
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 74 (1999)

Artikel: On holomorphic forms on compact complex treefolds

Autor: Brunella, Marco

DOI: https://doi.org/10.5169/seals-55805

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 06.02.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-55805
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


© 1999 Birkhauser Verlag, Basel
Comment Math Helv 74 (1999) 642-656
0010-2571/99/040642-15 $ 1 50+0 20/0 I Commentarii Mathematici Helvetici

On holomorphic forms on compact complex threefolds

Marco Brunella

Abstract. We study the structure of holomorphic 1 forms on compact complex threefolds of
positive algebraic dimension We obtain a rather detailed description of integrable 1 forms We
use this result to extend Castelnuovo - De Franchis lemma (as well as Catanese's generalization)
to non-Kahler threefolds
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A very useful tool in the study of Kahler manifolds is the classical Castelnuovo - De
Franchis lemma it says that if w\ and ivy are two linearly independent holomorphic
1-forms on a connected compact Kahler manifold M, which satisfy the collmeanty
relation w\ A ivy 0, then there exists a holomorphic map it M —s- C onto an
algebraic curve C of genus greater or equal than 2 such that w\, ivy are pull-back
by it of two holomorphic 1-forms on C This simple lemma has several nontrivial
consequences on the topology of Kahler manifolds [Cat], their Chern numbers
[Bog] [Miy], and many others things A nice generalization has recently been
found by Catanese [Cat] (and, independently, other mathematicians, see [Cat] for
the references) We state only a particular case, sufficient for our purposes if io\,
LU2 and ^3 are holomorphic 1-forms on a connected compact Kahler manifold M,
such that W1AW2AW3 0 and w\ A W2, W2^W3, W3A w\ are linearly independent,
then there exists a holomorphic map it M —s- S onto a normal algebraic surface
S of Albanese general type such that w\, ivy, cos are pull-back by it of three
holomorphic 1-forms on S We shall recall in section 1 the definition of "variety of
Albanese general type", for the moment we only say that it is one of the possible
higherdimensional generalizations of "curve of genus greater or equal than 2"

These results are based on the closedness of holomorphic forms on compact
Kahler manifolds, in fact, the Kahler assumption is exploited only to ensure that
closedness There are, however, many examples of compact complex non-Kahler
manifolds which support non-closed holomorphic 1-forms the most classical ones

are compact quotients of certain Lie groups [Uel,§17] It is not clear to us if
Castelnuovo - De Franchis - Catanese statement is still true outside the Kahler
world For instance, it is false on algebraic varieties in positive characteristic, and
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it frequently happens that positive characteristic algebraic geometry presents the
same pathologies of non-Kähler complex geometry.

In this paper we shall study the three-dimensional situation (holomorphic 1-

forms on compact surfaces are always closed, by Stokes theorem). In order to
obtain a complete result, we shall need a (unnecessary?) integrability hypothesis:
recall that a 1-form to is said to be integrable if lu A div is identically zero.

Theorem. Let M be a connected compact complex threefold.
1) Ifuj\,LO<2 G Q1(M) are two holomorphic 1-forms such that:

1a) lu\ A du)\ 0;
l.n) lu\ A LV2 0;
l.in) lu\ and LV2 are linearly independent;

then lu\ and ivy are closed. Hence there exists a holomorphic map it : M —s- C
onto an algebraic curve C of genus greater or equal than 2 such that ujt 7r*(i]t)
for suitable r]t G f21(C), i 1,2.
2) If u>i,u>2,u>3 G Q (M) are three holomorphic 1-forms such that:

2a) <jJ\ A du}\ LU2 A dkû2 0;
2At) <jJ\ A (x>2 A (x>3 0;
2.in) lu\ A LU2, W2 A ^3 and u)% A lu\ are linearly independent;

then lü\, LV2 and ^3 are closed. Hence there exists a holomorphic map it : M —s- S
onto a normal algebraic surface S of Albanese general type such that ivt ir*(r]t)
for suitable r\% G Q^-(S), i 1,2,3.

Let us spend some words about the proof. In both cases the threefold M has

some nonconstant meromorphic function, given by a "quotient" of holomorphic
forms. Hence its algebraic dimension [Uel] a(M) is at least 1. If a(M) 3 then
(Moishezon) M is bimeromorphic to a projective threefold and therefore every 1-

form on M is closed. If a(M) 1 or 2 we can efficiently use an algebraic reduction
of M, which is a flbration over a curve or a surface [Uel]. If a(M) 2 then M
may have non-closed 1-forms, but we shall see that they are quite special, and in
particular never integrable. However if a{M) 2 we shall prove the theorem even
without the integrability hypothesis and also in a higherdimensional context. The
difficult case, where integrability will play an important role, is the case a{M) 1,

and in fact our paper is mostly devoted to a rather detailed description of integrable
1-forms on threefolds whose algebraic dimension is equal to 1 (description which

may eventually be useful for other purposes). We also note some point of contact
with [C-P], where the authors study 2-forms on Kahler threefolds with the help of
canonical flbrations; however in our case the difficulties arise from the non-Kähler
setting [Ue2], whereas in [C-P] they have a different nature.

As an application of the theorem we shall prove the

Corollary. Let M be a connected compact complex threefold with dimQ3(M) < 1

and dimQ1(M) — dimQ3(M) > 3. Then M fibers over a curve of genus greater
or equal than 2 or a normal surface of Albanese general type.
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1. Preliminaries and some general results

We shall use in the following the basic properties of algebraic dimension and
algebraic reduction of a compact complex space, which can be found in [Uel,§3,§12].
We only recall that given a connected compact complex manifold M of algebraic

dimension a(M) (by définition, this is the transcendence degree of the field of
meromorphic functions on M, M.{M)) we can construct a modification M -^> M
and a holomorphic map tt : M —> V with connected fibres onto an algebraic manifold

V of dimension a(M), such that M{M) ~ M{M) n*M(V). A similar
construction can be done starting with any algebraically closed subfleld of M.{M),
instead of the full M{M).

A compact complex manifold (or space) M is called Motshezon if a(M)
dim(M). Any Moishezon space is bimeromorphic to a complex projective manifold,
and therefore every holomorphic form on it is closed. This fact can be elementarily
proved by remarking that any fc-form a; on a compact complex space of dimension
(k + 1) is closed (by Stokes theorem applied to the exact and non negative form
div A duj) and by observing that a Moishezon space M contains a lot of compact
complex subspaces, of any dimension (more precisely, given a generic p G M and
a /-subspace E C TpM we can find a /-dimensional compact complex subspace
N C M with peJVand TpN E).

Given a Moishezon space M, we can consider its Albanese map a,M '¦ M —s- Am,
where Am is the Albanese torus of M. Then any holomorphic 1-form on M is the
pull-back by a,M of a unique holomorphic (linear) 1-form on Am- We shall say
that M is of Albanese general type [Cat] if dim(aM(Af dim(M) and cim(M) is

a general type variety (equivalently, by results of Ueno and Kawamata, cim(M) C
Am is not invariant by translations along a nontrivial subtorus of Am)- Remark
that this définition is more restrictive than the one given by Catanese (he requires
only dimaM(M) dim(M) < dim(^M))-

As in [Cat], we shall say that a collection of holomorphic 1-forms io\,..., Wfc_|_i

on M (smooth, connected, compact, n-dimensional) generate a strict k-wedge if:
i) lo\ A A Wfc_|_i 0;

ii) the A;-forms Qj =wiA...Aw3_i Aw^i A Au^i, j l,...,k+l, are linearly
independent.
More explicitely, this means that there are meromorphic functions fi,...,fk &

M{M) suchthat

and {l,/i, ...,/fc} are linearly independent (over C). In particular, each ft is not
a constant and so the algebraic dimension of M is at least 1. We necessarily have
1 < k < n. Ilk I then we are in the setting of Castelnuovo- De Franchis lemma:
two linearly independent 1-forms whose wedge product is identically zero. At the
opposite side, one can show that a Moishezon n-space is of Albanese general type
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if and only if it admits a strict n-wedge [Kaw].
We can now recall Castelnuovo - De Franchis - Catanese lemma. We shall give

a proof slightly different from that of [Cat] in order to see how and where the
closedness hypothesis is really exploited.

Lemma 1 [Cat]. Let M be a connected, compact complex manifold and let w\,...,
^fc+1 be closed 1-forms on M generating a strict k-wedge. Then there exists a

holomorphic map ir : M —> V onto a k-dimensional normal Moishezon space of
Albanese general type such that uil G tt*(Q (V)) for every i 1, ...,k + 1.

Proof The closed 1-forms {uit}*=l generate a singular holomorphic foliation T
on M, given at a generic point by the intersection of the kernels of the 1-forms.
Clearly the codimension of the leaves of T is equal to k. Let M{!F) be the field
of meromorphic functions on M which are constant on the leaves of T. As usual,
we can construct a modification M -^> M and a holomorphic map M -^> V with
connected fibres onto a smooth algebraic variety V such that

where T is the foliation lifted to M.
We claim that / dim(V) is equal to k. Assume by contradiction that / ^ k, i.e.

/ < k. Then the foliation J7, whose leaves are contained in the fibres of tt, restricts
on a generic fibre to a foliation of codimension (k—l) > 0. We can find among the 1-

forms ujt r*cot a collection of (k — 1) 1-forms (say, uj\, ...,£;&_;) whose restrictions
to a generic fibre F generate the foliation P\p (that is, uj\ A A üji.-i\f ^ 0).
Hence for every i k — I + 1, ...,k + 1 the 1-form ôj1\f, which vanishes on the
leaves of J^\f, can be expressed as a linear combination of ùj\\f, ¦¦-,^k-i\F with
meromorphic coefficients. Varying F we find for every i k — l + l,...,k+la,
collection of meromorphic functions flQ G M.{M), j 1, ...,k — I, such that

k-l
v—>

^»Ifibres — / ,/»j(^jlfibres)-

The closedness of ûjl on fibres, i l,...,k + l, implies that

k-l
dfrjlûhres) A (^jlfibres) °

and therefore /^Ißbres ^s constant on the leaves of -F|fibres) that is flQ is constant
on the leaves of T: flQ G J\A{!F). Hence every flQ is also constant on the fibres of

We now look at the cohomology classes [Hi1\f\ € H^(F,C), for F a generic
fibre. Varying F, the class of [ùjt\p] is locally constant (with respect to a local
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trivialization which preserves integral cohomology) because ùjt is closed on M. On
the other hand [cI>i|f], •••, [d'fe—; |_f] are linearly independent because lü\\f, ¦ ¦¦,^k-i\F
are (and because a closed nontrivial holomorphic 1-form on a compact manifold is

never exact, so that the space of closed holomorphic 1-forms injects into the first
cohomology group). From

k-l

we deduce that ftJ are constant on all of M and not only on the fibres of tt.
Finally, by definition of strict A;-wedge we have

fc+1

where f0 G M.{M) and {1, fa,..., fk+i} are linearly independent. Taking the
product with &2A... Aû)fc_;, restricting to fibres and dividing by cùi A... Ac^fc—« Ifibres

we finally obtain
fc+1 k-l

]=k-l+ l t=l

contradicting the linear independence of {l,fk-i+l, •••j/fc+l} because every ftJ is

constant. This proves, as desired, that the dimension of V is equal to k.
As a consequence of this, the foliation T on M coincides with the fibration

tt : M —s- V. Because T on M is defined by closed holomorphic 1-forms and
therefore it is locally defined by holomorphic maps to Cfc, we see that tt descends

to a holomorphic map tt : M —s- V which defines a fibration which coincides with
T. The space V is a normal Moishezon space of dimension k and V —> V is

a modification. The 1-forms io% vanish on the fibres of tt and therefore they are
projectable on V: uj% TT*{ri%), i]t G Q^-(V) (singular fibres give no problem, see for
instance and more generally [Eno, lemma 3.3]). These rjt generate a strict A;-wedge

on V, so that V is of Albanese general type. D

In the previous proof we tried to use as less as possible the closedness of the
holomorphic 1-forms. Remark that the crucial point was to prove that the
functions flQ are constant, and this was done in two steps. As a by-product we can
easily prove the next two lemmata.

Lemma 2. Let M he a connected compact complex manifold of dimension n and let

u>i,..., wn_|_i G Q (M) be generators of a strict n-wedge. Then M is a Moishezon
manifold (and therefore of Albanese general type).
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Proof. Suppose by contradiction that / a(M) < n and take an algebraic reduction

7T : M —s- V, dim(V) /. As in the proof of lemma 1 we choose (n —/) 1-forms

among the ujt (say, u\, ...,û)n_;) whose (n — /)-fold exterior product do not vanish
identically on the fibres of it. Then for every i n — / + 1,..., n + 1 we obtain

^AW2A...A ^n-ilfibres 9t(^l A W2 A A ^n-i Ifibres)

where ^ G A4 (M) is now constant on the fibres simply because A4(M) tt*A4(V).
Even \i ojl/\ijJ2/\.../\ijjn-i is possibly non-closed, we still have that its cohomology

class [ujt A ÔJ2 A A ô;n_;|j?] G Hn~l(F, C) (F a generic fibre) is locally constant:
to see this, take a generic algebraic curve C C V and observe that ùjt A &2 A A

^n-ilTr-i(c) is dosed by Stokes theorem and dim(7r^1(C)) n — I + 1. Hence

every ^ is constant on all of M, and as in the proof of lemma 1 we rapidly arrive
to a contradiction. D

Lemma 3. Let M be a connected compact complex manifold with a(M) dim(M) —

1 and let uj\, Wfc_|_i G Q1(M) be generators of a strict k-wedge. Then dui% 0

for every i 1, ...,k + 1 (and therefore we can apply lemma 1).

Proof.
The generic fibres of an algebraic reduction M -^> V are elliptic curves. If one

of the (Dj does not vanish on a generic fibre then we can work as in the proof of
lemma 2 and we arrive to a contradiction. Hence Wj|fikres 0 for every i, so that
ùjt is projectable on V and therefore closed (again, by [Eno, lemma 3.3], singular
fibres give no problem). D

If dim(M) — a(M) 2 (or more) then the situation is more complicated: it
may happen that every üitAü;j vanishes on the fibres of the algebraic reduction, so

that the arguments of lemma 2 do not work, and at the same time some of the ujt
do not vanish on the fibres, so that we cannot project on V. Moreover, it seems
difficult to analyse the variation of the cohomology class of ujl restricted to fibres.

Returning to the case dim(M) — a{M) 1, we also note the following property
of integrable 1-forms.

Proposition 1. Let M be a connected compact complex manifold with a(M)
dim(Af) — 1. Then any integrable 1-form on M is closed.

Proof. Take an algebraic reduction M -^> V, whose generic fibres are elliptic
curves. Every non-closed 1-form ù G Q1(M) becomes closed when restricted to
any surface 7r~1(C), where C is a generic curve on V. It follows that for generic
p G M the kernel of d& at p contains the vertical direction Tp(-k~^(-k(p))). On
the other hand, for generic p G M the kernel of Co at p do not contain the same
vertical direction, otherwise Co would be projectable on V and therefore closed.
Hence (wAdw)(p) ^ 0. D
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Let us also observe that a manifold M with a{M) dim(M) — 1 > 2 may
possess non-closed (hence non-integrable) 1-forms. For instance, take an algebraic
surface S with a holomorphic 2-form Q ^ 0 whose periods belong to a lattice
Z © tZ C C. Let E be the elliptic curve C/Z © tZ. We can choose an open
covering {Uo} of S such that Q|jy3 dui0, lü3 g Q^t/j), and uj% — lü3 dF%0,

Fl3 G O(U% DUj). Then {Fn + Fjk + Fkt} is a locally constant cocycle which
represents the class of Q in H2(S, C), hence F%3 + F]k + Fkl G Z © tZ for every
i,j,k. We can consider each i7^ as a translation on E and so we can construct
an £?-bundle M over S by glueing the pieces {Uo x £?} via the translations {FtJ}.
The 1-forms uj0 + dt G ^1(fJ x S) glue to a global 1-form uj G Q1(M), whose
differential dui projects on S to Q. The 3-form lu A dui vanishes exactly on the
preimage on M of the zero set of Q.

Looking at the proof of proposition 1 we see that this example is not far from
the general case. On the other hand, a particular case of this construction (S a

complex torus) gives the "solvmanifolds of type 2" [Uel,p.214].
From now on we shall restrict to the three-dimensional situation. If M is a

threefold and a(M) > 2 or k 3 then by the previous results there is nothing
more to do concerning A;-wedges. In the next two sections we shall analyse the
structure of holomorphic 1-forms on threefolds of algebraic dimension 1.

2. Non-closed 1-forms on threefolds with a(M) 1

Let M be a connected compact complex threefold of algebraic dimension equal
to 1. There exists a modification r : M —s- M and a surjective holomorphic map
it : M —s- C onto an algebraic curve C, which induces an isomorphism between
M.{C) and M.{M) (and hence M.{M)). The fibres of tt are connected, and a

generic fibre of tt has non-positive Kodaira dimension [Uel,§12]. There are several

possibilities for such a generic fibre, but in this section we shall prove that the
existence of a non-closed 1-form on M strongly restricts the choice.

Proposition 2. // lu G Q1(M) is not closed then a generic fibre of it is a surface
bimeromorphic to a complex torus.

In order to prove this proposition we shall bound the first Betti number b\ of
the generic fibre of it.

Lemma 4. b\ (generic fibre) > 2.

Proof. If b\ (generic fibre) < 1 then the generic fibre of tt has no holomorphic
1-forms (see for instance the appendix of [Uel] for the rudiments of Kodaira's
classification of surfaces). Hence the restriction of <D r*co to a generic fibre is

identically zero, that is lj is projectable on C and therefore closed, contradiction. D
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Lemma 5 èi (generic fibre) > 4

Proof If èi (generic fibre) 2 or 3 then the generic fibre Ft of it has a one-
dimensional space of holomorphic 1-forms, or equivalently its Albanese torus At is

an elliptic curve over which Ft fibers (with connected fibres) via the Albanese map
at Ft —> At Over a Zariski - open subset Co C C we can glue together these
Albanese ton {At}tec0 and Albanese maps {at}tec0 to obtain an elliptic surface

A -^> Co and a holomorphic map a Mo 7r~1(Co) —> A such that At p~^(t)
and the restriction of a to Ft Tr~^(t) coincides with at, for every t G Co (see for
instance [Cam, lemme 2], the important fact is that the Albanese map is unique
modulo automorphisms of the Albanese torus)

The 1-forin Co r*co restricts on Ft to a 1-forin which is induced by the Albanese

map at and therefore vanishes on the fibres of at That is, w|^ vanishes on

the fibres of a and so it is projectable on A there exists r/ G Q^(A) such that
a*ri ùj\ ,•> We want to prove that r? is closed this fact would be obvious if A
were compact (Stokes) or at least if A were a Zariski - open subset of a compact
surface B such that a Mo —> A extends to a holomorphic map ß M —s- B [Eno,
lemma 3 3] However, we note that the arguments of [Eno] can be applied also to
our noncompact (and perhaps noncompactifiable) situation, in the following way

For any e > 0 (small) let 7e C Co be the boundary of a e-neighbourhood of
C \ Co in C, with respect to any smooth metric on C We have to prove that the
non-negative function

fF(e) / \r] A dr]\ e > 0,

tends to zero as e —> 0, so that by Stokes theorem JAdr]Adi] 0 and hence d,r\ 0

Take a hermitian metric on M (not only Mo) and denote by 0 its hermitian (1,1)-
form Then the non-negative function

G(e) / \ujAdùjA&\ e > 0,

tends to zero as e —> 0, because the volume of 7r~1(7e) tends to zero and uj, 0
are defined on all of M The map 7r~1(7e) ^> P ^7e) is a regular fibration, along
which ùj is projectable to r], we therefore obtain, by Fubmi's theorem,

G(e) > F(e) inf / 0 F(e) inf {Areaior1 (q))}
qep^h^Ja-^q) qep-1^)

But on a compact hermitian manifold the areas of compact complex curves are
uniformly bounded from below by a strictly positive constant, therefore we finally
obtain that F(e) tends to zero, as desired Hence d,r\ 0, dû 0, contradiction
D
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Proof of proposition 2. From the classification of surfaces [Uel, appendix] the only
surfaces whose Kodaira dimension is non-positive and whose first Betti number
is at least 4 are are the surfaces whose a minimal model is a complex torus or a
ruled surface of genus at least 2. But this latter case never appears as a fibre of
an algebraic reduction [Kuh]. D

Remark. There exists another way to see that the generic fibre of tt is not a ruled
surface, of any genus. In that case, kerdû; would define on a Zariski open subset
of M a rational flbration. If ^ is a closed (l,l)-form representing the first Chern
class of M then the integral of ^ over a rational fibre is strictly positive (=2) and
hence J^ dw A dùj A ^ is also strictly positive. But the same integral must be zero
by Stokes theorem. This argument, however, cannot be exploited in the situation
of lemma 5, where kerc&I; defines on Mq an elliptic flbration.

We conclude this section by recalling that there are several examples of compact
complex threefolds of algebraic dimension 1 which possess non-closed 1-forms,
integrable or not. The simplest ones are suspensions of torus automorphisms [G-

V]. Take a 2 x 2 complex matrix A which preserves a lattice F C C2 and has

an eigenvalue A of modulus smaller than 1. Fet T be the complex torus C /F,
over which A acts as a holomorphic diffeomorphism; there exists on T a 1-form
1] ^ 0 such that A*r\ Xrj. Remark that the leaves of the foliation defined by
kerry are directed along the eigenspace of A corresponding to the eigenvalue of
modulus bigger than 1, and arithmetical or dynamical considerations immediately
show that each leaf is dense in T. Fet M be the complex threefold C* x T/(z,p) ~
(X~^-z, A{p)). It is a torus bundle over E C*/z ~ \~^z, its algebraic dimension
is equal to 1, and the bundle projection it : M —s- E coincides with the algebraic
reduction. The 1-form zr/ G Q1(C* x T) quotients to a 1-form w G Q1(M), which
is non-closed, integrable, and moreover satisfies the relation div ß A to, where

1

The determinant of A has necessarily modulus equal to 1, but it can be different
from 1 and even different from any root of 1 [G-V,appendix]. Hence we distinguish
two cases:
1) det A ^ 1: then Q1(M) is bidimensional, spanned by ß and ui;
2) det A 1: then the second eigenvalue of A is A^1 and we can construct a 1-

form u!1 G Q1(M) with the same procedure as before but starting with r/' G Q1(T)
satisfying A*rj! A^ry' and quotienting ^rj' G Q1(C* x T). We obtain du'
—ß A a/, and uj + uj' is not integrable. The space Q1(M) is threedimensional and
spanned by ß, lu and u/. M is a so-called "solvmanifold of type 3" [Uel,p.214].

One can take ramified coverings in order to obtain examples of threefolds flbered
over a curve of higher genus. All these examples are torus bundles, i.e. the
holomorphic type of the fibre is constant, but it should be possible to construct
examples where that holomorphic type is variable.

In the next section we shall see that many features of these examples survive
in the general case.
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3. Integrable 1-forms on threefolds with a(M) 1

We continue with the same assumptions and notations of the previous section, and

moreover we shall assume that to is integrable: to A div 0. Our main result is the
following.

Proposition 3.Ifu>Ç. Q (M) is non-closed and integrable then:

i) there exists ß € Q (C) such that

du 7T* (ß) A ÙJ

n) every fibre F of tt contains an irreducible component Fq such that

^ 0.

Remark. By i) the genus of C is strictly positive, hence the meromorphic map
7T o r"1 : M — — — -^ C is in fact holomorphic and so we can choose M M
[Uel,remark 12.7].

Let us firstly fix the notation. The integrable 1-form lj defines a codimension
one holomorphic foliation T whose singular set Sing{T~) has codimension at least
2 (locally we can write Us fivo with / holomorphic and Zero(ivo) of codimension
at least 2, then T is the foliation generated by lvq and Sing(lF) Zero(ivo)).
Similarly, the 2-form düi defines a one dimensional foliation £, whose singular set

Sing(C) has codimension at least 2. We have, outside the singular sets, C C T.
On the other hand, duj is identically zero on every fibre of it and therefore C is

tangent to the fibres of tt. Neglecting singular sets, this means that the leaves of £
are the "intersections" of the leaves of T and the fibres of tt (at least generically:
certain fibres of tt can be leaves of J7, but a generic fibre is not a leaf of J7, otherwise
lu would be closed).

We know, from proposition 2, that a generic fibre of tt is bimeromorphic to a

complex torus, but of course it can contain exceptional curves. However, as it is

shown in [Ue2,cor. 1.11], these exceptional curves belong to an hypersurface of M
which can be contracted, perhaps after some blow-ups. This operation does not
affect our problem (the new threefold we obtain is still an algebraic reduction of
M, and if the statement of proposition 2 is true for some algebraic reduction then
it is true for every algebraic reduction), and so we may and shall suppose that the
generic fibres of tt are minimal surfaces.

Let us consider now the restriction of w on a generic fibre: it is a holomorphic
1-form which is not identically zero, hence it has no zero at all since the generic
fibre is a torus. This means that T is transverse to the generic fibre, and therefore
the differentiable type (but perhaps not the holomorphic type) of the foliation
induced by T on the generic fibre (that is the foliation C restricted to the generic
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fibre) is constant. For a foliation on a torus given by a holomorphic 1-form there
are two possibilities: either every leaf is compact (an elliptic curve) or no leaf is

compact. These two possibilities are obviously differentiably distinct.

Lemma 6. On the generic fibre of it the foliation induced, by T has no compact
leaf.

Proof. It is a straightforward modification of lemma 5 of the previous section. The
only difference is that instead of taking the Albanese reduction of every generic
fibre we take only the "component" of the Albanese reduction which is obtained
by integrating Co (if, by contradiction, the leaves of the foliation on a generic fibre
were compact then the periods of lj on a generic fibre would be rational). D

In order to prove proposition 3 we will firstly construct a meromorphic 1-form
as in i), and then we shall verify that it is actually holomorphic.

Lemma 7. There exists a meromorphic 1-form ß on C such that dùj ir*(ß) Au).

Proof. Take any non-constant meromorphic function / on M, that is / /o o tt,
/o € M.{C), /o not a constant. Outside the polar set of /, which is a union of
fibres of tt, the 1-form fui is still holomorphic, integrable, and defines the same
foliation as Co. Its differential d(fùj) is still identically zero on fibres, and hence it
defines the same foliation as dû. Therefore d(fùj) gdw for a suitable g G M.{M),
that is

gdùj df A ùj + fdoj

df
du> A u>.g-f

But g go o -K for some go G M.{C), and so we can set

dfo
ß

go- fo'

q.e.d.
We shall compute the residue of ß at every point of C'. Take t G C and set

Ft 7T~ ¦*¦(£). We shall say [C-C] that Ft is T-dicntical if there exists a modification
(composition of blow-ups with smooth centres) M —>¦ M such that Ft m~^{Ft)
(tt o m) (t) is not invariant by the foliation T m*(.F) (more precisely, there
is an irreducible component of Ft which is not invariant by P). Here T is the
codimension one foliation, with codimension two singular set, generated by Co

m*Û! G Q1(M). Remark that dû (tt o m)*(/3) A û. The proof of the next lemma
will distinguish dicritical and non-dicritical case.

Lemma 8. Let t G C.
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i) ß has at t at most a first order pole;
n) Rest/3 > 0;
in) ifRestß 0 (i.e. ß is holomorphic att) then there is an irreducible component
(Ft)o C Ft such that w|(Ft)o jk 0.

Proof. First case: Ft is T-dicntical.
Take a modification M ^X M such that Ft m~^(Ft) contains an irreducible

component (Ft)o which is not jF-invariant. Take a generic point of (Ft)o, where T
is transverse to (Ft)o, and choose local coordinates (x,y,z) centered at that point
and a local coordinate w centered at t G C such that:

1) the projection tt o m is expressed by w zn, where n is the multiplicity of
(£)o;

A

2) T is given by the kernel of dx.
Hence

û h(x,y,z)dx

for a suitable holomorphic function h, and

for a suitable meromorphic function b. From dû (ir o m)*(ß) A a) it easily follows
that h factorizes as h(x,y,z) ho(z)h\(x), where

K(Z) _n-l
ho(z)

nzn-vb{zn).

Clearly this implies that b has at 0 at most a first order pole. Moreover, if ho
vanishes at 0 at order k > 0 (i.e. ho(z) czk + c ^ 0) then

i
Rest/3 - > 0.

n

If Rest/3 0 then k 0, i.e. /io do not vanish on (Ft)o; also /ii do not vanish
identically on (.Ft)o, otherwise, being independent on z, it would vanish everywhere.
Therefore Rest/3 0 is equivalent to û\/p \ ^ 0, and the proof is completed by
observing that the existence of such a component implies that also Ft contains an
irreducible component (Ft)o such that ü)\rFt\Q ^ 0.

Second case: Ft is not T-dicntical.
Up to a base change C —s- C ramified at t we may assume that Ft contains

an irreducible component (Ft)° whose multiplicity is equal to 1 (see for instance
[F-M,p.3]). We choose local coordinates [x,y,z) near a point of that component
such that 7T is given by (x,y, z) \-+ z. Then

Co A(x, y, z)dx + B(x, y, z)dy + (xC\ (x, y, z) + yC2(x, y, z))dz + Co(z)dz
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where A,B,C% are local holomorphic functions. Observe that Co(z)dz is the pull-
back by 7T of a holomorphic 1-form 7 on C (defined on a neighbourhood of t),
and hence Co(z)dz is in fact defined on a full neighbourhood of Ft. Hence the
difference Us — Co(z)dz is also defined on a full neighbourhood of Ft, and so we can
decompose on that neighbourhood

û> û>0 +7T*(7).

The holomorphic 1-form ujq is still integrable, because doj Air*(j) 0, and defines
(near Ft) a codimension one foliation IFq. Moreover lvq and Us coincide when
restricted to fibres, therefore jFo induces on a generic fibre a foliation without
compact leaves.

We claim that Ft is jFo-dicritical. To see this, observe that the curve {x y
0} is tangent to Tq. If Ft were jFo-nondicritical then by [C-C] (see especially part
IV) that curve could be "continued" to a surface S analytic on a neighbourhood
of Ft and tangent to Tq. The intersection of S with a generic fibre would be a

compact analytic curve invariant by jFo, and we said that this cannot happen.
Now we can apply the first part of the proof to jFo (the fact that this foliation

is defined only on a neighbourhood of the fibre is clearly inessential). From

dùjQ düj 7T*(/3) AÔJ 7T*(/3) A (Do

we obtain i) and ii). If Rest/3 0 then there exists (Ft)o C Ft such that ^o\(Ft)o ^
0, but 7T*(7) vanishes on the fibres and so ü\rFt\Q ^ 0. D

Remark. One can try to prove the nondicritical case of lemma 8 by a purely
local argument, as it is done in the dicritical case, avoiding any reference to the
deep theorem of Cano and Cerveau. Near a generic point of (Ft)° we can choose
coordinates [x,y,z) such that lj is expressed by A{x,z)dx + C{x, z)dz and the
projection is still (x,y, z) \-+ z, and then we will find that tt*(/3) is something like
A*~^x dz, but we don't know how to control the term Cx (e.g. why isn't possible
A{x,z) z, C{x,z) 1 + 2x, which would give a negative residue?). A global
argument seems here unavoidable.

Proof of proposition 3.

By lemma 8 the residue of ß at each point of C is real and non negative, but
by the residue theorem ^2teC Rest/3 0, therefore the only possibility is that
Restß 0 for every t G C. Hence, by the same lemma, ß is holomorphic and

every fibre of tt contains an irreducible component over which the 1-form do not
vanish identically. D

We stop here our analysis of integrable 1-forms, even if it is perhaps possible
to obtain further informations concerning the structure of the singular fibres of
it. The interested reader may look at [F-M] for a comprehensive study of singular
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fibres of torus fibrations, and [Ue2] for some patologies specific to the non-Kähler
context. Probably, the presence of an integrable 1-form on the threefold excludes
some of these pathologies; for instance our proposition 2 implies that the direct
image (on C) of the sheaf of 1-forms which vanish on T is trivial, and this fact
should say something about the direct image of the sheaf of relative 1-forms.

4. Proof of the theorem and its corollary

Concerning the proof of the theorem, by the results of section 1 it remains only to
consider the case where a(M) 1.

Case 1. We have uji fw\ for a suitable non-constant / G M.{M), therefore uji is

also integrable. If io\ or uji were not closed (say, <ko\ ^ 0) then from proposition
3.ii we deduce that / (which is constant on the fibres of the algebraic reduction)
has no poles and therefore it is a constant, contradiction.
Case 2. We shall prove that a(M) 1 leads to a contradiction. We have ^3
/1WI + /2W2 for suitable f\, fa G Ai(M), with {1, f\, fa} linearly independent. The
one-dimensional foliation defined by the common kernel of the 2-forms ivt A lu3 is

tangent to the fibres of the algebraic reduction, because the closedness of 2-forms
implies dft A io\ A uji =0, i 1,2. At least one of the 1-forms io\ and uji do not
vanish identically when restricted to fibres (say, wilfibres ^ 0), therefore we can
write

bres)

for suitable meromorphic functions h3, and then we obtain (cf. lemma 1)

H h + h^i-

If du)\ ^ 0 then by proposition 3.ii we deduce that /13 and h% have no poles
and so they are constant, contradicting the linear independence of {1, /1, /2}• If
du)\ 0 we still have the same non-vanishing conclusion of proposition 3.ii, for
cohomological reasons, and therefore the same contradiction. D

Concerning the proof of the corollary, we have either dim Q3 (M) 0, dim Q1 (M)
> 3 or dimQ3(M) 1, dimQ1(M) > 4. In both cases we can find a 3-dimensional

subspace E C Q1(M) mapped to zero by the natural linear map f\ E —> Q3(M).
Because dimQ3(M) < 1, the map EBujt-^ujAduje Q3(M) vanishes on a
(homogeneous) surface S C E, hence we can find a basis wi, ^2,^3 of E with io\ and
u><2 integrable. If io% A lu0 are linearly independent then, by the theorem, M fibers
over a normal algebraic surface of Albanese general type. Otherwise we can find
a bidimensional subspace F C E generated by two 1-forms whose wedge product
vanishes. These 1-forms are necessarily integrable (again by dimQ3(M) < 1) and,
by the theorem, M fibers over an algebraic curve of genus greater or equal than
2. D
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