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The Lojasiewicz exponent of an analytic function at an
isolated zero

Janusz Gwozdziewicz*

Abstract. Let / be a real analytic function defined in a neighborhood of 0 G Kn such that
/—1(0) {0} We describe the smallest possible exponents a, ß, 9 for which we have the
following estimates |/(:c)| > clicl™, |grad/(a;)| > clxl'3, |grad/(a;)| > c\f(x)\s for x near zero
with c > 0 We prove that a ß + 1,0 ß/a Moreover ß N + a/b where 0 < a < b < N"^1
If / is a polynomial then |/(x)| > c|œ|(des /—!) +1 m a small neighborhood of zero
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1. Results

Let / U —> R be an analytic function defined in a neighborhood U of 0 G

Rn Assume that / has an isolated zero at the origin l e /~1(0) l~l W {0} for
some neighborhood W of zero Then also grad/(x) is nonzero for x close to the

origin One of the consequences of the classical Lojasiewicz inequality (see [BM,
Theorem 6 4]) is that there exist constants c, R > 0 and exponents a, ß, 9 such
that |/(x)| > c\x\a, |grad/(x)| > c|x|^, |grad/(x)| > c|/(x)|e for all |x| < R The
aim of this article is a description of the smallest possible exponents for which the
above estimates hold true

Definition 1.1. By the Lojasiewicz exponent io(f,g) for the inequality |/(x)| >
c|g(x)|a we mean the number

mf{ael+ 3c,R>0 |/(x)| > c\g{x)\a V|x| < R}

Definition 1.2. Let f U —> R be an analytic function defined, in an open set
U C Rn By the polar curve Tv in the direction v G R" \ {0} we mean the

1
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If h : (—S, S) —s- Rn is a nonzero analytic mapping then by definition, the order
(at zero) of h, denoted by v{h), is the largest integer k such that t~kh{t) is bounded
near zero. This définition agrees with the classical one for analytic functions and
as we show later can be naturally extended to continuous subanalytic maps.

Our main result is

Theorem 1.3. Let f : U —s- R be an analytic function defined, in some
neighborhood U of 0 G Mn. Assume that / (0) {0}. Then there exists a proper
linear subspace L C Rn such that for every v G R™ \ L there is an analytic curve
7 : (-1,1) -> Tv, 7(0) 0 for which:

(i) the Lojasiewicz exponent o.q for inequality |/(x)| > C|x|a is equal

«0 K/°7)M7)>
(n) the Lojasiewicz exponent ßo for inequality |grad/(x)| > C|x|^ is equal ßo

(in) the Lojasiewicz exponent 0q for inequality |grad/(x)| > C\f(x)\e is equal
6»o i/(grad/o7)/i/(/o7).

Moreover ßo ao — 1, 0q ßo/ao-

The above theorem says that Lojasiewicz exponents uq, ßo, 6q can be computed
using parametrizations of "generic" polar curves. Every polar curve Tv such that
v G Rn \ L is good from this point of view. In particular at least one of curves
rei, Fen (where e1, en is a standard basis of Rn) is good. However the
theorem does not say which one of them.

Example, /(x) x\ +x|+x| for x (xi,x2,x3) G R3. Set L {0} x R2 C R3.

For every v G L, v ^ 0 the polar curve Tv { x G R3 : 3A G R (4xf, 2x2, 2x3)
X(0,V2,v3) } is the straight line in the direction v. Taking the parametrization
7 : (-1,1) -> r„, 7(t) tv we get /(7(t)) |to|2, |7(t)| \tv\. Hence v{f o

1)1^1) 2-

One can show directly that the Lojasiewicz exponent for the inequality |/(x)| >
c\x\a equals 4. Therefore all polar curves Tv where v G L are bad from the point of
view of Theorem 1.3. This example shows that this theorem cannot be improved
by replacing the linear subspace L by a smaller set L' C L.

The idea of using polar curves to compute Lojasiewicz exponents comes from
Teissier [Te]. He has shown a counterpart of Theorem 1.3 in the complex case. If
/ : (Cn,0) —s- (C,0) is a holomorphic function with an isolated singularity at zero
then a "generic complex polar curve" has a parametrization such that the analogue
of parts (ii) and (iii) of Theorem 1.3 hold. There is also a formula 6q /3o/(A) + l)
for Lojasiewicz exponents in complex case.

One may ask — can a version of Theorem 1.3 be formulated for real analytic
functions with an isolated singularity at 0? The following example due to Kuo
shows that we should not expect it.
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Example. Let f(x,y) x3 + 3xy4. The function / has an isolated singularity
at 0. However for all polar curves but one the origin is not an accumulation point
of Tv. Moreover the Lojasiewicz exponents for inequalities |grad/(x)| > c|xp,
|grad/(x)| > c|/(x)|e are ß0 4 and 0O 2/3 respectively so 60 ^ /%/(/% + !)•

The second result of this paper is

Theorem 1.4. Under assumptions and notations of Theorem 1.3, ßo N -\- a/b
where a, 6, N are integers such that 0 < a < b < Nn~

Let us denote Ln the set of the Lojasiewicz exponents for inequalities |/(x)| >
c\x\a where / : (Rn,0) —> (R,0) are analytic functions with an isolated zero. It is

easily seen that L\ is the set of positive integers {1,2,3,...}. The author showed
in [Gw] using Puiseux expansions that L% 2L\ U 2{ N + a/b :0<a<b<N}
{ 2,4, 6,7, 8,8-j,... }. The question, how large are sets Ln for n > 3 remains open.

The last result measeures the growth of polynomial functions.

Theorem 1.5. Let F : Rn -»16e« polynomial function with an isolated zero at
the origin. Then

\F(x)\ > const |x (degF-ir

in a small neighborhood of zero.

2. Proofs

First we extend the définition of order to continuous subanalytic functions. Let
g : [0, e) —s- R be a continuous subanalytic function. Here and subsequently we
assume that g =/= 0 in every neighborhood of zero. Then there exist (see [BoR,
Lemma 3]) a nonnegative rational number v and a continuous function g\ : [0, S] —>

R (0 < ö < e) such that for all t G [0, ö] g\(t) ^ 0 and g(t) tugi(t).
It is obvious that the exponent v is uniquely determined by the function g

(even by a germ of g at zero). We call this number the order (at zero) of g and
will denote it by v{g). We extend the notion of order to subanalytic continuous

maps putting v(4>) v{\4>\) for </> : [0, e) -> Rn.

Property 2.1. Let g,h : [0,e) —s- R be continuous subanalytic functions non-
vanishmg in every neighborhood of zero and let r be a positive rational number.
Then:

(i) v{gr) rv{g), v{gh) v{g) + v(h),
(n) v(g) < v{h) if and only if there exist c, 5 > 0 such that \g(t)\ > c|/i(t)| for

allt G [0,(5],

Proof. The proof of (i) is straightforward. Therefore we only prove (ii). According
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to definition of order there exist S > 0 and continuous functions g\, h\ such that for
all t G [0,(5] h{t) t^h^t), g(t) t"(fl)ffi(t), hx(t) ± 0, 9l(t) ± 0. If v{g) <
v{h) then \g{t)\ > c\h{t)\ for t G [0,min{l, Ö}}, where c info<t<Ä |ffi(*)//ii(*)|.
Conversely, if \g(t)\ > c\h(t)\ for t G [0,(5] then i"(s)-"C0 > c|/ii(t)/gi(t)| in
the interval (0,(5). From this inequality it follows that v{g) — v{h) < 0. Hence

v{g) < v(h). U

Let us recall the classical curve-selection lemma (see [Hi, page 482]

Lemma 2.2. Let A C Rn be a subanalytic set. If 0 G cl(A) then there exists an
analytic curve 7 : (-1,1) -> Rn smc/i i/iai 7(0) 0 and 7((0,1)) C A.

In the following lemma we reformulate the main result of [BoR] in the case of
functions with isolated zeros. Let K denote a closed ball {x G M" : \x\ < r}.

Lemma 2.3. Let /, g : K —> [0, 00) be continuous subanalytic functions such that
/"^O) g'l-iO) {0} and let

K* {xeK:VyeK g{y) g{x) => f{y) > f[x) }.

Then
(1) K* is a subanalytic set, 0 G c\{K* \ {0})

(n) if 7 : — 1,1) —> Rn is an analytic curve such that 7(0) 0, 7((0,1)) C
K* \ {0}, then £0(f, g) v{f o i)lv{g o 7).

Proof. Part (i) of the lemma is proved with all details in [BoR]. Here we present
only the sketch of the proof. All properties of subanalytic sets which we use, can
be found in [BM].

Let A {{x,y) G K x K : g{x) g{y)}, B {{x,y) G K x K : /(*) > f{y)}.
These are subanalytic sets. The set K* equals K \ ir(A D B) where ir(x, y) x
is a projection. The intersection and the complement of subanalytic sets are
subanalytic. Furthermore a projection maps relatively compact subanalytic sets
onto subanalytic sets. Therefore K* is subanalytic.

To show that 0 is an accumulation point of K* it is enough to check that
every ball Ke {x G M" : \x\ < e} (0 < e < r) has a non-empty intersection with
K*\{0}. Set m inî{g(y) : y G K\Ke} and consider the level set L g~1(m/2).
Since L is compact, there exists x G L such that /(#) < f(y) for all y G L. Clearly
x G K* n Ke and x ^ 0.

Proof of (n). Let 7 be an analytic curve from the statement of the lemma. Set

a i/(f o 7)/V(<? o 7). By Property 2.1 (i) we have i/(f 07) v((g o 7)"). Thus
by 2.1 (ii) there are positive constants c, ô such that

/(7(*)) > «/(7Wr fort G [0,<5]. (1)

Since g is continuous, there exists R > 0 such that for all |x| < R g{x) < g(^/(S)).
Fix x £ K with |x| < By continuity of g o 7, there exists £ G [0, ô] such that



368 J. Gwozdziewicz CMH

9(i(t)) 9(x)- % the definition of K* and by (1) we get /(x) > f(i(t)) >
cg(i(t))a =cg(x)a. Therefore

f(x) > cg(x)a for \x\ < R. (2)

To end the proof it is enough to show that a v{fo^)/i/(go^) is the smallest
possible exponent in the Lojasiewicz inequality. It follows from the following claim
applied to the curve 7.

Claim 1. Let </> : (-1,1) -> K be an analytic curve such that </>(0) 0, </> ^ 0. If
f(x) > cg(x)13 in some neighborhood of zero then ß > i/(f o <f>)/i>(g o </>).

Proof of the claim. Under assumptions of Claim 1 there exists t > 0 such that
f{4>{t))>cg(4>(t))ß fortG[0,r]. By Property 2.1 (ii) we have i/(f o </>) <i/((g o 4>)P).

Hence by 2.1 (i) ß > v(f o 4>)Iv(g o 4>). D

Under assumptions of Lemma 2.3 we have

Corollary 2.4. The Lojasiewicz exponent io(f,g) is a positive rational number.

There exists a positive constant C such that |/(x)| > C\g(x)\e°^'9' in a neighborhood

of zero. Furthermore:
(1) for every analytic curve </> : — 1,1) —s- Rn such that (p(0) 0, </> ^ 0 we

have £o{f,g) > v(f o <j>)/v(g o <f,),

(11) there exists an analytic curve 7 : — 1,1) —s- Rn, 7(0) 0, 7 ^ 0 such that

By the curve-selection lemma and part (i) of Lemma 2.3 there exists an analytic
curve 7 satisfying assumptions of part (ii) of Lemma 2.3. This proves (ii). The
rest of Corollary 2.4 follows from inequality (2) and from Claim 1.

Proof of Theorem 1.3. The one-dimensional case, being simple, is left to the
reader. Further we will assume that the function / is defined in a neighborhood U
of 0 G Rn where n > 2. Consider a ball K { x £ Rn : \x\ < e } contained in U.
Since f(x) ^ 0 for x G K \ {0} and K \ {0} is connected, / restricted to K \ {0}
has a constant sign. Without loss of generality we may assume that f(x) > 0 for
all x G K \ {0} (otherwise we replace / by —/).

Let

A={xeK:VyeK \y\ \x\ => f(y) > f(x) }.

Consider the tangent cone C(A) defined by the following condition:
a, G C(A) if and only if there exist sequences xt G A and Xt G M such that
lirrij^oo xt 0 and lirrij^oo \lxl a.

We will check that there exists a G C{A) such that a^0. Take any sequence
xt G A\ {0} converging to zero. Then from the sequence of points (1/|xj|)xj lying
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on the unit sphere one can choose a subsequence convergent to some a, \a\ 1.

Clearly a G C(A).
The linear subspace L appearing in the statement of the theorem is defined as

follows
L {yeRn:VueC(A) (y,u)=0} (3)

Fix v G Rn \ L. By the definition of L there exists u G C{A) such that
(v,u) =/= 0. Choose a constant c > 0 such that |(u,«)| > c|w||m| (e.g. we can take

c=\(v,u)\/(2\v\\u\).
Let us define an open cone C

C={xeRn :\(v,x)\>c\v\\x\}. (4)

Claim 1. A n C is a subanalytic set, 0 G c\{A n C).

Proof of Claim 1. For u G C(A) as above we have u G C. Let xt G A and A, el
be sequences such that lim^oo Xtxt u and lim^oo xt 0. Since C is open,
Xtxt G C for i large enough. Hence xt £ C for sufficiently large i. This proves that
OGcl(AnC).

By Lemma 2.3 the set A is subanalytic. The cone C is also subanalytic (C is

even semialgebraic). Thus A n C as an intersection of subanalytic sets is subanalytic.

The claim follows.
Let us define the new norm in Rn by a formula

||x||=max{|x|,|(V,x)|/cM} (5)

One checks easily that ||x|| > \x\ for x G C and ||x|| |x| otherwise.

Claim 2. 4)

The claim follows from inequalities ||x|| > |x| > c||x|| and from the définition
of the Lojasiewicz exponent.

Consider the following set

B {xeK:VyeK \\y\\ \\x\\ => f(y) > f(x) }.

Claim 3. B \ {0} C T„ n C in some neighborhood of zero.

Proof of Claim 3. This is the key point of the proof of Theorem 1.3. By the
curve-selection lemma and Claim 1 there exists an analytic curve </> : — 1,1) —s- R",
</>(0) 0 such that </>((0,1)) C An C. Since a function / o </> is real analytic, its
derivative has a finite number of zeros in a small neighborhood of zero. Thus for
some 0<(5<l / o </> is strictly increasing in the interval [0,5\.

Set i? \4>{5)\ and consider arbitrary y G B\ {0} such that \\y\\ < R. We shall
check that y eTvC\C.
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By continuity of \4>\ there exists t\ (0 < t\ < S) such that |</>(ti)| ||y||. The
point x\ 4>{t\) belongs to the cone C. Hence \x\\ < \\x\\\.

By continuity of \\<f>\\ there is t2 (0 < *2 < *l) such that \\4>{t2)\\ \xi\. Put
X2 4>{ti)- Since / o </> increases in the interval [0,(5], we conclude that f(x^) <
f{x\). We have also f(y) < f(x^) because y G B and ||x2|| ||y||. Therefore

f(y) < f(xl)- Since x\ G A, this inequality implies that \y\ ^ \x\\ \\y\\. Both
norms of y do not coincide. Thus y G C.

Put r \\y\\. For every x G C such that (v,x) ±rc\v\ we have ||x|| \\y\\
and consequently /(x) > /(y), since y G -B. We see that y is the solution of
the following problem: find x G C satisfying a condition (v,x) ±rc\v\ with the
smallest value of /(x). By the method of Lagrange's multipliers there is a constant
A such that grad/(y) Xv. Therefore y G F^. The claim follows.

Proof of (%). By the curve^selection lemma and Lemma 2.3 there exists an
analytic curve ip : (-1,1) -> Rn, ip(0) 0, ip((0,l)) C B \ {0} such that
4)(/, II II) ^(/ ° V')/i/(llV'll)- Furthermore by Claim 3 we get V((0,r)) cr„nC
for some t, 0 < t < 1. Since Ft, is an analytic set, there exist t\,Q <t\ < t such
that V;((~rljrl)) C F„. Set 7(4) ip(rit). We obtained an analytic curve 7 such
that 7(0) 0, 7((-l, 1)) C r„, and 7((0,1)) cTvnC. From Claim 2 it follows
that ao W, I I) W, II II) "(/ ° 7)Mll7ll) ^(/ ° 7)/^(7)- This ends the
proof of (i).

To finish the proof we shall use two claims.

Claim 4. The function |grad/| has an isolated zero at the origin.

Claim 5. For any analytic curve </> : — 1,1) —> U, </>(0) 0, <f> ^ 0, we have

^(/ ° 4>) > ^(grad/ ° </>) + ^(</>)- For the curve 7 we have

vif ° 7)

We prove these claims later.

Proof of (n). By Claim 4 we may assume (shrinking the ball K if necessary) that
grad/(x) ^ 0 for all x G if \ {0}. Thus, by Corollary 2.4, there exists an analytic
curve <f> : — 1,1) —> if, </>(0) 0, </> 7^ 0 for which ßo i/(giadf o (f))/v{<j>). Using
Claim 5 and Corollary 2.4 again we get

ßo z/(grad/o</>)/V(</>) < v(f o <j>)/v(<j>) - 1 < ao - 1.

For the curve 7 we have

«0 v{f o 7)/V(7) i/(grad/ o 7)/1/(7) + 1 < ßo + 1.

From these inequalities we get ßo z/(grad/ o 7)/V(7) ao — 1.

Proof of (in). By Corollary 2.4 there exists an analytic curve ip : — 1,1) —>

0, V' 7^ 0 for which öo i/(grad/ o \\j)jv{f o i/j). By Claim 5 we have

6»o Kgrad/ o V)M/ o V) < 1 - vW/vU o V) < 1 - l/«o-
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For the curve 7 we have

#0 > Kgrad / o 7)/V(/ 07) !- v{^)/v{f 07) !- l/a0-

Collecting together these inequalities we obtain 6q ^(grad/ o 7)/V(/ 07)
1 - 1/ao ßo/ao.

It remains to prove claims 4 and 5.

Proof of Claim 4- Suppose to the contrary that 0 G cl((grad/)^1(0)\{0}). Then by
the curve-selection lemma there exists an analytic curve </> : — 1,1) —> Rn, </>(0)

0, (j> ^= 0 such that grad/(</>(£)) 0 for £ G (0,1). Since the derivative (/ o </>)'

(grad/ o </>,</>') vanishes in the interval (0,1), /(</>(*)) 0 for t G [0,1). Therefore
0 G clCf-^O) \ {0}) - a contradiction.
Proof of Claim 5. For any analytic function h of positive order, we have i/(h)
v{h') + l. Hence z/(/o</>)-z/(grad/o</>) - z/(</>) v{{f o 4>)') + 1 - */(grad/ o</>) -
{v{4>') + 1) z/(grad/o </>,</>'} — z/(grad/o</>) — v(4>'). Therefore it suffices to prove
inequality

i/(grad / o </>, </>') > i/(grad / o </>) + z/(</>') (6)

and show that when we replace </> by the curve 7 we get equality. The above

inequality is a consequence of the estimate |(grad/ o </>, </>'}| < |grad/ o <j>\\<j>'\ and
Property 2.1.

For the curve 7 we have c|w||7(t)| < \{v^{t))\ < \v\\^(t)\ for t G [0,1) which
shows that v{{v,^)) ^(7). Hence i/((v,i')) i/((v,^)') v{{v,i)) - 1

v{l) ~ v{l')-
Since 7((0,1)) is a subset of the polar curve Tv, grad/(7(t)) is parallel to v for

tG (0,1). Therefore we have |(grad/(7(t)),7'(t))| (|grad/(-y(t))|/|w|)|<w,-y'(*)>I
for £ G [0,1). By Property 2.1 we get i/((grad 707,7'}) i/(grad/o7)+i/((u,7'))
z/(grad/ 07)+ ^(7') which completes the proof of the claim and the proof of the
theorem. D

To prove Theorems 1.4 and 1.5 we need to estimate the growth of a gradient
on polar curves. It is done in Theorem 2.5. We keep notation of Theorem 1.3.

Theorem 2.5. Let f : Rn —s- R be a polynomial function of degree d with an
isolated zero at the origin. Then there exists an analytic curve 7 : — 1,1) —s- R",
7(0) 0 such that: z/(7) < (d - I)""1, Kgrad/ 07) < {d - l)n and ß0

I hope that the above estimates can be improved. In this way we would obtain
sharper versions of Theorems 1.4 and 1.5.

The proof is based on Lemmas 2.6 and 2.8. Let us denote d,J df/dxt.

Lemma 2.6. Let f : U —> R be an analytic function defined, in a neighborhood of
zero U C Rn such that grad/(x) ^ 0 for x G U \ {0} and let L be a proper linear
subspace o/Rn. Then there exists v (v\,. ,vn_i, 1) G R" \ L such that:
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(%) Tv {x G U : (dxf - V1dnf) ¦¦¦ (dn_i/ - vn_!dnf) 0},
(n) the derivatives dx(d\f — v\dnf), dx(dn_\f — vn_\dnf) are linearly

independent for all x G Tv \ {0}.

Proof. Consider the map

G:U\ (dnfrHo) 3x^ (dif(x)/dnf(x),..., dn-if(x)/dnf(x)) G R""1.

The set { (v\,...,un_i) G M""1 : (v\,... ,vn_\, 1) G L} has measure zero in
R""1. By Sard's theorem there exists a regular value v' (v\,... ,vn_i) of G
which belongs to the complement of this set. Set v (v\,... ,vn_i, 1). It is easy
to check that Tv is given by (i) and G~^{v') TV\ {0}. Since v' is a regular value
of G, the derivatives àx(d\f/dnf), dx(dn_if/dnf) are linearly independent
for all x G Tv \ {0}. By the rule of differentiating a quotient and by (i) we get
dx(dtf/dnf) (l/dnf)dx(dj - vtdnf) for i 1,... ,n - 1. Therefore d^/ -
v\dnf), dx(dn_if — vn_\dnf) are also linearly independent. D

Notice that, in fact, we proved that for almost all v G M" (in the sense of
measure theory) either Tv is a one dimensional analytic set or Tv {0}. We show
below that the second possibility cannot occur. This explains why we call the sets

rv polar curves.

Lemma 2.7. Under the assumptions of Theorem 1.3, 0 is an accumulation point
of Tv for every v G Rn \ {0}.

Proof. We can show, using the curve-selection lemma, that for all x sufficiently
close to the origin the vectors grad/(x) and x do not point in opposite directions
(see e.g. proof of Proposition 3.8.8 in [BeR]). Let Sr {x G Rn : \x\ r}
be a sphere of sufficiently small radius. By the previous remark the mapping
H : Sr x [0,1] —s- Si given by

(l-t)grad/(x)+tx
H(x,t) |(l-t)grad/(x)+tx

is well defined. H is a homotopy between Hq(x) grad/(x)/|grad/(x)| and

i?l(x) x/|x|. Hence the mapping Hq has a topological degree 1 and thus is

surjective. Since we have an inclusion Hq {v/\v\) C Tv Pi Sr, the origin is an
accumulation point of Tv. D

Lemma 2.8. Let A C Mn be a real algebraic set given by equations Hi(x)
¦ ¦ ¦ Hn—i{x) 0, where Hi, Hn are polynomials, and let ip : — 1,1) —> A,
ip(0) 0, ip =/= 0 be an analytic curve. Assume that
(i) the derivatives dxHi, dxHn_i are linearly independent for all x G A\ {0}

in a neighborhood of zero,
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(n) Oel" is an isolated point of the set A n { x G Rn : Hn(x) 0 }.
Then there exist an analytic curve 7 : — 1,1) —> A, 7(0) 0 and an analytic
function s, s(0) 0 such that

(in) ip 7 o s in a neighborhood of zero,

M ^)<U:=
(v) Kffn°7)<

Proof Regard Rn as a subset of Cn. Then A Ac DRn where Ac { z G Cn :

H\(z) ••• Hn_i{z) 0}. Let Ac A\\J---\JAS be the decomposition of Ac
into irreducible algebraic components.

Since ^(( — 1,1)) C A, there exists a component C At (1 < i < s) of the set
Ac for which ip(( — l,l)) C C. The component C is a complex algebraic curve.
Indeed by (i) there is a point x tf)(t) (0 < t < 1) for which the derivatives dxi7i,

dxi7n_i are linearly independent. Therefore dime C < n — rank(C, x) <
n — rank(dxi7i,... ,dxi7n_i) 1 (see [Wh]). Since C contains an analytic branch,
dime C 1.

According to Puiseux' theorem (see [Lo, 173-176]) the curve C is in a
neighborhood of zero a finite union of branches. We have C C\ U 71 (-D) U • • • L)^i(D),
where U is a neighborhood of 0 G Cn, _D {t G C : |t| < 1} is a unit disc and

7ï : (-D,0) -^ (C,0) (1 < i < /) are injective holomorphic curves. Moreover,
according to Milnor (see [Mi] remarks after lemma 3.3) we can additionally assume
that for i 1,..., / if %(t) G Rn then tel. The curve ip extends to a local
holomorphic (not necessarily injective) parametrization of one of branches described
above, say 71 (.D). Now it is easily seen that we can put j(t) 71 (t) for t G — 1,1)
and find an analytic substitution s such that ijj(t) 7(s(t)) for small t.

Claim 1. If F G <C[Xi,... ,Xn] is a polynomial for which F 07 ^ 0, then
1/(^07) <(degC)(degF).

Proof. In order to prove the claim we use some intersection theory. Assume that
F is irreducible. Then by [Sh, 190-194] the intersection multiplicity at zero of the
curve C and the hypersurface {F 0} is given by the formula

where jt are injective holomorphic parametrizations of the branches of C at zero.

Hence v{F o 7) < lq{C,{F 0}). By Bezout's theorem lq{C,{F 0}) <
(degC)(degF). Therefore i/(fo7) < (degC)(degF).

If F is a reducible polynomial then the formula v{F o 7) < (deg C) (deg i*1)

follows from inequalities v{F% o 7) < (degC)(degi7'î), where Ft are irreducible
factors of F.

Claim 2. degC < rTT^
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Proof. Let us recall an invariant S of algebraic sets introduced in Lojasiewicz's
book [Lo, 419-420]: Let W W\ U • • • U Ws be a decomposition of an algebraic
set W into irreducible components. Then, by definition 5{W) Ylt=l deg W7»- We

will use the following inequality 5{W l~l V) < ö(W)ö(V) (see [Lo]). Applying this
property to the set Ac we see that deg C < 5{AC) S({Hi 0} n • • • n {ffn_i
o}) < nr^i1 <*({#* °}) < nr^i1 degi^. The ci™ follows.

Proof of (iv). Let L be a linear form such that L07 ^ 0. By Claims 1 and 2

!/(7) < KI07) < (degC)(degL) < EL^

Proof of (v). By Claims 1 and 2 v{Hn o 7) < (deg C)(deg Hn) < Y\"=1 deg Ht.

Proof of Theorem 2.5. Let L C Rn be a proper linear subspace from Theorem 1.3.

By Lemma 2.6 we can take v (v\,...,un_i, 1) G M" \ L such that the polar
curve Tv satisfies conditions (i) and (ii) of 2.6 in a neighborhood of zero. Moreover
there exists an analytic curve ip : — 1,1) —> Tv, tp(O) 0 such that ßo z/(grad/o
W/vty). Put ffi dif - V1dnf, Hn_i an_i/ - vn-!dnf, Hn dnf.
By Lemma 2.8 applied to Tv and ip we see that there exists an analytic curve 7 :

— 1,1) —s- r^ and an analytic substitution s such that ^ 70s in a neighborhood of
zero. Moreover z/(7) < nr^1 deë^ < (d- I)""1 and i/(ff„o7) < ^=1 deg ff» <
(d — l)n. Since ^(V;) v(^/)i>(s) and i/(grad/ o ^) i/(grad/ o 7)z/(s), the
Lojasiewicz exponent ßo equals z/(grad/o7)/i/(7).

A map i? (H\,... ,Hn) is a composition of grad/ with a linear
automorphism. Hence z/(grad/ 07) i>(H o 7). Since H o 7 (0,... ,0, iïn o 7),
i/(grad / o 7) i/(ffn o 7) < (d - l)n. The theorem follows. D

Proof of Theorem 1.4. Let X1/mxM ^e ^e Taylor series at zero of / (/x is the
multi-index). Set F(x) E|M|<a0 Ux^'•

Claim 1. The polynomial F has an isolated zero at the origin. The Lojasiewicz
exponent «o for the inequality |-F(x)| > C|x|a is equal to «o-

Proof of claim. Denote [ao] the integer part of «o and set h f — F. Since the
order of h is greater than or equal to [ao] + 1, we have \h(x)\ < M|x|la°J+1 for
some M > 0 and all sufficiently small \x\. By Corollary 2.4 there exists C > 0

such that |/(x)| > C|x|a° in a neighborhood of zero.
From the above inequalities we get |-F(x)| \f(x) — h(x)\ > |/(x)| — \h(x)\ >

C|x|ao-M|x|[ao]+1 (C-M|x|[a°]+1-a°)|x|a° for small |x|. Since M|x|[a°]+1-a°
< 1/2C for sufficiently small |x|, we have an estimate |-F(a;)| > l/2C|x|a° in a

neighborhood of zero. This proves that the polynomial F has an isolated zero at
the origin and shows that «o < «0- In order to verify that «o < «0 it is sufficient
to change the role of / and F in the above consideration.

By Claim 1, Theorem 2.5 and Theorem 1.3 there exists an analytic curve 7
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for which z/(7) < Nn^x for N [a0] - 1 such that ß0 a0 - 1 a0 - 1

v(gr&dF o 7)/f(7) Therefore ßo is a rational number in the interval [N, N + 1)

with the denominator < Nn~^ D

Proof of Theorem 1 5 It follows from Theorem 2 5 that there exists an analytic
curve 7 such that ßo v(gia,dF o 7)/V(7) and v(gia,dF o 7) < (degF — l)n

Hence/30 < (degF- l)n D
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