COROLLARY 1.1.B. (see [P1]). Let $M \subset \mathbb{C}^{2}$ be an embedded closed 3-manifold whose characteristic foliation admits an embedded invariant 2-torus L. If L divides M then the restriction of the characteristic foliation to L is homotopically trivial.

Proof. Notice that L is a Lagrangian torus. Let l be the field of Euclidian normal lines to M along L. Then the field $J l$ is tangent to the characteristic foliation on L. The needed assertion easily follows now from 1.1.A.

1.2. Giroux' theorem

Homotopically trivial fields of lines on \mathbb{T}^{2} allow to identify canonically (up to a homotopy) the cotangent bundle $T^{*} \mathbb{T}^{2}$ with $\mathbb{T}^{2} \times \mathbb{R}^{2}$ (with this language the zero section is identified with $\mathbb{T}^{2} \times\{0\}$).

THEOREM 1.2.A. Consider an embedded Lagrangian torus in $T^{*} \mathbb{T}^{2}=\mathbb{T}^{2} \times \mathbb{R}^{2}$ which does not intersect the zero section and is homologous to it. Then its projection to $\mathbb{R}^{2}-\{0\}$ is homotopic to a point.

This result was conjectured by J.-C. Sikorav in [S] who verified it under an additional assumption that the torus is Lagrangian isotopic to the zero section. It was proved recently by E. Giroux (see [Gi]) using, in particular, some tools from contact geometry. We give here a different purely symplectic proof (see section 3.2 below).

1.3. Contact geometry of the 3-torus

Consider the 3-torus $\mathbb{T}^{2}=S^{1}(\theta) \times \mathbb{T}^{2}(x, y)$, where $(\theta, x, y)(\bmod 1)$ are angular coordinates. Let $\xi=\operatorname{Ker} \lambda$, where

$$
\lambda=\cos 2 \pi \theta d x+\sin 2 \pi \theta d y
$$

be the standard contact structure.

We identify $H_{1}\left(\mathbb{T}^{3}\right)$ with $\mathbb{Z} \oplus \mathbb{Z}^{2}$ and the automorphisms group of $H_{1}\left(\mathbb{T}^{3}\right)$ with $\mathrm{GL}(3, \mathbb{Z})$. Recall [La] that isotopy classes of 3-torus diffeomorphisms are defined by their action on homology. Let $\mathscr{D} \subset \operatorname{SL}(3, \mathbb{Z})$ be the stabilizer of the subspace $0 \oplus \mathbb{Z}^{2}$.

THEOREM 1.3.A. An element from $\operatorname{SL}(3, \mathbb{Z})$ can be represented by a contactomorphism of the standard contact structure ξ if and only if it belongs to \mathscr{D}.

The proof which is based on 1.2.A is given in Section 3.4 below.

We apply this theorem in order to construct an infinite sequence of pairwise non-isotopic tight contact structures on \mathbb{J}^{3} with the same Euler class (see Question 8.6.1 in [E2]). Recall that two contact structures are called isotopic if there exists a diffeomorphism isotopic to the identity which takes one to another. An immediate consequence of 1.3.A is the following

COROLLARY 1.3.B. For $f, g \in \operatorname{SL}(3, \mathbb{Z})$, contact structures $f_{*}(\xi)$ and $g_{*}(\xi)$ are isotopic if and only if $f^{-1} \circ g$ belongs to \mathscr{D}.

A theorem by J. Gray states that two contact structures on a compact manifold which are homotopic through contact structures are isotopic. On the other hand the image of the standard contact structure ξ under an arbitrary diffeomorphism of \mathbb{T}^{3} is homotopic to ξ through plane distributions.

Hence, we have, in particular

COROLLARY 1.3.C. There exists a sequence $\xi_{n}, n \geq 0$, of contact structures on \mathbb{T}^{3} such that
(i) ξ_{n} is contactomorphic to ξ for every n, and $\xi_{0}=\xi$;
(ii) all ξ_{n} are homotopic to ξ through two-dimensional distributions;
(iii) for $m \neq n$ the structures ξ_{m} and ξ_{n} are not homotopic through contact structures on \mathbb{T}^{3}.

Proof. Take a diffeomorphism f of \mathbb{T}^{3} such that $\left[f^{n}\right] \notin \mathscr{D}$ for every $n \in \mathbb{Z}-\{0\}$. It follows from 1.3.B and the previous discussion that the structures $\xi_{n}=f_{*}^{n}(\xi)$, $n=0, \ldots$, are homotopic through plane distributions but not through contact structures.

REMARK 1.3.D. Giroux in [Gi] used Theorem 1.2.A to construct a tight (see [E2]) contact structure on T^{3} which is homotopic (through two-dimensional distributions) but not isomorphic to the standard contact structure ξ_{0}. His structure
is symplectically fillable (see [E1] for the definition of symplectically and holomorphically fillable structures) while at least some of structures constructed above are holomorphically fillable (see the next section).

1.4. Complex structures on $\mathbb{T}^{2} \times \mathbb{D}^{2}$

A contact structure on an oriented 3-manifold is called positive if it is (locally) defined by a 1 -form, say λ with $\lambda \wedge d \lambda>0$. A boundary of a complex surface is called strictly pseudo-convex if its field of tangent lines is a positive (with respect to the canonical orientation) contact structure.

It was shown in [E1] that the manifold $\mathbb{S}^{2} \times \mathbb{D}^{2}$ does not admit a complex structure with strictly pseudo-convex boundary. In the present section we study the space of such structures on $\mathbb{T}^{2} \times \mathbb{D}^{2}$.

THEOREM 1.4.A. There exists a sequence $J_{n}, n \geq 0$, of complex structures with strictly pseudo-convex boundary on $\mathbb{T}^{2} \times \mathbb{D}^{2}$ such that
(i) any two of them are biholomorphically equivalent and homotopic through complex structures;
(ii) for $m \neq n$ the structures J_{m} and J_{n} are not homotopic through complex structures with strictly pseudo-convex boundary.

Proof. We represent $V=\mathbb{T}^{2} \times \mathbb{R}^{2}$ as the quotient space of \mathbb{C}^{2} by the imaginary lattice $i \mathbb{Z}^{2}$. We still denote by J the induced complex structure on V. Let $(x, y)(\bmod 1)$ be angular coordinates on \mathbb{T}^{2} and $(r, \theta(\bmod 1))$ be polar coordinates on \mathbb{R}^{2}. Set

$$
N=\mathbb{T}^{2} \times \mathbb{D}^{2}=\{r \leq 1\}
$$

Denote by $\Sigma=\mathbb{T}^{3}$ tbe boundary of N. Obviously, Σ is strictly pseudo-convex with respect to J since its field of tangent complex lines is just the standard contact structure ξ defined in 1.3.

Consider a diffeomorphism $F: V \rightarrow V$,

$$
(r, \theta, x, y) \rightarrow(r, \theta+2 x, x, y)
$$

and set

$$
J_{n}=D F^{n} \circ J \circ D F^{-n}
$$

We claim that the sequence $\left\{J_{n}\right\}$ has the desired properties. Indeed, since F preserves Σ we conclude that all $\left.J_{n}\right|_{N}$ are pairwise biholomorphically equivalent and with strictly pseudo-convex boundary. Moreover, for $n \neq 0$ the restriction of F to Σ does not belong to the group \mathscr{D} (see 1.3). Therefore for different values of n the fields of J_{n}-complex tangent lines to Σ are pairwise non-isotopic through contact structures on \mathbb{T}^{3} (see 1.3.B) and thus we get (ii).

It remains to check that J_{m} and J_{n} are homotopic through complex structures for all m and n. In order to do it we notice that the map $D F: T V \rightarrow T V$ is homotopic to the identity through fiberwise linear maps whose restriction to each fiber is an isomorphism (verification of this fact is straightforward and we omit it). Hence the parametric h-principle for immersions of open manifolds (see [H] or [G2, 2.1.2]) implies that F is homotopic to the identity through immersions $V \rightarrow V$. Let $F_{t}, t \in[0 ; n]$ be such a homotopy with $F_{0}=F$ and $F_{n}=i d$. Then

$$
J_{t}(v)=\left(D F_{t}^{n}(v)\right)^{-1} \circ J_{n}\left(F_{t}^{n}(v)\right) \circ D F_{t}^{n}(v)
$$

is the desired homotopy between J_{0} and J_{n}. This completes the proof.
REMARK 1.4.B. It follows easily from a Bennequin-type inequality proved in [E1, 4.1] that all complex structures with strictly pseudo-convex boundary on $\mathbb{T}^{2} \times \mathbb{D}^{2}$ are homotopic one to another through almost complex structures. Moreover, using additional arguments from [G2] one can show that they are homotopic through complex structures.

REMARK 1.4.C. Let $\mathscr{J}_{\text {conv }}$ be the space of complex structures with strictly pseudo-convex boundary on $N=\mathbb{T}^{2} \times \mathbb{D}^{2}$. How to describe the connected components of $\mathscr{J}_{\text {conv }}$? In order to formulate this question in a more precise way define a diffeomorphism $G_{m, n}$ of N by

$$
G_{m, n}(r, \theta, x, y)=(r, \theta+m x+n y, x, y),
$$

and consider a complex structure

$$
J_{m, n}=D G_{m, n} \circ J \circ D G_{-m,-n}
$$

which evidently belongs to $\mathscr{J}_{\text {conv }}$. It follows immediately from 1.3.B that for different pairs of integers (m, n) the structures $J_{m, n}$ represent different connected components of $\mathscr{J}_{\text {conv }}$. Is it true that each such a component contains some $J_{m, n}$?

§2. Surgery along Lagrangian tori

2.1. The standard model

Consider cotangent bundle $T^{*} \mathbb{T}^{2}$ of the 2-torus \mathbb{T}^{2} endowed with the standard symplectic structure ω_{0}. Let $(x, y)(\bmod 1)$ be angular coordinates on the base, and let $(r, \theta(\bmod 1))$ be polar coordinates on fibers. We identify the hypersurface $\Sigma_{0}=\{r=1\}$ with the 3-torus $\mathbb{T}^{3}(\theta, x, y)$, and set $N_{0}=\{r \leq 1\}$.

For $m, n \in \mathbb{Z}$ we define the Dehn twist $f_{m, n}: \Sigma_{0} \rightarrow \Sigma_{0}$ by

$$
(\theta, x, y) \rightarrow(\theta, x+m \theta, y+n \theta)
$$

Note that $f_{m, n}$ preserves the restriction of ω_{0} to $T \Sigma_{0}$.

2.2. Configurations of marked Lagrangian tori

Let $L_{1}, \ldots, L_{k} \subset \mathbb{C}^{2}$ be a set of embedded disjoint Lagrangian tori. By marking we mean the choice of a basis in $H_{1}\left(L_{j}\right)$, say α_{j}, β_{j}.

Given such a marking, we can identify sufficiently small closed tubular neighbourhood N_{j} of L_{j} with N_{0} by a conformally symplectic diffeomorphism in such a way that L_{j} goes to the zero section, and the cycles α_{j}, β_{j} correspond to the x - and y-coordinate cycles respectively. We assume that all N_{j} are disjoint. Set $\Sigma_{j}=\partial N_{j} \approx \mathbb{T}^{3}$, and $K=\mathbb{C}^{2}-\bigcup_{j=1}^{k}\left(\operatorname{Int} N_{j}\right)$. Let $f^{(j)}: \Sigma_{j} \rightarrow \Sigma_{j}$ be some Dehn twists. Denote by V a manifold obtained as the sum

$$
K \cup_{f^{(1), \Sigma_{1}}} N_{1} \cup \cdots \cup_{f^{(k), \Sigma_{k}}} N_{k} .
$$

The main observation of Luttinger is the following
PROPOSITION 2.2.A. ([L]). The manifold V associated with an arbitrary configuration L_{1}, \ldots, L_{k} of marked Lagrangian tori and an arbitrary sequence $f^{(1)}, \ldots, f^{(k)}$ of Dehn twists is diffeomorphic to \mathbb{C}^{2}. In particular, $H_{1}(V)=0$.

Proof. Note that V admits a symplectic structure which outside a compact set coincides with the standard one on \mathbb{C}^{2}. It follows immediately from well known theorems by M. Gromov and D. McDuff (see [G1], [M]) that V is diffeomorphic to \mathbb{C}^{2}, maybe blown up at finite number of points. On the other hand the signature of V vanishes in view of Novikov's additivity theorem (we thank R. Gompf for this argument), and hence the proposition follows.

We need below the following corollary of 2.2.A. Set $\Sigma=\amalg \Sigma_{j}, N=\amalg N_{j}$. Let $\Phi: H_{1}(\Sigma) \rightarrow H_{1}(K)$ be a homomorphism induced by the inclusion, and let $\Psi: H_{1}(\Sigma) \rightarrow H_{1}(N)$ be a homomorphism induced by the composition
$\Sigma \xrightarrow{\boldsymbol{\mu} f^{(j)}} \Sigma \longrightarrow N$,
where the last arrow is the inclusion.
COROLLARY 2.2.B. The homomorphism
$\Phi \oplus(-\Psi): H_{1}(\Sigma) \rightarrow H_{1}(K) \oplus H_{1}(N)$
is an isomorphism.
Proof. Consider the Mayer-Vietoris sequence

$$
H_{1}(\Sigma) \xrightarrow{\Phi \oplus(-\Psi)} H_{1}(K) \oplus H_{1}(N) \longrightarrow H_{1}(V) .
$$

Since $H_{1}(V)=0$ due to 2.2.A, we have that $\Phi \oplus(-\Psi)$ is an epimorphism. But $H_{1}(\Sigma)$ and $H_{1}(K) \oplus H_{1}(N)$ are free \mathbb{Z}-modules of the same dimension $3 k$. Hence $\Phi \oplus(-\Psi)$ is an isomorphism.

For our purposes we have to fix a basis in each space $H_{1}(\Sigma), H_{1}(K), H_{1}(N)$. Let $h_{1}, a_{1}, b_{1}, \ldots, h_{k}, a_{k}, b_{k}$ be a basis in $H_{1}(\Sigma)$ such that for every j the cycles h_{j}, a_{j}, b_{j} correspond to $\theta-, x$ - and y-coordinate cycles on \mathbb{T}^{3} respectively. Let $A_{1}, B_{1}, \ldots, A_{k}, B_{k}$ be a basis in $H_{1}(N)$, where for every j the cycles A_{j}, B_{j} correspond to x - and y-coordinate cycles on \mathbb{T}^{2} respectively. Finally, let H_{1}, \ldots, H_{k} be the basis in $H_{1}(K)$ which is defined by relations

$$
\ell k\left(H_{i}, L_{j}\right)=\left[\begin{array}{ll}
1, & i=j \\
0, & i \neq j
\end{array}\right.
$$

(here the orientation of L_{j} is determined by the marking).

§3. Proof of main theorems

3.1. Proof of 1.1.A

Let $L \subset \mathbb{C}^{2}$ be an embedded Lagrangian torus, and let σ be its linking class. Choose a marking α, β on L and apply the construction of 2.2 with respect to a Dehn twist $f_{m, n}$.

Recall that using homotopically trivial fields of lines one can define the canonical trivialisation of the (co)tangent bundle to a 2 -torus. Consider a trivialisation of the normal bundle to L which is obtained from the canonical one of $T L$ by the multiplication by J. It is easy to see that after the identification of a tubular neighbourhood of L with N_{0} (see 2.2) this trivialisation coincides with the canonical one of $T^{*} \mathbb{T}^{2}$.

In view of this we have that the maps $\Phi: H_{1}(\Sigma) \rightarrow H_{1}(K)$ and $\Psi: H_{1}(\Sigma) \rightarrow$ $H_{1}(N)$ act as follows:

$$
\begin{aligned}
& \Phi(h)=H, \quad \Phi(a)=\sigma(\alpha) H, \quad \Phi(b)=\sigma(\beta) H ; \\
& \Psi(h)=m A+n B, \quad \Psi(a)=A, \quad \Psi(b)=B .
\end{aligned}
$$

(The numeration of the basis elements is omitted since we work with one torus). Hence in the bases (h, a, b) and (H, A, B) the map $\Phi \oplus(-\Psi)$ is given by the matrix

$$
\left(\begin{array}{ccc}
1 & \sigma(\alpha) & \sigma(\beta) \\
-m & -1 & 0 \\
-n & 0 & -1
\end{array}\right)
$$

Its determinant equals to $1-\sigma(\alpha) m-\sigma(\beta) n$. On the other hand 2.2.B implies that this determinant equals to ± 1 for all m and n. Hence $\sigma(\alpha)=\sigma(\beta)=0$. This completes the proof.

3.2. Proof of 1.2.A

Let us represent a neighbourhood of the zero section in $T^{*} \mathbb{T}^{2}$ as a tubular neighbourhood \mathscr{U} of the standard Lagrangian torus $L_{1}=\mathbb{S}^{1} \times \mathbb{S}^{1} \subset \mathbb{C}^{2}$. Let L_{2} be an embedded Lagrangian torus in \mathscr{U} which is disjoint from L_{1} and homologous to L_{1} inside \mathscr{U}. The assertion we have to prove can be reformulated as follows: every cycle $e \in H_{1}\left(L_{2}\right)$ is unlinked with L_{1} :

$$
\ell k\left(e, L_{1}\right)=0 .
$$

Denote by $\tau: \mathscr{U} \rightarrow L_{1}$ the natural projection and by $\tau_{*}: H_{1}\left(L_{2}\right) \rightarrow H_{1}\left(L_{1}\right)$ the induced isomorphism. We need the following simple topological

LEMMA 3.2.A. For every $e \in H_{1}\left(L_{2}\right)$ the following equality holds:

$$
\ell k\left(e, L_{1}\right)=\ell k\left(\tau_{*} e, L_{2}\right),
$$

where we assume that τ preserves orientations of L_{1} and L_{2}.

The proof is given in 3.3 below.
Let α_{2}, β_{2} be a marking of L_{2}, and let $\alpha_{1}=\tau_{*} \alpha_{2}, \beta_{1}=\tau_{*} \beta_{2}$ be the "coherent" marking of L_{1}. Set $u=\ell k\left(\alpha_{1}, L_{2}\right)=\ell k\left(\alpha_{2}, L_{1}\right), v=\ell k\left(\beta_{1}, L_{2}\right)=\ell k\left(\beta_{2}, L_{1}\right)$. Choose disjoint tubular neighbourhoods N_{1}, N_{2} of L_{1}, L_{2} respectively inside \mathscr{U}, and apply the surgery procedure 2.2 associated with Dehn twists $f^{(1)}=f_{m, n}$ and $f^{(2)}=f_{m, n}$ for some integer m, n. Now consider the action of Φ and Ψ in corresponding bases ($h_{1}, a_{1}, b_{1}, h_{2}, a_{2}, b_{2}$) and ($H_{1}, A_{1}, B_{1}, H_{2}, A_{2}, B_{2}$). A straightforward computation (which uses also 1.1.A) shows that $\Phi \oplus(-\Psi)$ is given by the matrix

	h_{1}	a_{1}	b_{1}	h_{2}	a_{2}	b_{2}
H_{1}	1	0	0	0	u	v
\boldsymbol{A}_{1}	-m	-1	0	0	0	0
\boldsymbol{B}_{1}	-n	0	-1	0	0	0
H_{2}	0	u	v	1	0	0
\boldsymbol{A}_{2}	0	0	0	-m	-1	0
\boldsymbol{B}_{2}	0	0	0	-n	0	-1

whose determinant is equal to $1-(u m+v n)^{2}$. On the other hand, this determinant equals to ± 1 for each choice of m and n due to 2.2.B. Hence $u=v=0$, and the desired assertion follows.

3.3. Proof of 3.2.A

Let $v_{1} \in H_{1}\left(L_{1}\right)$ (respectively, $v_{2} \in H_{1}\left(L_{2}\right)$) be a class Poincare dual to $\ell k\left(\cdot, L_{2}\right)$ (respectively, to $\ell k\left(\cdot, L_{1}\right)$). We have to show that $\tau_{*} v_{2}=v_{1}$, in other words that 1 -cycles representing these classes are homologous inside \mathscr{U}. Let \mathscr{R} be a smooth embedded 3-chain which spans L_{1} in \mathbb{C}^{2} and has the following properties:

- \mathscr{R} is transversal to $\partial \mathscr{U}$ and to L_{2};
- $\mathscr{R} \cap \mathscr{U} \approx \mathbb{T}^{2} \times[0 ; 1]$, where $\mathbb{T}^{2} \times\{0\}=L_{1}$ and $\mathbb{T}^{2} \times\{1\} \subset \partial \mathscr{U}$.

Let \mathscr{R}^{\prime} be a small shift of \mathscr{R} along the field of normals, such that $\mathscr{R} \cap \mathscr{R}^{\prime}=\varnothing$ and \mathscr{R}^{\prime} intersects $\partial \mathscr{U}$ transversally along a torus L. Note that L and L_{2} are
homologous inside \mathscr{U}. Let Q be a 3-chain such that $Q \subset \mathscr{U}$ and $\partial Q=L \cup L_{2}$. We shall assume that Q is an immersed 3-manifold transversal to \mathscr{R} and to L_{1}. Finally, set $S=Q \cup\left(\mathscr{R}^{\prime}-\mathscr{\mathscr { l }}\right)$. Note that S is a 3-chain with the following properties:

- S spans L_{2} in \mathbb{C}^{2};
- S is transversal to \mathscr{R} and to L_{1} and intersects \mathscr{R} inside \mathscr{U}.

Set $W=S \cap \mathscr{R}$. Obviously, W is a 2-chain in \mathscr{U} whose boundary components are $S \cap L_{1}$ and $\mathscr{R} \cap L_{2}$. Moreover, 1-cycles $S \cap L_{1}$ on L_{1} and $\mathscr{R} \cap L_{2}$ on L_{2} represent classes v_{1} and v_{2} respectively. Hence $\tau_{*} v_{2}=v_{1}$, and the proof is complete.

3.4. Proof of 1.3.A

Assume that f is a linear automorphism of \mathbb{T}^{3} with $[f] \in \mathscr{D}$. One can easily check that the form $f^{*} \lambda$ is isotopic to λ through contact forms, and hence f is isotopic to a contactomorphism.

The proof of the inverse assertion is divided into several steps.
(1) We represent \mathbb{T}^{3} as the hypersurface $\Sigma_{0}=\{r=1\}$ in $T^{*} \mathbb{T}^{2}$ (see 2.1). Then λ is just the restriction of the standard Liouville form

$$
r \cos 2 \pi \theta d x+r \sin 2 \pi \theta d y
$$

on $T^{*} \mathbb{T}^{2}$. Let $f: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ be a contactomorphism, that is $f^{*} \lambda=\varphi \lambda$ for some non-vanishing function $\varphi(\theta, x, y)$. Since α and $-\alpha$ are isotopic through contact forms, we can assume that φ is positive.
(2) We claim that the map $F: \Sigma_{0} \rightarrow T^{*} \mathbb{T}^{2}$, given in coordinates (r, θ, x, y) on $T^{*} T^{2}$ by

$$
(\theta, x, y) \mapsto\left(\frac{1}{\varphi(\theta, x, y)}, f(\theta, x, y)\right)
$$

is symplectic, that is $F^{*} \omega_{0}=\left.\omega_{0}\right|_{T \Sigma}$. Indeed,

$$
\begin{aligned}
F^{*} \omega_{0} & =F^{*} d(r \cdot(\cos 2 \pi \theta d x+\sin 2 \pi \theta d y)) \\
& =d\left(\frac{1}{\varphi} \cdot f^{*} \lambda\right)=d \lambda=\omega_{0}
\end{aligned}
$$

(3) Take a Lagrangian torus $L=\{\theta=$ const $\} \subset \Sigma_{0}$. Due to the previous step, its image $F(L)$ is a Lagrangian torus in $T^{*} \mathbb{T}^{2}$ disjoint from the zero section. Obviously, the projection $F(L) \rightarrow \mathbb{R}^{2}-\{0\}$ (see 1.2) is homotopic to a point if and only if $[f] \in \mathscr{D}$. The desired assertion follows now from 1.2.A.

REFERENCES

[E1] Eliashberg, Y., Filling by holomorphic discs and its applications, London Math. Soc. Lect. Notes Ser. 151 (1991), 45-67.
[E2] Eliashberg, Y., Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier 42 (1992), 165-192.
[Gi] Giroux, E., Une structure de contact, même tendue, est plus ou moins tordue, Preprint, 1992.
[GI] Gromov, M., Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
[G2] Gromov, M., Partial differential relations. Springer, 1986.
[H] Hirsch, M., On imbedding differential manifolds into Euclidean space, Ann. Math. 73 (1961), 566-571.
[L] Luttinger, K., Lagrangian tori in \mathbb{R}^{4}, Preprint, 1992.
[La] Laudenbach, F., Topologie de la dimension trois: homotopie et isotopie, Asterisque, 12, 1974.
[M] McDuff, D., The structure of rational and ruled symplectic 4-manifolds, JAMS 3 (1990), 679-712.
[PI] Polterovich, L., New invariants of embedded totally real tori and one problem of Hamiltonian mechanics, in: "Methods of Qualitative Theory and the Theory of Bifurcations", Gorki, 84-90 (1988), in Russian.
[P2] Polterovich, L., Strongly optical Lagrange manifolds, Math. Notes Ac. Sc. USSR, 45 (1989), 152-158.
[S] Sikorav, J.-C., Quelques proprietes des plongements lagrangiennes, Preprint, 1990.
Department of Mathematics
Stanford University
Stanford, CA 94305
USA
and

School of Mathematical Sciences
Sackler Faculty of Exact Sciences
Tel Aviv University
Ramat-Aviv
Israel

Received April 26, 1993; May 1993

[^0]: Supported by United States-Israel Binational Science Foundation, Grant No. 90-00150/2.

