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Controlled Geometry via Smoothing

Peter Petersen^, Guofang Werf and Rugang Ye§

Abstract. We prove that Riemanman metrics with a uniform weak norm can be smoothed
to having arbitrarily high regularity This generalizes all previous smoothing results As a

consequence we obtain a generalization of Gromov's almost flat manifold theorem A uniform
Betti number estimate is also obtained
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1. Introduction

An ultimate goal in geometry is to achieve a classification scheme, using natural
geometric quantities to characterize the topological type or diffeomorphisin type of
Riemanman manifolds While this grand scheme seems to be an impossible dream,
its basic philosophy has been a driving force in many important developments in
Riemanman geometry The sphere theorems and various topological finiteness
theorems are typical examples These results are concerned with control of global
topology of manifolds, and a crucial point therein is to control, uniformly, the local
topology

Control of local topology often follows from control of local geometry Here,
by local geometry, we mean the local behavior of the metric tensor On the
other hand, control of local geometry is frequently also the essential ingredient
for control of global geometry, such as in Cheeger-Gromov's compactness theorem
and its various extensions, which can be named geometric finiteness theorems
Notice that some rudimental topological finiteness results are direct corollaries of
geometric finiteness theorems But the significance of the latter goes beyond this
In any case, control of local geometry is obviously a key topic An interesting and

important aspect of this topic is various degrees of control of local geometry needed
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or available in different situations In [P], the first author introduced a sequence
of norms which provide a certain quantitative measure for local geometric control
These norms can be defined either in terms of the Ck "-norms or the Lk p-norms
for functions, and they are defined on a given scale For example, the Ck "-norm of
a Riemanman manifold on scale r is bounded, if it is covered by coordinate charts
of size comparable to r such that the metric tensor expressed in the coordinates
is uniformly bounded in Ck "-norm, and that the coordinate transition functions
are uniformly bounded in Cfc+1 "-norm Note that the local topology is uniformly
trivial if one of these norms on some scale is bounded To admit richer topological
and geometric structures under norm bounds, we shall introduce a weak version of
these norms The essential new feature is that we allow coordinate maps to have
double points In spirit, this is similar to replacing an mjectivity radius bound by
a conjugate radius bound (Of course, eg a weak (harmonic) C° " bound is so
weak that it is far from implying a conjugate radius bound

Indeed, our basic theme is to try to find the minimal degree of control of
local geometry under which interesting geometric and topological consequences
can be drawn Traditional geometric conditions such as curvature bounds imply
various degrees of local geometric control, so we can think from their perspectives
Historically, sectional curvature bounds were the first to be systematically studied
They can roughly be compared with weak C2-norm bounds, at least the latter
imply the former Since understanding of sectional curvature bounds has been
reached on a good level, it is natural to try to find the minimal degree of local
geometric control under which a metric can be approximated by metrics with
sectional curvature bounds or weak C2-norm bounds (or better bounds) In this
paper, we present a result towards this goal, along with some applications The
local geometric control we need is as weak as a bound on the weak harmonic C° "-
norm, or a bound on the weak L1 p-norm These do appear to be the sought-after
minimal degree of local geometric control in our set-up

To formulate the result precisely, we introduce the following classes of Riemanman

manifolds (The definition of the weak norms are given in §2

Definition 1 Given n>2, 0<a<l,p>n and function Q (0,oo) —> [0,oo)
which is nondecreasmg in r and satisfies limr^o Q(r) =0, we define

M(n,a,Q)={(M,g)
(M, g) is a complete Riemanman manifold, dim M n,

'

the weak harmonic C° " norm \\{M,g)\\™oha
r

< Q{r) \,
for all positive r < 1

and

M(n,p,Q)={(M,g)
(M,g) is a complete Riemanman manifold, dim M n,

the weak L1 r norm ||(M,ff)||£i p r < Q{r)

for all positive r < 1
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Remark 1. A priori these two classes seem to be independent. We will prove
however that (weak) L^'p bounds actually imply (weak) harmonic C°'a bounds,
see Theorem 1.5. A further question is whether (weak) C°'a bounds imply (weak)
harmonic C°'a bounds. It is still unanswered.

Remark 2. By Anderson-Cheeger's work [AC] manifolds with a lower bound for
Ricci curvature and a positive lower bound for conjugate radius belong to these
two classes.

Theorem 1.1. For every manifold (M,g) in M.(n,a,Q), every r € (0,1] and

every positive number e, there is a metric ge on M such that

e~e9 <9e< eeg,

\\(M,ge)\\%0,air<2Q(r),

where k is an arbitrary positive integer and Q Q(n,k,e,a,Q(r)) denotes a
positive number depending only on n, k, e, a and Q(r).

Theorem 1.2. For every manifold (M,g) in Ai(n,p,Q), every r G (0,1] and

every positive number e, there is a metric ge on M such that

e~e9 <9e < eeg,

where k is an arbitrary positive integer and Q Q{n, k, e,p, Q(r)) denotes a positive

number depending only on n,k,e,p and Q{r).

Thus a metric with some regularity (given by the weak norm) can be deformed
or smoothed to a nearby one with arbitrarily high regularity. In particular,
manifolds with a lower bound on Ricci curvature and a positive lower bound on
conjugate radius can be smoothed. Previous smoothing results have been concerned
with metrics with various curvature bounds, and involved two independent
techniques: the embedding method and the Ricci flow. The embedding technique in
smoothing as used by Cheeger-Gromov [CG] consists of embedding (or immersing)

a given manifold into a Euclidean space and then perturbing it suitably by
a smoothing operation, which is based on the classical convolution process. The
smoothing result in [CG] is that metrics on closed manifolds with lower and upper
bounds on sectional curvatures and a positive lower bound on injectivity radius can
be smoothed to metrics with bounds on all derivatives of the Riemann curvature
tensor. Later, by embedding into a Hilbert space instead of a finite dimensional
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space, Abresch [A] was able to remove the condition on injectivity radius and
extend to complete manifolds. More recently Shen [SH] showed that manifolds with
a lower bound on sectional curvatures and a positive lower bound on injectivity

radius can be smoothed to having two-sided sectional curvature bounds. The
technique of Ricci flow is based on the fundamental work of Hamilton [H]. Using
this technique, Bemelmans-Min Oo-Ruh [BMR] obtained the same result as in
[CG] without injectivity radius lower bound, and Shi [S] obtained the same result
as in [A]. Later work considers metrics with other kinds of curvature bound. For
example, in [Ga2, Yl, Y2] Gao and Yang dealt with integral bounds on sectional
curvatures. In [DWY], Ricci curvature bounds were treated.

By virtue of the available constructions of controlled harmonic coordinates
under various curvature bounds, all these smoothing results are consequences of
Theorem 1.1 or Theorem 1.2.

As typical applications we present the following two results.

Theorem 1.3. (Betti number estimate) For the class of manifolds Mn in
j\4(n,a,Q), and satisfying diarriM < D, we have the estimate for the Beth numbers

^ bl(Mn) < C(n, D, a, Q), (1.7)

and the estimate for the number of isomorphism classes of rational homotopy
groups

TTq{M) (g) Q < C{n, q, D, a, Q) for q>2. (1.8)

(1.7) follows from Theorem 1.1 and Gromov's uniform betti number estimate
regarding sectional curvature [G2]. This estimate can also be proved directly using
Toponogov type comparison estimate introduced in [W], see [PW] for details. In
[W] the same estimate (1.7) is given for the class of manifolds satisfying RicM >
— (n — 1)H, conj > vq and diarriM < D. (1.8) follows from Theorem 1.1, 1.2 and
the result in [R, Theorem 0.3].

Theorem 1.4. There exists an e e(n,a,Q) > 0 such that if a manifold Mn
belongs to A4(n,a,Q) and diam < e, then M is diffeomorphic to an inframlman-
ifold.

This generalizes Gromov's almost fiat manifold theorem [Gl] as well as its
generalization in [DWY]. (The proof is simple: combine Theorem 1.1 with [Gl].)

Remark. By Theorem 1.2, Theorem 1.3 and 1.4 also hold if we replace the class

M.{n, a, Q) by M.{n,p, Q). (The constants will depend on p instead of a.)
By the Sobolev embedding, L^'p harmonic norm controls C°'a harmonic norm.

The following result demonstrates the relation between L1>p-norm and C°'a
harmonic norm.
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Theorem 1.5. Let Q{r) he a function as in Definition 1 and p > n. Then for
any Riernannian manifold Mn with \\(M,g)\\Li,P r (\\(M,g)\i£liP < Q(r), there

holds

\\(M,g)\\hLl,Pr (||(M,ff)||££,r) <C(n,p)Q(r),
where C(n,p) is a constant depending only on n,p. In other words, controlled
harmonic coordinates exist on M (in case of weak norm, the coordinates are allowed
to have double points).

On account of this result, Theorem 1.2 follows from Theorem 1.1.

The proof of Theorem 1.1 uses the embedding method in [A]. Roughly speaking,
we embed a given Riemannian manifold into the Hilbert space of L2-functions on
it, and then use the embedding to pull back the L2-metric of the Hilbert space.
The crucial point is of course to find a suitable embedding, such that the pull-
back metric will enjoy nice properties. In [A], the embedding is defined in terms
of distance functions. In our situation, these functions are not appropriate, and
we employ instead solutions of a canonical geometric partial differential equation.
Now if e.g. the harmonic C°'a-norm of the manifold is bounded, then a uniform
pointwise bound on sectional curvatures will hold for the pull-back metric, and
hence we can apply the smoothing results for metrics with sectional curvature
bounds as given e.g. in [A] or [S].

If we only assume that the weak harmonic C°'a-norm of the manifold is bounded,

i.e. it is in the class Ai(n,a,Q), the global embedding is generally not under
control. To remedy the situation, we follow the idea in [A] of employing instead
local embeddings. In [A], Abresch uses the exponential map to lift local patches
of the manifold and his local embeddings are exactly embeddings of these lifted
patches. In our situation, the exponential map is not suitable. Our substitute for
it is the coordinate maps. Thus we use them to lift local patches, and construct
embeddings of the lifted patches via the same geometric partial differential equation

as mentioned before. To make sure that the pull-back metrics induced by
these local embeddings descend to the local patches and that the resulting metrics
patch together to define a metric globally, it is crucial to require the embeddings
to be equivariant under isometries. Since our embeddings are defined in terms
of solutions of a canonical geometric PDE, they naturally share this equivariance
property.

The above scheme (suitably modified) can also be applied to give an alternative
proof of Theorem 1.2. This is of course more involved than deriving Theorem 1.2

from Theorem 1.1 and 1.5. However, more geometric structures can be seen from
this alternative approach. As before, a given Riemannian manifold (in the class

Ai(n,p,Q)) will be embedded into the Hilbert spaces of L2-functions on it, and
the pull-back metrics descend to yield a new metric on the underlying manifold.
But these metrics satisfy here an integral bound on sectional curvatures rather
than a pointwise bound. This is a new situation. To handle it, we can apply the
Ricci flow and follow the arguments in [DWY]. The details will appear elsewhere.
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2. Norm and Weak Norm

Definition 2. Fix an integer k > 0 and a number 0 < a < 1. The Ck'a-norm of
an n-dimensional Riemannian manifold (M,g) on scale r > 0, \\{M,g)\\c^,a r, is

defined to be the infimum of positive numbers Q such that there exist embeddings:

(fir :B(0,r) d"^f/rCM
(B(0,r) denotes the closed Euclidean ball of radius r centered at the origin) with
images UT, t£Î (an index set), with the following properties:

2 ^)% /002) Every metric ball B(p, yîje~^)> P € M lies in some set UT,

3) rl'l+a||o^TiîJ||Co < Q for all multi-indices / with 0 < |/| < k.
Here gTjîJ denote the coefficients of gT (p*g on B(0,r), and 5lQ are the Kronecker
symbols.
Remark. Note that this définition is slightly different from the corresponding one
in [P], where in addition the (rescaled) Cfc+1'a-norm of the transition functions
are required to be under control. For convenience, we can call the Cfc'a-norm (of
Riemannian manifolds) as defined in [P] the strong Ck'a-norm. (Note however
that the "strong" harmonic Cfc'a-norm is equivalent to the harmonic Cfc'a-norm.)

We define the harmonic Cfc'a-norm on scale r, ||(M, (?)||^fc>c, r, by requiring
additionally the following
4) ip~l : UT -+ Rn is harmonic,
which is equivalent to saying that
4') id : B(0,r) —> B(0,r) is harmonic with respect to gT on the domain and the
Euclidean metric on the target, which is in turn equivalent to saying that

for all j.
If k > 1 and p > n (when k 1) or p > ^ (when k > 2), then we define the

Lfc'p-norm on the scale of r, ||(M,g)\\Lk.p n by retaining 1) and 2), and replacing
3) by
3') rl'l-2 \\dlgTyl3\\hv < Q for all 1 < |/| < k.

The harmonic Lfc'p-norm is defined similarly.
For any choice of these norms, it is clear that the local topology is trivial

on some uniform scale for any class of manifolds with uniformly bounded norm.
(Note that the injectivity radius may not be uniformly positive though.) To allow
nontrivial local topology, we introduce the weak norms || ||^L,„ r

and || ||^fc,P r,
which are defined in identical ways except that each <pT : B(0,r) —> UT is assumed

to be a local diffeomorphism instead of diffeomorphism. The corresponding weak
harmonic norms || \\Ck,a r

and || \\Lk,P r are defined in a similar way, with 4) being
replaced by 4').
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Note that (weak) harmonic norms dominate (weak) norms on the same scale.
We also have || ||^ < || || ,r and || \\w;h < || \\hr. All norms are continuous
and non-decreasing in r. If (M,g) is sufficiently smooth, these norms converge to
zero as r —> 0. Furthermore, (weak) Ck'a (Lk'v) norms vary continuously in the
Ck'a (Lk'v) topology of Riemannian manifolds. See [P] for the relevant details.

We point out that Rn is the only space with norm 0 on all scales. And fiat
manifolds are the only spaces with weak norm 0 on all scales.

Conventional geometric conditions such as curvature bounds imply norm bounds.
Such implications are mostly contained in constructions of controlled harmonic
coordinates and are a crucial ingredient for various compactness theorems. To have

a clear perspective, we collect these results in the following proposition.

Proposition 2.1. There are positive functions Q(H, p,r,p) and Q\(H,r,p) of
H > 0, p > 0, r > 0, p > n and of H > 0, r > 0, p > n respectively, satisfying
limr^o Q(H, p, r,p) 0, limr^o Ql(H, r,p) 0 such that for manifolds Mn with
a) \K\ < H, inj > p, then ||(M,g)\\hL2,Pr < Q{H,p,r,p);
b) \K\ < H, then ||(M,ff)||^,r < Ql{H,r,p);
c) |Ric| < (n-l)H, inj > p, then ||(M,g)\\hL2,Pr < Q(H,p,r,p);
d) Ric > -(n-l)H, inj > p, then \\(M,g)\\hLl'Pr < Q(H,p,r,p);
e) Ric > -(n-l)H, conj > p, then ||(M,g)\\Yt,r ^ Q(H,p,r,p).

These results follow from works of Jost-Karcher [JK], Anderson [AN] and
Anderson-Cheeger [AC]. (See also Gao [Gal, Ga2] for results along these lines.)

We now prove Theorem 1.5.

Proof of Theorem 1.5. We will prove the case when ||(Af, <;)||Li,p r < Q(r). The

other case is exactly the same. By définition of L^'p norm, we have a collection of
diffeomorphisms

cpT : 1(0, r) -s- UT C M

satisfying

Note that the norm is scale invariant, namely

||(M,r-23)||Ll,Pil ||(M,(;)||Ll,Pir

So with the scaled pull back metric r~^ip*g, we have

On the Euclidean ball B(0,l) equipped with the metric r^cp^g, solve the
Dirichlet boundary value problem:

W : (1(0, l),r-2ip*g) ^ R", with AW 0 and WU(0,l) Id|flB(o,l),
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where Id is the identity map Id: 1(0,1) -> Rn with 1(0,1) equipped with the
metric r^cp^g. We will show that ipT is also a coordinate. Now A(Id — ipT) Aid.
By the elliptic estimate for divergence operators (see [P, Appendix A])

llId " Vv||2,P,B(0,l) < cl(n,P)\\Ald\\P,s(0,l)

<C\{n,p)\\dr~ 3t,»j||j,,b(0,1) < cl(n,P)Q(r)-

Since limr^o Q(r) 0, fix an 0 < eo <C 1, there is an ro > 0 such that
Ci(n,p)Q(ro) < €q. Therefore i/jt is a harmonic coordinate on the ball 1(0,1)
for the metric r^cp^g when r < r$. Moreover the L1>p-norm of the metric
components with respect to i/jt is bounded by C{n,p)Q{r). By scaling back,
we have harmonic coordinate on 1(0, r) with respect to the metric ip*g and

UM,g)\\hLltPr<C(n,p)Q(r). D

3. Smoothing

As explained in the introduction, our strategy is to first achieve sectional curvature
bounds by embedding into the Hilbert space of L2-functions. This is done in the
next two sections. The higher regularity smoothing then easily follows from known
smoothing results.

Consider (M,g) G Ai(n,a,Q). We have a collection of local diffeomorphisms

satisfying 1), 2), 3) and 4') of Définition 2.

In the next section we will construct a canonical embedding

FT : (M(0,r),gT) -+ L2(M(0,r),gT),

where gT <p%g. We use FT to pullback the L2 metric of L2(B(0,r),gT) to produce
a new metric gT on 1(0, r). This construction works for general metrics on 1(0, r),
and has the following equivariance property, which will be proved in §5. Namely,
if 9\-> 92 are two metrics on 1(0,r) such that there is an isometric embedding

and if g\, gi are obtained via the above construction, then

is also an isometric embedding. Granted this (see Proposition 4.4) we have

Proposition 3.1. There exists a smooth metric g on M such that the pullback of
g by (pT is exactly gT.
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Proof. Let r\ jQe~®. Then for every p G M, Bg{p,r\) C UT for some t. It
follows that there exists ape B(0, r) such that B9t [p, r\) C B(0, r) and <pT(p) P-

We now define the metric g as follows. If X, Y G TpM, then

To show that this metric is well-defined, let p' be another such point, i.e. for
some T',BgT,(fy,ri) cB(0,r) and ipT>(p') p. Let r4 ^je~4Q and r3 ^je"3Q.
Let gE denote the Euclidean metric. We insert a lemma.

Lemma 3.2. There is an isometric embedding

,r4),gT) ^ (BgT,(p',r3),gT,).

Proof. Note that y>T's are not diffeomorphisms, hence the lemma is nontrivial.
First ip can be defined as follows. Since gT is e^-quasi-isometric to gE,

B(p,r4)cSST(p,r3). (3.1)

For any point q G B(p,r4), connect q to the center point p with a curve 7 in
,r4) such that the length of 7 /St(7) < r3. Since

is a local isometry and <pT(p) P- From (3.1) <pT maps the curve 7 to a curve
7 in Bg(p,rs) starting with p and ^(7) < r3. Again since y>T/ is a local isometry
and <pT'(p') P- The curve 7 then can be lifted via tpT/ to a curve in B9t, (p', r3)
starting with p'. The other end point of this curve is defined to be the image of
q. (Note that, in general, lifting can not be done for incomplete space. Here the

map is a local isometry and the curve starts from the center, and we have control
on the length of the curve and the size of the metric ball, so it will not hit the
boundary during lifting.) Now we will show that ip is well-defined, i.e. the image
is independent of the choices of the curve 7. If 71 is another curve in B(p,r4)
connecting q to the center point p with /St(7i) < r3, we can connect 71 to 7 by
a homotopy H{s,t) in BgE{p,r^) with fixed end points and lgT{H{s, ¦)) < 2r3 for
each s, since B(p, r4) is an Euclidean ball and gT is e^-quasi-isometric to gE- Then
(fiT maps H{s,t) to a homotopy H{s,t) in _Bs(p,2r3) with l(H(s, •)) < 2r3 for each

s. Therefore H(s,t) can be lifted via <pT/ to a homotopy in B9t, [p', 2r3) starting
with p'. By the (localized) homotopy lifting lemma the other end points are all
the same. Therefore ip is well-defined.

Next we show that ip is one-to-one. Let r<2 ^je^2^. Then
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Since B(p',r2) is an Euclidean ball one can construct "inverse" </> similarly as

above

4> (BgT,(p,r3),gT>) -> (BgT(p,-ri),9r)

Thus ip is one-to-one That ip is an isometric embedding follows from the
construction D

Now we continue with the proof of Proposition 3 1 Using the equivanance, we
have

iI>*9t> 9t

Therefore

We have proved that the metric g is well-defined
To show that <p*g gT, consider

ifT 1(0, ^r) ^ UT

In particular, for any p G B(0, -^r), BgT(p,r\) C B(0,r), and therefore p can be
used to define the metric g at fT(p) It follows from the definition that

¥*t9 9t

Finally, note that the smoothness of the metric g is an immediate consequence of
(3 2) This completes the proof of Proposition 3 1 D

4. Embedding I

We continue with the above manifold (M,g) G M(n, a, Q) Let Q B(0,r) C Rn
We consider the pull back metric <p*g on Q for a fixed t For convenience, this
metric will be denoted by g It is easy to see that ||(Q, <?)||^o a r

< Q(r) We are

going to construct an equivanant embedding of (Cl,g) into L2(Q, g) by associating
to every point p G Q a geometric function fp G L2(ü) lß(Q,g), which depends
nicely on p A natural choice seems to be the distance function measured from p
Indeed, it is used by Abresch in [A] However, under our rather weak assumptions



Vol 74 (1999) Controlled geometry via smoothing 355

on the metric it is impossible to have uniform control of the second order derivative

of the distance function, which is needed to ensure that the pull-back metric
induced by the embedding satisfies a sectional curvature bound In fact, one can
not even expect differentiability of the distance function in balls of uniform size
Our substitute for the distance function is solutions of a canonical geometric partial

differential equation Those solution functions have the crucial equivanance
property (like the distance functions) and enjoy better regularity Many choices of
"canonical" PDE solutions are possible, e g in [A] Green's function is suggested
But Green's function is inconvenient because of its singularity We shall employ a

very simple and nicely-behaved PDE
Denote

fil fi \ UqednBg(q,l0),

where *0 yfj (Bg(<l> denotes the closed geodesic ball of center q and radius

measured in g Then for s G fii, let hs G LQ (Bg(s,io)) be the unique weak
solution of the following Dinchlet boundary value problem

Ahs -1 mBg(s,i0)
hs 0 on dBg{s,io)

Here the Laplace operator is defined with respect to the metric g The function
hs will be extended to be zero outside the geodesic ball

First note the following

Lemma 4.1. For all zq < 1 the following Pomcaré inequality holds

h2dv <Cil f \Vh\2dv, (4 2)

where h G Lg (_Bs(s,«o))? dv and V are defined with respect to the metric g, and
C is a uniform constant

Proof Since the harmonic C° "-norm of (Cl,g) is uniformly bounded, we have

Bg(s,io) cB(s,eQ(1)«0) Now extend h to B(s, e^1^) by defining its value to be

zero outside the geodesic ball Bg{s,io) Then we have

\VEh\2dvE,

where dvE and V^ are defined with respect to the Euclidean metric gE, and C
is a uniform constant Again since the harmonic C° "-norm of (Cl,g) is uniformly
bounded, the volume element dv and the gradient V are comparable to the
Euclidean ones Therefore the inequality (4 2) follows with a new uniform constant
C D
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Using (4 2) and a simple integration argument we then deduce a uniform
estimate for the L1 2-norm of hs in terms of the volume of Bg(s,to), namely

\Vha\2<C%vol{Bg{s,io)), (4 3)

h2s<Ciivo\{Bg{s,iQ)) (4 4)

Here again C is a uniform constant
Since in harmonic coordinates the Laplace operator takes the form A gtJd,ßj,

uniform interior C2 a estimates then follow readily by the standard elliptic theory
[GT, Chapter 5] We also have a uniform L°° estimate up to boundary, but it
seems impossible to obtain better estimate up to boundary because the control
of the geometry of the boundary is very weak At a first glance this appears
to threaten to destroy the embedding scheme Fortunately we can use a cut-off
function ß ßn (see (4 9) below) to get around it On the other hand, we can
not obtain control of the dependence of hs on the center s To remedy this, we
shall take a suitable average of hs over s The resulting new family of functions
will depend nicely on the center

Now let us state a few more basic properties of the functions hs in the following
proposition, which will be proved at the end of this section Here, as before, we
work under the assumption ||(Q, <?)||^0 a r < Q(r)

Proposition 4.2. Let hs(p) be the solution of equation (4 1) with respect to the
canonical Euclidean metric qe on the Euclidean ball B(s,«o) Then for any e > 0

and fixed 0 < R < 1, there is an vq ro(e, _R, Q) > 0 such that if zq < vq,

\ha(p) - ha(p)\ < eil (4 5)

\-ha(p)--ha(p)\<et0 (4 6)

for all s and all p with dgE(s,p) < Riq It will follow from the proof that
K(s,Riq) C Bg(s,io) so that these estimate make sense Also

- — hs{p)\<C{n,Q,R) (4 7)

Remark. Note that
1 2 2

Therefore %/is(p) < 3 when dgE(s,p) > y§*o Choosing R |y in Proposition

4 2, we have =%-hs(p) < \ when y |*o < dgE(s,p) < ^y«o an(i *o is sufficiently
small
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Now we proceed to construct the desired embedding Let ß ßn G Cq°([0, oo))
be the cut off function

0 if 0 < t < 1

B ,f/>l" ' (49)
i>n II I > 77

Then ß (%£hs( j) 0 near the sphere dBg{s, j^xq) for all x0 small (Note that
where Bn is a constant which will be determined later

j g

dg converges to dgE when xo —> 0 We define a new function which is ß (¦^rhs(

restricted to the ball Bg(s, ^j*o) an(i identically zero outside For simplicity we

still denote this new function by ß ^jhs( As mentioned before, we have no

control of the dependence of hs on the center s The said average function is given
as follows

fp(i) I ß (^ha(p)) ß Ç^hs(q)) ds, (4 10)

where ds is the volume form of g Note that fp(q) is symmetric in p and q and is
C2 a uniformly bounded in both variables

Now we define the embedding

F Qt^L^Q^g)

Note that

dVpF(q) 2nx^

V^ WpF(q) An2xQ

f R" (^
ß [-

in V *o

In \ 1

n-1 [ ßl (—
in V«o

\ 1 2/ft \
:(p) J {—Vhs(p),vp)ß f —hs(q) j

^(P)>„p><ivfc.(P)>^(|Ä

/is(p) J y2hs{p){vp,wp)ß i—hs{

ds,
(4 11)

¦s(ç) 1 ds

q) ds,
/ (4 12)

where vp, wp £ TpQ\
We first show that when g is the Euclidean metric, we can normalize ß so that

F is an isometric embedding In this case the embedding function is

u v-
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By the symmetry of the integration domain, B(p,^&) n B{q,^^), and the
integrand, fp(q) depends o

«Ô/t^wfP.«)). dvpF(q)

termined function / Then

integrand, fp(q) depends only on dgE(p,q) and Bn Hence we can write fp(q)

«Ô/t^wfP.«)). dvpF(q) i0n/2f(±dgE(p,q))(VdgE(p,q),vp) for a uniquely de¬

f
b{P2i0)

/o

n JO IQ

n

where \vp\ denote the Euclidean norm of vp Choose Bn in the definition of ß so

that vol(^ ^ Jq rn-1f'2(r)dr 1 Then we arrive at the following

Lemma 4.3. F is an isometric embedding

With the above choice of ß we will show that F is an almost isometric embedding

when g is not necessarily the Euclidean metric and the second derivative of
F is also uniformly bounded More precisely we have

Proposition 4.4. For any given eo > 0, there exists an ro > 0 such that

(1 + eo)~2g{vp,vp) < 11^^11^2(0) < (1 + £o)2g(vp,vp), (4 13)

for all vp G TpQ\ and 0 < to < ro And

\\V2F(vp,wp)\\2L2{n)<C(n,a,Q)to2g(vp,vp) g(wp,wp) (4 14)

Proof By definition

IK^Hl^n) / \dVpF{q)\Zdq
JBg(P2t0)

To prove (4 13), first note that ß, ß', ß" (by construction) and t^lVhsl (by
(4 7)) are uniformly bounded Hence the formulas (4 5) and (4 6) imply (by the
theorem of bounded variations) that the difference between the integrand of the
formula (4 11) and its Euclidean analog is bounded by Ce, where C is a constant
independent of to and the geometry of (M, g)
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On the other hand, the volume element of the metric g satisfies the following
inequalities

where Q(iq) —? 0 when iq —s- 0 Therefore we obtain an estimate for the difference
between H^p-fil^m an(i its Euclidean analog which equals çe(v,v) Note that
the computation of this difference involves a double integration (one with square),
which produces a factor îq", killing the factor Iq in the expression (4 11) of
\dVpF\2

The proof of (4 14) is similar Namely since ß, ß1, ß", i^lVh^ and |V2/is|
(by (4 7)) are uniformly bounded by a constant independent of iq, so are the
integrands of the formula (4 12) Now applying (4 15) and a double integration as

above gives the estimate D

Proof of Proposition 4 2 First consider the map

l "on niltp ft —> ft
4>(s + x) s + 10X

Let hs (p) be the solution of the following problem

Ah s — 1 in d>~^{Ba{s,in))
\ (4 16)

h, U on aé (o„

where À is the Laplace operator with respect to the metric Xq (p*g Let hs{p)
denote the solution of the same problem with respect to the Euclidean metric on
the Euclidean ball B(s, 1) Then

hs(p) i02hso4>(P), peB(s,i)
hs(p) i02hso(j)(p), pGf'fttvo)) (4 17)

Since

||(^-1(Sfl(s,îo)),îoVff)llco«i ll(Sfl(s,îo),ff)||co«,o<Q(*o) (4 18)

with Q(io) -^ 0 as iQ -^ 0, we have (4>^1(Bg(s,io)),i()'24>*g) -^ (M(s,l),gE) as

From (4 17) and the estimates for hs (see (4 3), (4 4)) we deduce the following
estimates

f (4 19)
<P 1{Bg{st0))

By the elliptic theory, we then have the following uniform interior estimate

(4 20)
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for any fixed 0 < R < 1

From these estimates and the uniqueness of the weak solution hs it is easy to
deduce the following for each sequence of centers s^ converging to some center so

and each sequence io(k) converging to zero, the corresponding rescaled solutions

hSk converge weakly to hSQ Moreover, by the Arzela-Ascoh theorem, they also

converge uniformly in C1 on proper compact subsets of _BSB(so,l) This convergence

fact along with the smooth dependence of hs on s then imply that the hs

converge uniformly with respect to s in C1 on proper compact subsets of B(s, 1)

as to goes to zero Consequently, for a fixed R G (0,1), given any e > 0, there is

an ro > 0 such that for all s and p with dgE (p, s) < R, if to < ro, then

\hs{p)-hs{p)\<e (4 21)

Similarly,

\^-hs(p) - ^-hs(p)\ < e (4 22)
op op

Hence for all s and all p with dgE{s,p) < Riq,

\hs(p) - hs(p)\ < etl
d d

— hs{p) - —-hs{p)\ < eto
op op

(4 7) just follows from (4 20) and (4 17) D

5. Embedding II
In this section we study the geometry of F(Çl\) as a submamfold in L2(Q) We

will prove, among other things, two important properties of F{Çl\) That is,
the induced metric of F{Çl\) has uniformly bounded sectional curvature and the
embedding F is equivanant

The geometry of F{Çl\) is completely determined by the second fundamental
form of its embedding into L2(Q), which in turn can be described by the family of
orthogonal projections P(y) L2(Q) ^TyF{Vli) C L2(Q),y £ ^(Q1) We have

Lemma 5.1. The sectional curvature of F(Q\) is given by the following formula

(5 1)

Proof Since P2 P, one has

(dzlP)P + P(dzlP) dzlP (5 2)
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Let V be the connection on F(Çl\) and dzi the directional derivative on the L2

space. Then

dziz2 - (1 - P)(dzl(Pz2))
dziz2 - (1 - P) [(dzlP)z2+P(dzlz2)]
dzlZ2-(l-P)(dzlP)(Pz2)
dziz2 - (dzlP)z2.

Here we have used (5.2) in the last equation. Therefore

VZ1 dzi - (dzlP). (5.3)

Now formula (5.1) follows from (5.3) and the définition of the curvature tensor. D

Proposition 5.2. Let ao (1 + eo)2C(n,a, Q). Here eo,ro,C are the same
constants as in Proposition 4-4- Then for all 0 < îq < vq,

ll^PIUp^aoio1!^!!, (5.4)

Proof. Since (1 - P(F(p))) dWpF 0,

dd,jpFP ¦ dWpF (1 - P(F(p))) V2VptWpF.

By (4.13) and (4/14), \\dyP\\op < aoiQ ^{yl D

Therefore the metric g F*gL2, the metric on fl\ obtained by pulling back
the L2 metric, has bounded sectional curvatures.

To prove the equivariance, we first note:

Lemma 5.3. Let hs(p) be the function defined, in (4-1), and let ip : Q —> Q1 be an
isometric embedding. Then

hs{p). (5.5)

Proof. Since equation (4.1) is invariant under isometry, this follows from the
uniqueness of solutions to (4.1). D

Let (Cl,g) be as before and F : Q\ —> L2(Q) the embedding defined in §4. With
the above lemma, we can now prove

Proposition 5.4. If ip : (Cl,g) —> (Cl',g') is an isometric embedding, then
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is also an isometric embedding

Proof First, we assume ip is actually an isometry Then

where the function

I ß fêhsWip))) ß (^hs(q)) ds

^^(s)(p) ß (-y

Here we have used Lemma 5 3 Since ip is an isometry, a change of coordinates
yields

It follows then that

where we have denoted by (y^1)* the map on L2(Q) induced by rtp~~^ Therefore

iP*F*gL2 (F o iP)*gL2 F*((ip-l)*)*gL2 F*gL2

This proves the equivanance when ip is an isometry Since Q, Q' are both domains
of Rn, the general statement follows by applying the above to ip Q —s- ip(fl) D

Proof of Theorem 1 1 This theorem is a consequence of Proposition 3 1, Lemma
5 1, Proposition 5 2, Proposition 4 3 and using results from [A] or [S], which can be
stated that if the sectional curvature is uniformly bounded, then one can smooth
the metric so that the weak Ck "-norms are uniformly bounded D
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