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Commentarii Mathematici Helvetici

On the dynamics of certain actions of free groups on closed
real analytic manifolds

Michel Belliart

Abstract Let M be a closed connected real analytic manifold; let ¡ be a free group on two
generators The set of analytic actions of ¡ on M endowed with Taken's topology contains a
nonempty open subset whose corresponding actions share three properties: a they have every
orbit dense b they leave invariant no geometric structure on M c any homeomorphism
conjugating two of them is analytic

Mathematics Subject Classi¯cation 2000 37C85 53C24

Keywords Rigidity in¯nitesimal pseudogroups invariant geometric structure

1 Introduction

Let M be a closed connected real analytic manifold Various topologies can be

de¯ned on the group Di® M of its analytic di®eomorphisms; we choose to work
with the so-called \C " topology introduced by Takens See Section 3 for a de¯-
nition of it

Let ¡ be a ¯nitely generated group; let Act ¡; M denote the set of actions

of ¡ on M When studying the dynamical properties of ¡-actions on M it is
not compulsory but customary to grant special attention to those that are open
properties whether they are open by de¯nition or as the result of a theorem Here

we show that when ¡ is a free group on two generators there exists a nonempty
open subset O of Act ¡; M whose elements share two important properties: ¯rstly
they are minimal every orbit dense and even remain so when lifted to the bundle
of jets of coframes of any ¯nite order on M ; secondly they are locally rigid a
homeomorphism of M which conjugates two close enough points of O is a unique

b analytic and c tends to the identity when the two conjugate actions tend to
one another

Let us now provide more precise statements: ¯rst recall that a Morse{Smale
di®eomorphism of M is an f 2 Di® M whose nonwandering set consists of
¯nitely many periodic points each of them hyperbolic; it is also required that
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the invariant manifolds of these periodic points intersect transversely: if W s
®

is
the stable manifold of the periodic point ® if W u

¯ is the unstable manifold of the

periodic point ¯ then W s
® \W u

¯ has dimension dim Ws
®

+ dim W u
¯ ¡ dim M

For any Morse{Smale di®eomorphism f there is a least integer k > 0 such
that every periodic point of fk is a ¯xed point and the map f k is locally
constant; for the sake of simplicity we will call a periodic point of f a sink a
source or a saddle if it is such a ¯xed point of fk what we call \saddles" are

the hyperbolic ¯xed points whose stable and unstable manifolds both have strictly
positive dimension Then if s is a \source" or \sink" of f in our sense its basin
of repulsion or attraction respectively is the set of points x such that f¡kn x
respectively fkn x tends to s when n tends to +1A Morse{Smale di®eomorphism f is called special if any Morse{Smale di®eo-

morphism g close enough to f is linearizable in a neighborhood of each of its sources

and sinks This property is of course devised to be stable; due to Poincar¶e's theo-
rem [2] p 99 it amounts to saying that for any source or sink s of f the jacobian
matrix dfk s belongs to the Poincar¶e domain and is nonresonant so that special
Morse{Smale di®eomorphisms are in fact generic: they form an open and dense

set in the set of all Morse{Smale di®eomorphisms Sternberg [38] which in turn
is open and nonempty in Di® M It is readily seen that the maximal domain on
which the linearization of f can be performed near a source or sink s is the basin
of s; moreover the linearization is unique up to linear coordinate changes

A linear contraction of Rn is a linear map A such that for any vector v the

sequence An v tends to zero; by elementary linear algebra this means that the

spectrum of A lies in the open unit disc in the complex plane and as a consequence

some power Ak of A with k large enough will send the closed unit ball of Rn inside

its interior In Section 6 we de¯ne a conjugacy-invariant dense and open subset
X in the space of linear contractions of Rn; such a subset provides us with yet
another dense and open subset in the space of Morse{Smale di®eomorphisms:

De¯nition 1 1 An admissible di®eomorphism h of M is a special Morse{Smale
di®eomorphism whose jacobian matrix dh s at sinks belongs to X and whose

jacobian matrix at sources has inverse in X

De¯nition 1 2 Two admissible maps f and g are in general position if:

{ For any source or sink s of f the image g s of s by g lies in the basin of s and
the 3-jet of g at s is in \general position" in the linearizing chart around s i e

it belongs to some Zariski-open subset invariant by linear conjugacy which
remains to be described in the space of all 3-jets

{ For any saddle ¯ of f if any g ¯ is outside the closed subset of M which
is the union of all ¯xed points of f and invariant manifolds W s

i ; W u
i of its

saddle-points

This notion is clearly stable under C3 perturbations being admissible is a C1-
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stable property transversality of g ¯ to the W s
i and Wu

i also is and the genericity
condition on the 3-jet of g is by essence C3-stable

In the following theorems we let ¡ denote the free group on two letters a; b

An element of Act ¡; M is de¯ned by the images ½ a f and ½ b g of a
and b; we assume that f and g are admissible close enough to one another and in
general position

Theorem A Let D be a domain in M and let Á be an analytic map from D to
M Let m be any point of D Then there is a neighborhood U of m in D and a
sequence °n 2 ¡ such that ½ °n tends to Á on U in C topology

Corollary B minimality Let Jk M k 2 N be the bundle of k-jets of coframes

on M see Section 4 ; then the natural lift of ½ to Jk M is for any k a minimal
action in particular ½ is a minimal action on J0 M M As a consequence

there exists no nontrivial ½ ¡ -invariant geometric structure on M see Section 4

Theorem C rigidity Let ½0 2 Act ¡; M be close enough ½ Then the set
Hom ½0; ½ of homeomorphisms of M conjugating ½0 to ½ is either empty or a
singleton and in the latter case its only element belongs to Di® M

Let us now consider the meaning of these theorems The part of dynamical
systems theory which studies actions of ¯nitely presented groups on closed man-
ifolds is of course very wide and abundant in interesting results; certain classes

of groups naturally arise: ¯rst the abelian ones starting with Z whose actions

are \classical" dynamical systems with discrete time ¯rst studied as a whole by
N Koppel in her thesis [26] and the object of many works since then; the class of
abelian groups admits the successive classical generalizations nilpotent solvable
and amenable Opposite to these are the lattices of semi-simple Lie groups which
always contain free nonabelian groups and have also been the object of a wide

research activity Finally it seems to us that nonabelian free groups form a very
natural class to look at Now amenable groups preserve measures and thus yield
to the apparatus of ergodic theory while lattices in semisimple Lie groups of higher
rank seem metaphorically to \remember" their noble origin by not acting will-
ingly on manifolds that are too low in dimension e g for them see [10] or [11]
amongst others Our philosophy is then that free groups again metaphorically
speaking may not be bound to obey any dynamic rule theorem A corollary B
nor may they bend easily theorem C The moral of these results is in our mind
that free groups are up to anything and their dynamical study is a desperate one

Let us have a closer look at theorem A and its two corollaries As one knows at
a time when \dynamical system" meant \hamiltonian dynamical system" the the-
ory of those was mostly concerned with their integration { this meaning roughly
the quest for su±ciently many ¯rst integrals for a given system as in the construc-
tion of canonical action-angle coordinates for the so-called completely integrable
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dynamical systems As Poincar¶e taught us this procedure will fail for generic
systems not only because their ¯rst integrals cannot be explicited in the sense

of di®erential Galois theory but because there are not in general enough ¯rst
integrals The notion of dynamical system then slowly begun to encompass actions

of groups other than R or Z
on manifolds that were not as a rule equipped with

a riemannian symplectic or contact structure and the theory of foliations and
pseudogroups on these as well Many famous researchers amongst whom Stephen
Smale [37] Section 4 pointed out the necessity of systematically studying the

dynamics of Lie group actions on abstract manifolds; in that wide context ¯rst in-
tegrals are scarce and we have to look for something else: indeed most interesting
systems are topologically transitive one orbit is dense or even minimal every
orbit dense Here are some classical examples of transitive systems: Anosov
di®eomorphisms of tori some fuchsian actions on the circle linear °ows on tori
with generic angles geodesic °ows on compact negatively curved surfaces Notice

that all these examples but the third are structurally stable Here are less classi-
cal interesting examples of minimal dynamics our list surely being by no means

complete: ¯rst Hector showed that if a subgroup of Di® S1 acts with no global
¯xed point it has dense orbits unless it is cyclic unpublished ; before that he had
described in [19] minimal C1 foliations of R3 with all leaves transverse to the ver-
ticals but these cannot be C by a theorem of Hae°iger Then there is a theorem
of Duminy stating that there is a neighborhood of the identity in Di®2 S1 such
that the group generated by any part of it either has a ¯nite orbit or every orbit
dense; since any two generic elements of Di®2 S1 are Morse{Smale with disjoint
nonwandering sets this gives the minimality of a generic free subgroup of Di®2 S1

having at least two generators The theorem of Duminy is also unpublished but
has been improved in the analytic case by Ghys [11] Finally in the neighbouring

¯eld of pseudogroup actions Nakai [32] showed that a generic nonsolvable pseu-
dosubgroup of Di® C; 0 had all orbits dense near the origin thus improving an
older result by Scherbakhov on the same lines; in [4] it was shown that this density
also held on the bundle of k-jets of invertible holomorphic functions for any k a
fact that was probably known to Nakai In the neighbouring ¯eld of foliations

one can but think of Il'yashenko's conjecture which in dimension n 2 becomes

Il'yashenko's theorem stating that on C2 a polynomial ordinary di®erential equa-

tion with degree at least two which leaves invariant the line at in¯nity has every
regular integral curve dense for a still concise but more precise survey of these

matters we immodestly refer the reader to the introduction of our previous work
[5] which deals with a multidimensional version of [4]

Let ½ be an action of ¡ on M A ¯rst integral for ½ is a map from M to R
which is invariant under ½; in applications to physics this corresponds to scalar
invariants If we wish to take other types of invariants into account e g tensor
¯elds we should replace the notion of a map M R by that of a section M E
where E ³ M is some ¯bre bundle whose nature depends on the problem under
consideration; then for this section to be invariant or rather for the notion of an
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invariant section to mean something at all it is necessary that the action of ¡ on
M lifts to E in some more or less canonical way Consider then the case when E
has the bundle of k-jets of coframes as its associated principal bundle see Section
3 for a lengthier explanation : our requirement of canonical extensibility of the

action is met and we are endowed with a notion of generalized ¯rst integral of the

uttermost generality But in view of the second assertion of corollary B this notion
is still insu±cient to apply to general two-generators actions Now if this part of
corollary B was our sole result it wouldn't come as a big surprise since a generic
Morse{Smale di®eomorphism already preserves no locally homogeneous geometric
structure; but what makes it worth its salt is that usually the rigidity property of
theorem C is linked with the existence of one type or other of invariant geometric
structure; let us provide a small list of examples: di®eomorphisms of the circle
having an irrational diophantine rotation number preserve a smooth metric by the

famous theorem [20] of Herman; fuchsian groups by de¯nition preserve a projective

structure see [12] ; also notice that in the neighboring context of foliations the

Elkacimi{Nicolau examples of C1-stable foliations cf [8] are transversely a±ne

and the so-called \compact foliations" of [9] are transversely riemannian by [36]
Talking of rigidity leads us to having a closer look at theorem C It's what we

call a rigidity result: any conjugacy between two of the objects under consideration
here the dynamics of a free group is analytic; moreover in many important cases

the space of such conjugacies is a homogeneous space of a Lie group here a trivial
Lie group Such results abound in the literature; we can but think to the following
one due to Nakai [33] which can be seen as a geometrico-di®erential generalization
of the so-called fundamental theorem of a±ne geometry:

Theorem Let F
k
i i 1; 2; k 1; : : : ; n + 1 be two families of n + 1 transverse

analytic foliations of codimension one in Cn this is what one calls an n+1-web in
Cn If some homeomorphism c sends F

k
1 to F

k
2 for all k then c is real analytic;

if nonempty the space of such homeomorphisms identi¯es in a natural way with a
homogeneous space of some well-de¯ned solvable Lie group of dimension · n + 1

Finally if for any triple j; k; l of distinct indexes the 3-web induced by Fj
1 F

k
1 and

F l
1

on the intersection of the remaining F
m
1 m 2 fj; k; lg is non-hexagonal then

c is holomorphic or antiholomorphic as well

Readers interested in this kind of results should consult Nakai's survey in [40]
In our case rigidity comes from the strong interaction between the dynamics of f
and g which themselves are far from rigid: each of them is structurally stable but
their space of analytic deformations may be expected to have in¯nite dimension
due to the existence of Mather's invariant as happens for Morse di®eomorphisms

of the circle
Recently several papers appeared on the subject of rigid actions in our sense

of this word the word \rigid" is quite fashionable and has received many di®erent
de¯nitions some of them quite formal \rigid geometric structure" Gromov and
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some quite not; many being de¯nitely remote from the common meaning of the

word: \de¯cient in or devoid of °exibility" according to [39] We will now provide

a short list First the papers of Nakai and Il'yashenko already mentioned do not
only prove the minimality of the pseudogroup or foliation under consideration
but its rigidity as well: a conjugacy between two pseudosubgroups of Di® C; 0

is holomorphic as soon as those pseudosubgroups are nonsolvable; a conjugacy
between generic holomorphic polynomial foliations of C2 which leave the line at
in¯nity invariant is transversely holomorphic These results have led to various

investigations; in [5] the rigidity of generic pseudogroups of Di® Cn; 0 generated
by two generators close to the identity is shown while in [29] it is shown that
the set of rigid foliations of CPn has nonempty interior Also inspired by Nakai's
methods is the theorem of Rebelo [34] stating that a generic group of analytic
transformations of the circle is rigid:

Theorem Let ¡ be a nonsolvable subgroup of Di® S1 with a ¯nite number of
generators close enough to the identity Then any topological conjugacy of ¡ to
another such group is analytic except perhaps at the points of a ¯nite ¡-invariant
set

The assumption of proximity made in this theorem ours and various others

as Duminy's quoted above is a rather natural one when studying actions of free

groups were it not made groups of Schottky type would arise and these do not
behave rigidly On the contrary if the groups studied possess many relators e g
many commuting elements as is the case for SL n; Z when n > 2 then rigidity
may arise without any proximity-to-the-identity assumption: we can quote for
instance [22] [24] or [12] which respectively show the rigidity of SL n;Z -actions

on spheres or on tori and that of certain fuchsian actions on the circle All in all
actions generated by small generators and actions of semisimple Lie group lattices

cover most of the rigidity results for countable groups

Then some rigidity results have been obtained for actions of connected groups;
being not interested with them in this paper we content ourselves with quoting

the two main references [13] and [15] the latter containing extensive bibliography
on the subject Finally we should mention results of rigidity for real codimension
one foliations; [31] more or less extends [32] to the real analytic context while in
[14] it is shown that a C1 conjugacy between Cr foliations r ¸ 2 is automatically
transversely Cr along the noncompact leaves The foliations of [9] and [8] already
quoted are not only rigid but C1-stable smoothly conjugated to all their
neighbours This allows statements in the shape of implicit functions theorems

and indeed the use of such theorems in the proof via K A M theory : \there

exists a neighborhood U of the identity map in Di® M a neighborhood V of F
and a continuous map Á from V to U such that for all F 0 2 V the di®eomorphism
Á F 0 conjugates F 0 to F" The theorem of Gomez{Mont [16] may also be viewed
as a rigidity theorem: it states that if a holomorphic deformation of a generic
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polynomial di®erential equation on Cn is transversely holomorphically trivial then
it will also be globally holomorphically trivial which is rather the spirit of our
notion of rigidity conjugacies are smoother than expected

Finally notice that the distinction between the discrete group actions con-
nected group actions and foliations described above is formal: one has e g

Theorem [12] Let ¡ be the fundamental group of a compact surface with genus

g ¸ 2 let © be a C1 action of ¡ on the circle and assume its Euler number is
2g ¡ 2 Then there is a C1 conjugacy from © ¡ to a group of homographies

Through the well-known suspension procedure one can associate to © a folia-
tion of a certain circle-bundle on the surface whose fundamental group is ¡ and
this foliation is rigid as a consequence of Ghys's theorem Then it so happens that
the a±ne group of the real line acts along this foliation's leaves and this action is
also rigid So the above result by E Ghys competes in all three categories

A motivation for our theorems lies in [5] and [11]: in the spirit of the latter
and with the methods of the ¯rst of these papers we wished to show that the

dynamics generated by two generic di®eomorphisms of any manifold was rigid;
however we had to introduce certain additional assumptions the strongest being

that one of the di®eomorphisms was Morse{Smale Then the existence of things

like Schottky groups induced us as in [5] to use \small" generators The minimal-
ity of the dynamics on every bundle of jets of coframes and the subsequent lack of
an interesting invariant geometric structure came as byproducts of the method of
proof as in [4] and [5]

The whole purpose of this paper is to show theorems A and C; the fact that
theorem A implies corollary B is obvious from the de¯nitions given in Section 4
To conclude this introduction we remark that we work with a free group on two
generators only for the sake of simplicity because our theorem holds in fact for
any ¯nitely generated group ¡ possessing such a free group as a quotient as the

reader will surely grant after reading the proofs; another remark is that as already
said the technique of suspension would allow us to translate our de¯nitions and
theorems in the language of foliation theory; we haven't wished to do so because

this paper is long enough as it is and { contrarily to what happens in [12] { this
translation procedure yields nothing really interesting

Acknowledgments I thank my colleague and friend Y Hantout for the interest
he showed in my work I am also grateful to I Liousse F Gautero and E Ghys

for moral support and again to Ghys for many interesting remarks
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2 Contents

The oncoming notation will serve throughout this paper Let ½ be an element of
Act ¡; M ; let ¤ denote the pseudogroup generated by ½ ¡ on M and following
P Libermann associate to ¤ its in¯nitesimal pseudogroup g¤ which is a sheaf
of Lie algebras on M see Section 5 for the de¯nitions We let f and g be the

images in Di® M of the generators of ¡ The rest of this paper consists of 6
paragraphs In Section 3 we recall the de¯nition of the C topology; in Section 4
we recall what a geometric structure is In Section 5 we de¯ne g¤ and recall a few
of its classical properties The original part of this paper is contained in Sections

6-7 In Section 6 we give su±cient conditions for g¤ not to vanish at special points

Then in Section 7 we give other conditions under which the germ of g¤ at special
points must either vanish or contain every germ of analytic vector ¯eld There is
some redundance between Sections 6 and 7 because we wished to make them as

independent as possible; Section 6 relies mostly on dynamical arguments whereas

Section 7 is of a more analytic nature In Section 8 we prove theorems A and C
then we ask ourselves a few natural questions on possible extensions of our results

3 The analytic topology

Let M be a closed connected real analytic manifold We identify M with the

zero section of both its tangent space TM and the complexi¯ed tangent space

TCM TM  C; then we ¯rst consider an analytic embedding ¼ of M in some

RN this will exist if N is large enough as a consequence of Morrey's analytic
version of Whitney's theorem; see [17] for a proof Since M is compact the

following construction will not depend essentially on ¼: thanks to an auxiliary
riemannian metric we construct the exponential map exp : TM M where TM
is the tangent bundle of M ; then we compose with ¼ and extend the resulting map
holomorphically along the ¯bers of TM M to get a map Á from a neighborhood
W of M in TCM to CN which is holomorphic along the ¯bers of W M By
construction the real tangent space to Á W is in fact a complex space at every
point this is because the exponential is locally surjective For the same reason
¼ M ½ Á W So if W is small enough the image of W is a smooth complex
submanifold MC of CN having complex dimension dim M and admitting M as

a Lagrangian submanifold We then notice that any analytic di®eomorphism of
M extends to some neighborhood of M in MC as a map with values in some

other such neighborhood; we de¯ne W" as the tubular neighborhood of M in MC

having diameter " we let U" be the subset of Á 2 Di® M which extend at
least to W" and endow U" with the topology of uniform convergence on compact
subsets of W" Since Di® M is the union of all U" and the inclusion U" ½ U±

for " > ± is obviously continuous we can endow Di® M with the union of the

topologies de¯ned on each U" It is not too di±cult to check that this topology is
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compatible with the group structure It is strictly contained in the C1 topology
is not metrizable but has the Baire property; it was recently put to good use in
dynamical system theory by several authors see e g [35] [11] or [6] and compare

[20] p 14 footnote

4 Invariant geometric structures

A subject of outstanding interest in the literature is that of a geometric structure
invariant by a given group of transformations Already present at least implic-
itly in early work of Lie and Cartan this notion was thoroughly formalized by
Ehresman in the middle of the twentieth century then systematically studied in
the subsequent years by various authors; one may consult [3] chap 6 Recently
Gromov achieved to prove astounding results in this domain; e g his celebrated

\dense-orbit" theorem [18] Let us again recall a few basic de¯nitions First a

k-jet of coframes on M with base-point m 2 M is the k-jet of a germ of invertible
analytic transformation between pointed analytic spaces with source M;m and
target Rn; 0 with n dim M The collection Jk M;m of all k-jets of coframes

with the same base-point m is an analytic manifold; indeed let Gk denote the set
of vector-valued polynomial functions of degree · k in n variables with vanishing
constant parts and invertible Jacobian matrix at 0: then the rule of composition
for kth-order Taylor polynomials makes Gk into a real algebraic group this group
acts on Jk M; m by composition on the right and the resulting action is free and
transitive; thus one sees that the collection Jk M of all the Jk M; m is endowed
with the structure of an analytic Gk-principal ¯ber bundle

De¯nition 4 1 Let X be a Hausdor® space and let ¾ be any continuous Gk-action
on X Then a geometric structure of type X; ¾ is a section of the X-bundle with
base M and group Gk associated to Jk M

For instance a vector ¯eld on M is a geometric structure of type Rn; ¾ with
¾ the usual action of G1 GL n; R on Rn More generally any tensor ¯eld
is a geometric structure A geometric structure obtained by taking for X; ¾ a
homogeneous space Gk H of Gk with its natural Gk-action by left translations is
called an H-structure see [25]; e g a riemannian metric is an O n -structure

Since Gk+1 is for any k an extension of Gk a geometric structure with group
Gk will also be a geometric structure with group Gk+l for any integer l This calls
for another de¯nition: the order of a geometric structure s is the least integer k
such that ¾ factors through Gk when restricted to the image of s in X

The action of Di® M on M lifts naturally to Jk M for any k Therefore

given any Gk-space X; ¾ and any subgroup ¤ of Di® M there will be a natural
action of ¤ on X £ Jk M namely the product of the trivial action on X with
the lift of ¤ Assume there is a geometric structure s of type X; ¾ on M : then
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due to de¯nition 4 1 s can be seen as a Gk-equivariant morphism from Jk M
to X and may or may not be invariant by the aforementioned lifted ¤-action
We can therefore speak of ¤-invariant geometric structures of type X; ¾ for any
given ¤ X and ¾ When studying the dynamics of ¤ it is a very natural question
to search for such invariant structures; one should then note that when ¾ is the

trivial morphism geometric structures of type X; ¾ either ¤-invariant or not
will necessarily exist on M have order zero and amount to sections of the trivial
bundle X £ M ; amongst those the invariant ones may be thought of as ¯rst
integrals of ½ with values in X By analogy a geometric structure of order k may
be thought of as a Gk-equivariant ¯rst integral with values in X of the lifted action
of ¤ to Jk M Constant ¯rst integrals of dynamical systems are of no interest
at all in the study of these systems so we de¯ne trivial geometric structures to
be those which consist of a constant map These de¯nitions make it clear what
corollary B means and at the same time show it to be a direct consequence of
theorem A

5 In¯nitesimal pseudogroups

We let G denote the pseudogroup of all analytic di®eomorphisms from an open set
of M to another; if f 2 G has U as its domain we write f 2 G U thus keeping

in mind the natural structure of presheaf on G Similarly we let g U denote the

Lie algebra of all analytic vector ¯elds on U and write g for the corresponding
sheaf of Lie algebras on M We endow both G U and g U with the C topology
notice that we thus use the sheaf structure on g U but not the sheaf topology

for which ¯bers would be discrete instead of contractible Given a pseudogroup
¤ on M we let G¤ denote the \closure" of ¤ in G; thus an element g of G U
belongs to G¤ U if for any x 2 U there is a neighborhood V of x in U on which
g is the limit in G V and for the C topology 1 of some sequence of elements of
¤ V

We now quickly review some well known facts about the link between pseu-
dogroup subpresheaves of G and Lie algebras subsheaves of g Consider ¯rst some

Lie algebras subsheaf h of g Given any nonempty open subset U of M and any
section X of h over U we can de¯ne the pseudo°ow Át

X of X in the usual way:
precisely if K ½ U is compact there is a maximal T T X; K 2]0; +1] such
that any point k 2 K has its X-trajectory well de¯ned for all times t 2 [0; T [; in
this case the point of this trajectory corresponding to time t is denoted by Át

X k
just as in the case where X 2 g M is a global ¯eld and T M +1 One may
then de¯ne the pseudogroup Gh of h as the closure in G of the pseudosubgroup
generated by all the elements of all the pseodo°ows Át

X with X 2 h

Conversely consider some pseudosubgroup ¤ of G; given an open set U de¯ne

g0
¤ U as the set of all vector ¯elds X 2 g U such that for any compact K ½ U and

1 From now on we will generally omit the precision \in C topology" when referring to G or g
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any t < T X; K there exists some neighborhood UK of K in U and some sequence

gk 2 ¤ Uk which converges to Át
X on K This provides us with a presheaf that

needs not yet be a sheaf because if X is in g0
¤ U as the \limit" of a sequence gn

if X 0 is in g0
¤ U 0 as the \limit" of another sequence g

0n
one may be able to glue

X to X0 on U [U 0 without managing to glue the gn to the g
0n

Anyway we make

g0
¤ into a sheaf g¤ in the usual way and following P Libermann [28] call g¤ the

in¯nitesimal pseudogroup of ¤

A priori g¤ is no more than a sheaf of subsets of g; it turns out that g¤ is in fact
a subsheaf of Lie algebras of g Moreover g¤ U is closed in g U for all U These

facts are fairly standard; one can ¯nd their proof in [4] proposition 3 it is given
there in the holomorphic case but extends nicely to our situation due to our use of
the convenient C topology The link between g¤ and the geometric structures

¤ can preserve is classical matter; see [25] chap I Section 8 and the references

therein The following very useful facts are obvious from the de¯nitions

Proposition 5 1 One has of course Gg G and gG g

Proposition 5 2 1 Let ° belong to G¤ U and X belong to g¤ U : then
°¤ X belongs to g¤ ° U 2 Let X belong to g¤ U let V be an open subset
of U on which Á1

X is de¯ned: then Á1
X belongs to G¤ V

The following proposition expresses rigorously the intuitive fact that the larger
g¤ is the larger the ¤-orbits and therefore the smaller the set of ¤-invariant
geometric structures must be see [25] or [4] :

Proposition 5 3 Let U be open in M and let X belong to g¤ U Then 1 The

trace on U of the closure of any ¤-orbit meeting U is saturated by the pseudo°ow
of X 2 The restriction to U of a ¤-invariant geometric structure must also be

X-invariant

Let m belong to M Consider the natural evaluation morphism which to any
germ X 2 g¤ m associates the value X m of this germ at m This is a linear
map from g¤ m to the tangent space TmM of M at m; its image is therefore

generated by the image of ¯nitely many elements of g¤ and in fact at most n
of them These elements have general position at m and therefore have general
position as well on all of some neighborhood of m This shows that the dimension
d¤ m of g¤ m de¯ned as that of its evaluation at m can only increase locally
Therefore the level-sets of d¤ m induce a strati¯cation of M :

M0 ½ ¢ ¢ ¢ ½ Mk M k 2 N; 0 · k · n 1

with each Mi¡1 if any closed in Mi Recall Nagano's theorem [30]:

Theorem 5 4 Let m be a point in M Then there is a real analytic manifold
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L m and an analytic immersion from L m to M which is g¤-invariant and has

dimension d¤ m This manifold is characterized as the set of points m0 of M that
are linked to m by a piecewise analytic curve whose segments are integral arcs of
elements of g¤

We can think of the collection F of manifolds L m as a singular foliation on
M There are two drawbacks to this approach: ¯rst in many interesting cases F
will turn out to be the trivial zero-dimensional foliation; and secondly if F is not
a regular foliation the strati¯cation 1 of M by the dimensions of leaves might
be awful To see that pick a nonempty open subset U of M and let ¤ be the

pseudogroup generated on M by the collection of analytic maps whose domain
and target both lie within U : then in 1 one has k 1 M0 M ¡ U g¤ f0g
on M0 and g¤ g on M ¡M0 Worse examples can be readily constructed e g
by taking products of copies of this one Still not everything is possible:

Proposition 5 5 Let m be a point in M If its orbit ¤:m is closed then m belongs

to M0 and d¤ m 0 If it is dense then either k 0 in 1 or m lies outside

Mk¡1 In particular if ¤ acts minimally on M then k 0 and F is a regular
foliation

Proof The set ¤:m is both countable and dense in the orbit of m So if ¤:m is
closed then d¤ m 0 which forces m to lie in M0 If k > 0 and m is in Mk¡1

then the orbit of m belongs to a proper closed subset of M so it cannot be dense

¤

To end this paragraph we describe two interesting examples of foliations F
corresponding to minimal actions on the torus M R2 Z2

Example 5 6 Identify M with the product of two copies P1; P2 of RP1 Let Gi
i 1; 2 be the projective group of Pi and G G1 £G2 act on M by the product

action Finally let ¤ ¡1 £ ¡2 with ¡1 a lattice in G1 and ¡2 a dense subgroup
in G2 Then F is the vertical foliation given by dx1 0 and g¤ is the sheaf of
local sections of the Lie algebra of G2 This F has all leaves closed

Example 5 7 Let X be a nowhere vanishing ¯eld with dense orbits on M Let f
and g be respectively Áa

X and Áb
X with a; b 2 R¡f0g and a

b 2 Q Then obviously X
is a global section of g¤ On the other hand if some sequence ¸n in ¤ tends to some

¯eld Y on the domain U then since f¤X X g
¤X X and ¸n is a word in f and

g we have [X; Y ] 0; moreover ¸n ± Át
X Át

X ±¸n for all t 2 R which shows that
¸n converges on an X-invariant domain therefore on all of M Now according to
Arnol'd [1] there is a di®eomorphism Á of R Z whose centralizer in Di® R Z is
the group Á spans Consider the constant ¯eld X 0 0; 1 on M 0 R Z £ [0; 1]
and glue the boundary components of M 0 by identifying x; 0 with Á x ; 1 ; the
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obtained manifold is di®eomorphic to M In the previous discussion take for X
the vector ¯eld induced by X0 on M Then the symmetry group of X is Át

X by
construction so that d¤ 1 and F is a codimension-one minimal foliation

6 Construction of nontrivial elements of g¤

To construct elements of g¤ one may rely on Euler's method of polygonal approx-
imations Endow M with some analytic riemannian metric As is well known
since M is compact there is some " > 0 such that the exponential map is a local
di®eomorphism when restricted to the bundle of tangent disks of radii " on M
This means that if f is an element of Di® M which is uniformly close enough to
the identity then there will exist an analytic vector ¯eld Xf on M uniformly close

to the zero ¯eld depending analytically on f uniquely de¯ned by the requirement
of its proximity to zero and the fact that for every m f m is the time-one point of
the parametrized geodesic curve de¯ned by ° 0 m _° 0 X m and Ä° 0 0

We might write informally Xf m f m ¡m or f m m + Xf m

Proposition 6 1 Let ¸k be a sequence of elements in ¤ Assume ¸k tends to
the identity in G¤ U for some nonempty open subset U of M Write Xk m
¸k m ¡ m and assume that there is some sequence pk of integers which tends to
+1 and is such that pkXk tends to some vector ¯eld X 2 g U Then X belongs

to g¤ U In addition for any real number r such that exp rX is de¯ned at least
somewhere in U this map will coincide on its whole domain of de¯nition with the

limit of the sequence ¸[pkr]
k where [pkr] represents the integral part of pkr

This result is just theorem 5 of chapter II of [23] in a slightly di®erent context
[23] deals with locally compact groups without small subgroups whereas propo-

sition 5 1 above deals with pseudogroups of holomorphic maps The proof of [23]
still extends mutatis mutandis for details see [5] proposition 3 3 1

We will apply proposition 6 1 in a local context Recall the following classical
de¯nitions and facts [2] chap 6 Section 2 A matrix A belongs to the Poincar¶e
domain if its eigenvalues lie either all within the open unit disk D of C or all
outside the closure of D; otherwise A belongs to the Siegel domain If h is a germ
of holomorphic map ¯xing 0 with jacobian A at this point and if A is nonresonant
then h is formally linearizable; that is there is an invertible formal series Á ¯xing
0 such that Á±h A±Á In case h leaves the germ of Rn invariant in Cn Á may be

chosen to do so The convergence of Á will strongly depend on the geometry of the

spectrum of A It has been shown by Poincar¶e that if A belongs to the Poincar¶e
domain then Á necessarily converges whereas in the Siegel domain the situation is
much richer and involves the diophantine properties of the eigenvalues of A Also
recall that a matrix A 2 GL n; C is called nonresonant if its eigenvalues ¸1; : : : ;¸n
satisfy no equality of the form ¸i ¸³1

1 : : :¸³nn with each ³i a nonnegative integer
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and
P ³i ¸ 2 We now consider a nonresonant linear contraction A 2 GL n; C

and an invertible holomorphic map h0 x x+®0 x from the open unit ball B of
Cn to some bounded domain of Cn; we let h denote the in¯nitesimal pseudogroup
generated on Cn by A and h0 It is to be understood that h will turn out to be

the image of g¤ in some local chart of M Let P X adXd + ¢ ¢ ¢ + a1X be a
polynomial with zero constant term and integer coe±cients As long as this makes

sense we recursively de¯ne

hk+1 A¡d
± had

k ± A ± had¡1
k ± A ± ¢ ¢ ¢ ± ha1

k ± A 3

depending on A; h0 and P this sequence may or may not be in¯nite Finally we

let B denote the Banach space of invertible holomorphic bounded maps from B to
Cn with its usual norm k®k supz2B k® z k The purpose of this paragraph will
now be to show the following result:

Theorem 6 2 There is a dense and open subset X in the set of linear contractions

of Rn such that if A0 belongs to X then there is an " > 0 a neighborhood U of A0
and a polynomial P with the property that if A 2 U ®0 2 B ® 0

6

0 and k®0k <
" then the sequence hk constructed above tends in the sense of proposition 6 1 to
a constant nonzero vector ¯eld on B

As the proof is rather intricate we give its plan: 1 show that h1 is well
de¯ned for ®0 small enough 2 now that the map T : h0 h1 is well de¯ned
near Id show that it's C1 and compute its di®erential 3a ¯nd a suitable P
for dT Id to be a contraction so that hk Id + ®k will exist for any k and
®k will tend to 0; 3b moreover arrange for dT Id to contract the translation
subspace strictly less than its complementary subspace of maps vanishing at 0
so that we'll have ®k ®k 0 + o ®k 0 as planned While steps 1 and 2
are nearly straightforward step 3 is rather painstaking to establish and requires

some technique

Before we get started on step 1 we make a technical remark We can always

de¯ne X as the set of contractions A0 meeting the requirements of theorem 6 2;
then X is obviously open and what remains to be done is just to show its density
in the set of contractions Now let A0 be any contraction and suppose that for
some k 2 N the contraction Ak

0
belongs to X ; then we claim that A0 does too

This is because since Ak
0 2 X there exists a polynomial P1 a neighborhood U1 of

Ak
0

and an " > 0 such that if A1 belongs to U ®0 0
6

0 and k®0k < " then the

sequence h1
k given by 3 with ¯rst term h1

0
h0 and A1 and P1 replacing A and

P will tend to some constant nonzero vector ¯eld Z But then the set U of those

contractions A such that Ak
2 U1 is a neighborhood of A0; and if we let P X

and A1 respectively denote P1 Xk and Ak we see that the sequence hk given by
3 is exactly h1

k
As a consequence of this remark it su±ces to show that X contains every

contraction A0 such that A0 B is relatively compact in B since for any contraction
A0 there exists a k 2 N such that Ak

0
B lies in say 1

2B From now on let A0 be
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such a contraction; ¯x P X 2 Z[X] with P 0 0

Lemma 6 3 There is a neighborhood U of A0 and an " > 0 such that if A 2 U
and k®0k < " then h1 exists and belongs to B

Proof If k®0k < " then h B contains 1¡ " B and h sends 1 ¡ " B to a domain
contained in B From the last of these facts it follows that h ± h is de¯ned on
1 ¡ " B and sends 1¡ 2" B to within B while the ¯rst fact implies that h¡1 is

de¯ned on 1 ¡ " B By induction one then shows easily that hk is de¯ned on at
least 1 ¡ jkj + 1 " B and sends this ball to within B for jkj < 1

" ¡ 1 Now let a
be max jaij + 1 and ½ be kAk: for " small enough one has 1¡ a" > ½ so that
hai0 A is for all i a map with source at least B and range at most B Therefore the

composition h1 of A¡d with all these maps is well de¯ned and bounded on B as

asserted ¤

We have in fact shown a bit more than the existence of h1 To explain that
we will need some extra notation Consider the right term of 3 as a word W
in a free alphabet hA0; hki and drop the indices 0; k for simplicity Read W
from right to left: W L`L`¡1 : : : L1 where L1 A; : : : ;L` A¡1 are the

\letters" of W and ` 2d + P jaij is its length; e g if P X X3 ¡ 2X then
W A¡1A¡1A¡1hAAh¡1h¡1A ` 9 and L5 A Finally de¯ne the i-th left
and right parts of W by W W liLiW ri so that W l̀ W r

1 empty word What
lemma 6 3 means is that each right subword W ri 2 · i · ` is well de¯ned on B
which allows us to construct W recursively; but the proof we gave of it implies

moreover that for i · `¡d each of these words sends B to some relatively compact
subset of it In particular there exists ± > 0 such that W ri B ½ 1¡± B for every
i 2 f2; : : : ; ` ¡ dg Now recall that by Cauchy's estimates there is a constant
C± depending only on ± and such that if Á belongs to B then the supremum of
kd2Ák z on 1¡ ± B is at most C±kÁk where kd2Ák is seen as a map from B to
the space of bilinear maps from Cn to Cn and endowed with the obvious norm
From this we get:

Lemma 6 4 For A0 P and U as in lemma 6 3 the transformation T that sends

h0 to h1 is C1 near Id; moreover its di®erential is given by the formula

dT h :±h
`

Xk 1

s Lk dW l
k
:±h ± W r

k 4

where s A s A¡1 0 s h 1 s h¡1 ¡1; in particular

®1

d

Xk 1

akA¡k
± ®0 ± Ak + o k®0k P Ad A :®0 + o k®0k 5

where Ad A stands for the map ®0 A¡1
± ®0 ± A



Vol 77 2002 Existence of rigid actions 539

Proof According to Lagrange's theorem if Á and Ã are two elements of B with
Ã B relatively compact in B so that Á ± Ã + ±Ã 2 B as well for any variation
±Ã of Ã that is small enough then

Á ± Ã + ±Ã Á ± Ã + dÁ Ã :±Ã + O sup
D

kd2Ák:k±Ãk
2 ;

the supremum norm of d2Á in the right-hand side of this formula is to be taken on
a su±ciently large domain D depending on Ã and ±Ã Now if kÃk+k±Ãk · 1¡ ±

then 1 ¡ ± B can be taken for D; in that case Cauchy's estimate yields:

Á ± Ã + ±Ã Á ± Ã + dÁ Ã :±Ã + O kÁk:k±Ãk
2 :

Using this we obtain formula 4 by a straightforward recursion which consists

of computing one after the other the di®erentials of the \partial" operators

T1 h0 A0; T2 h0 h0 ± A0; : : : ; T`¡1 h0 AT h0 ; T` h0 T h0 ;

using the fact that each W ri sends B within 1 ¡ ± B to replace the quadratic
di®erentials of h0 and ±h0 by h0 and ±h0 themselves in the estimates In turn
formula 5 is a straightforward consequence of 4 ¤

We now show that for suitable P the map T is a contraction of B Choose

some positive integer k Any element ® of B has the form ® z Q z + Á z
where Q is a degree-k polynomial map and ¤ Á z · C jzj

k+1 for some constant
C ; this is an Ad A -invariant decomposition of B into a direct sum of closed vector
subspaces One readily computes the spectrum of Ad A on the ¯nite dimensional
space of polynomials with degree · k; on the complementary space of functions

Á one has the majoration kAd A k · sup j¸¡1
i j sup j¸ij

k+1 which is a direct
consequence of ¤ So applying this to any k we see that the spectrum of Ad A
on B is the set of numbers

¸¡1
i £ ¸a1

1 £ ¢ ¢ ¢ £ ¸ann i 2 f1; : : : ; ng; a1; : : : ; an 2 N : 6

By the same argument the spectrum of P Ad A is the set of values taken by
P on the spectrum of Ad A We now proceed to construct some P such that
P Ad A is a contraction In the following statement recall that the a-stable
space of a bounded operator T on a Banach space means the vector subspace of
all vectors x such that the sequence a¡nT n x tends to zero

Proposition 6 5 There exists in GL n; R an open and conjugacy-invariant sub-
set X which is dense in the space of linear contractions and has the following

property: if A belongs to X then there is some polynomial P such that P Ad A
is a contraction of B; moreover there is an a > 0 such that the a-stable space of
P Ad A in B is the closed subspace B0 of maps ¯xing 0 and P Ad A leaves

invariant the complementary subspace of constant maps as well

Proof In Cn we de¯ne the real-semialgebraic and conjugacy-invariant subset C by
the conditions ¸1; : : : ;¸n 2 C i® 8i j¸ij < 1 and f¸1; : : : ; ¸ng f¸1; : : : ;¸ng



540 M Belliart CMH

So the quotient of C by the obvious action of the symmetric group Sn on it iden-
ti¯es naturally with the space of conjugacy classes of diagonalizable contractions

of Rn We now enunciate an obvious fact we omit the proof :

Lemma 6 6 The subset C0 f 8i ¸i 2 Q[p¡1]g of C is dense in C

Observe that this lemma would still hold true if we replaced Q[p¡1] with any
non-real ¯eld number or even with some nonalgebraic extension of Q as long as it
is not contained in R and is conjugacy-invariant Let us now show proposition 6 5

It clearly amounts to the statement that there exists a dense and open subset Y of C
such that if ¸1; : : : ; ¸n belongs to Y then there exists a polynomial P X 2 Z[X ]
with the property that

1 > sup
1·i·n jP ¸¡1

i j and inf
1·i·n jP ¸¡1

i j > sup
¸2S

jP ¸ j:

Since this property is clearly an open one it su±ces to construct a dense subset
Y with the desired property This will be done in three steps We start with an
arbitrary ¸1; : : : ; ¸n 2 C and make it satisfy the above property by only applying
arbitrarily small perturbations to it

First step: 1 > sup1·i·n jR ¸¡1
i j and 1 > supx2S jR x j for some R 2 Z[X]

Start by noticing that f0g[S is a compact subset K of C So only a ¯nite number
of elements of S may have modulus greater or equal to one; call them ¹1; : : : ;¹N
Arrange the remaining elements of S in a sequence º1; º2; : : : ; choose a 2]0; 1[ such
that jºkj < a for any k 2 N; ¯nally call F the ¯nite set whose elements are the

¸¡1
i and the ¹j

Start by assuming that ¸1; : : : ;¸n 2 C0: then any element of S is in Q[p¡1]
and there exists a polynomial Q X 2 Z[X ] such that each ¸¡1

i and each ¹j is
a root of Q For k large enough one also has sup

jzj·a jz
kQ z j < a so that the

polynomial R X XkQ X sends each ¸¡1
i and all of S within the disk jzj · a

It can be seen that the property \R F [ S [ f0g ½ fjzj < 1g" is stable by
perturbations of ¸1; : : : ;¸n So there is a dense and open subset Z of C

such
that if ¸1; : : : ; ¸n 2 Z then there exists some R 2 Z[X ] such that

1 > sup
1·i·n jR ¸¡1

i j and 1 > sup
¸2S

jR ¸ j:

Second step: no R ¸¡1
i vanishes or has the same modulus as a R x with

x 2 S We observe that the same R works for every element of a su±ciently small
neighborhood of ¸¡1

1 ; : : : ;¸¡1
n We now assume ¸¡1

1 ; : : : ; ¸¡1
n to belong to Z

and let Ái denote R ¸¡1
i for short; similarly the sequence Ãj is the sequence of

all values taken by R over S Now if we multiply each ¸i by the same number
1 + " for some small " 2 R which does not take ¸1; : : : ;¸n out of C

since
C

is a semi-algebraic subset of a real cone then we can manage to have every ¸i
transcendent at the same time In that case no Ái will vanish; using lemma 6 6
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we can next assume that each ¸i is in Q[p¡1] again so we've put ¸1; : : : ; ¸n
outside of Q[p¡1] and back again; the bene¯t is that now no Ái vanishes

Since infni 1 jÁij > 0 there is only a ¯nite number ` of the Ãj which are outside

the open disk jzj < inf1·i·n j¸ij Let µk k2N denote the rest of the Ãj so that
for all i · n and k 2 N one has jÁij > jµk j Remark again that f0g [ fµkg is a
compact set so that it remains in the open disk D fz jzj < inf1·i·n jÁijg as

long as the ¸i do not move too much Next multiply the ¸i by some r 2 Q this
leaves them in Q[p¡1] We claim that for generic r the Ãj which are outside

D will all be outside the closure of D as well Indeed one has Ái R ¸¡1
i and

Ãj R ¸¡1
j ¸a1

1 : : :¸ann with P ai > 0 so that the rational functions jÁij
2 and

jÃj j2 of the variables ¸1; : : : ;¸n cannot coincide Therefore the Ãj will have to
move away from the boundary of D while r varies in Q either to get inside D in
which case ` diminishes and the Ãi involved become \new members" of the family
µk or they will get outside the closure of D Then the same argument yields

more: by conveniently choosing r we may assume that no jÁij is equal to some

jÃj j
Third step: inf1·i·n jP ¸¡1

i j > sup¸2S jP ¸ j for some P Q ± R
Note that since the ¸i are in Q[p¡1] the Ãi also are Call ®1; : : : ; ®p the

rational ones and ¯1; ¯1; : : : ; ¯q ; ¯q the quadratic ones Consider the following

polynomial

Q X aXb
p

Y1

X ¡ ®i
q

Y1

X2 ¡ 2< ¯i + j¯2
i j

with a; b 2 N For suitable a
6

0 Q lies in Z[X]; let such an a be given For any
b Q sends the Ãi to zero; ¯nally for b 0 Q will send the µk within some ball
jzj < R and the Ái inside a certain annulus ½¡ < jzj < ½+ There exist moreover
numbers ·¡; ·0 and ·+ such that µk < ·¡ < ·0 < Ái < ·+ < 1 for any k and i as

a result of steps 1 and 2; so for given b Q will send µk and Ái respectively in the

disk of radius R·b

¡ and in the annulus of inner radius ·b
0½¡ and outer radius ·b

+½¡So if b is large enough the polynomial P Q ± R satis¯es the desired property ¤

Finally recall the so-called stable manifold theorem of Hadamard and Perron
This theorem possesses many versions;2 ours will be:

Stable manifold theorem If B is a Banach space and T is a linear continuous

endomorphism of B whose spectrum does not meet the circle jzj a a > 0 in
the complex plane then for any Lipschitz germ f from B; 0 to itself with small
Lipschitz constant there exists an " such that in the ball kxk < " the points x
such that a¡n T +f ±n x tends to 0 form a germ of a continuous manifold M s

a
usually called the a-stable manifold of T + f Moreover if the spectrum of T does

2 As Anosov once cynically said every odd year someone comes up with a \new" proof of the
Hadamard{Perron theorem which is essentially the proof of Perron or that of Hadamard The

inventive proof in [21] is an exception to this rule
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not meet the annulus with inner radius a and outer radius ar a condition which

is tautologic if a < 1 then M is of class Cr

We now show theorem 6 2 Let A belong to X in proposition 6 5; choose

P so that T is a contraction and ¯x a such that the a-stable manifold of T is a
complement in B of the space of translations this can be done by proposition 6 5
Since T is a contraction there is an " > 0 such that for k®0k < " the sequence hk
tends to Id uniformly on B but does so slowlier than ak does because ® 0

6

0

Then by the assumption on M s
a this sequence is equivalent to that of constant

maps hk 0 so that hk 0 does not vanish and if one takes pk [khk 0 k¡1] in
proposition 6 1 then hk tends uniformly on B to a constant map with unit norm
So theorem 6 2 holds true

7 From one ¯eld to many more

In this paragraph we show the following assertion:

Theorem 7 1 Assume that in some local chart U; Á of M with origin m Á 0
the di®eomorphisms f and g respectively write f x Ax with A 2 GL n; R a
nonresonant diagonalizable contraction and g x1; : : : ; xn x0

1; : : : ; x0
n with

x0i ai +
n

Xj 1

bjixj +
n

Xj;k 1

cjk
i xjxk + o jxj

2 7

and each of the tensors ai; bji ; cjki generic in the sense of Zariski 3 Then either
g¤ m f0g or g¤ m g m

First recall some useful properties of nonresonant linear maps:

Proposition 7 2 Let A 2 GL n; R be nonresonant and diagonalizable Then
any germ of a smooth real analytic manifold through 0 which is A-invariant is a
germ of a linear subspace

Proof A germ §0 of a smooth analytic manifold through 0 2 Rn is the intersection
of Rn with a germ § of a smooth holomorphic manifold through 0 2 Cn; if §0 is
A-invariant then so will be § In some basis of Cn A is diagonal; if the basis is
well chosen the tangent space to § at 0 is spanned by its p ¯rst vectors so that
§ has a parametrization xp+k Ák x1; : : : ; xp with 1 · k · n ¡ p and each Ák
holomorphic Expand Ák as a power series:

Ák

j1+¢¢¢+jp i

Xi¸1

a i j1:::jp
k xj1 : : :xjp

3 By writing this we implicitly assume that g 0 belongs to the domain of U
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and write the condition for § to be invariant

¸p+kÁk

j1+¢¢¢+jp i

Xi¸1

a i j1:::jp
k ¸j1

1 : : :¸jpp xj1 : : : xjp:

Identifying coe±cients and using the fact that ¸p+k is equal to none of the ¸j1
1 :::¸jp

p
we obtain the desired result: each Ák is zero so that § coincides with its tangent
space at 0 ¤

Let A be as above and ¯x some A-invariant decomposition Rn E © F Let
F be a germ of an analytic regular A-invariant foliation at 0 2 Rn; by proposition
7 2 the leaf of F through the origin must be an A-invariant subspace Assume it's
E Then locally tangent spaces to leaves of F remain transverse to the verticals

feg + F e 2 E so that one may project E onto F parallelly to them at each
point thus giving rise to an analytic ¯eld of 1-forms on E with values in F
which is A-invariant and vanishes along E

Proposition 7 3 In fact 0 so that each leaf of F is an a±ne space parallel
to E

The proof works on the same lines as the previous one extend to Cn expand
as a power series compare with A¤ and conclude Here is a third consequence

of nonresonance when A is a contracting map:

Proposition 7 4 Let X1; : : : ; Xn be n germs of vector ¯elds de¯ned at 0 2 Rn

and linearly independent at this point Let h be the closed Lie algebra they span;
assume that h is A-invariant and that kAk < 1: then h contains every constant
¯eld

Proof For the sake of simplicity we let A be diagonal we hope the reader will
grant that pairs of conjugate complex eigenvalues while they make the proof
more abstruse bring no real additional di±culty The e®ect of this assumption
is that for every d 2 N A is diagonal on the ¯nite dimensional vector space E0
of polynomial vector ¯elds with degree d We let ± be equal to inf i j¸¡1

i j and d
be the smallest integer such that ¸¡1

i ¸a1
1 : : :¸ann < ±

2
for all i and a1; : : : ; an such

that P ai > d By assumption after replacing the Xi by linear combinations

we can assume that A:Xi 0 ¸iXi 0 Endow E0 with a scalar product and let
X0k

i denote ck
i AkXi where the constant ck

i
is chosen so that the projection P 0k

i
of X0k

i on E0 has unit norm: then because of our de¯nition of d the remainder
X0k

i ¡P 0k
i can be neglected w r t P 0k

i so that X0k
i converges uniformly near 0 to a

nontrivial polynomial vector ¯eld which we call Y 0
i Let F1 be the vector subspace

of E0 spanned by Y 1
1 ; : : : ; Y 1

n Since A is diagonal on E0 there is an A-invariant
subspace E1 complementary to F1 By induction once we have de¯ned an A-
invariant subspace Fp we consider its complementary subspace Ep in E and let
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Xp0
i be the projection on Ep of Xi parallel to Fp more precisely of the polynomial

part of degree d of Xi As long as at least one of the Xp0
i is nonzero we use it to

de¯ne a sequence ck
i
AkXip Xpk

i and de¯ne ck
i

by the condition that kXpk
i k 1

Then Xpk
i converges to Y p

i with Y p
i 2 Ep and kY p

i k 1; the set of the Y p
i thus

obtained spans together with Fp a vector subspace of E which we call Fp+1 and
is strictly larger than Fp So E0 being ¯nite dimensional there must be a p such
that no more Y p

i can be constructed i e every Xi projects trivially on Ep parallel
to Fp Then Fp must contain all constant ¯elds since the Xi 0 span Rn But Fp

is a subset of h so the proof is done ¤

Proof of theorem 7 1 We assume that g¤ m is nontrivial Then it is spanned by a

¯nite number of analytic germs of vector ¯elds at m whose images in the chart we

denote by X1; : : : ; Xk These ¯elds are linearly independent as germs but a priori
their evaluation at some point must not necessarily be so Our assumptions will
¯rst serve to rule out the possibility that the Xi be nontransverse somewhere We

reduce this possibility to the absurd by letting § be the germ of analytic manifold
de¯ned on U as the locus where X1; : : : ;Xk are not transverse: by construction
of g¤ this germ is invariant by the restriction of ¤ to the image of U and since

A contracts U one sees that § passes through zero Then there is an analytic
strati¯cation §0 ½ ¢ ¢ ¢ ½ §p § by A-invariant germs through 0 uniquely de-

¯ned by the property that §0 is smooth and §k is the locus of singular points

of §k+1 This strati¯cation must also be g-invariant so that §0 contains both 0
and g 0 which since the ai are generic does not lie on any proper A-invariant
subspace The same can be said of every point Ang 0 and this sequence tends

to 0 nontrivially so that §0 must have strictly positive dimension Then it is
an A-invariant subspace by proposition 7 2 and it is not contained in any proper
A-invariant one so it's all of U which is absurd since the Xi have been chosen so
as to be independent as global sections of g U

By what precedes the Xi are locally independent at every point so that they
span a germ of a regular foliation F near 0 which is A-invariant Then by propo-
sition 7 3 this foliation is parallel to some A-invariant subspace E of Rn which
is nonzero So dg 0 must send E to within itself but since bji is generic this
implies that E is all of Rn because the matrices A and B bji being in gen-
eral position share no proper invariant subspace of Rn Therefore g¤ contains all
constant vector ¯elds by proposition 7 4 Next one computes the image of those

through g¤

g¤³
@

@xj ´
n

Xi 1

bji + 1 + ±ji cjk
i xk + : : :

@

@xi
Yj

with ±ji the Kronecker symbol We know that g¤ 0 contains every constant ¯eld
so it contains Zj Yj¡P

bji
@

@xi
which vanishes at 0 Since cjki is a generic tensor

the linear part of the Zj span the Lie algebra of all linear ¯elds because two
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generic linear ¯elds do so the condition is that at least one of them has nonzero

trace and no vector subspace of sl n; R is both ad X - and ad Y -invariant see

[5] Section 2

Now g¤ m contains every a±ne ¯eld up to second order terms so we can
pick in it a ¯eld which writes X P xi

@

@xi + : : : where the dots represent the

higher-order terms Such a ¯eld is linearizable in a neighborhood of the origin
Fix a local chart where X is linear and de¯ned on the unit ball B; let Y be any
¯eld in g¸ m and let Yk be the k-th order homogeneous term in the Taylor series

for Y : Y Y¡1 + Y0 + : : : We notice that the °ow Át of ¡X is de¯ned on B
for all t ¸ 0 and sends B within smaller and smaller subballs so that the ¯eld
Yt Át ¤ Y lies in g¤ B for t large enough by item 1 of proposition 5 2
We can next compute Yt P1k ¡1 e¡ktYk We then see that e¡tYt tends to Y¡1
on B so that g¤ B which contains both Y and Y¡1 contains their di®erence

Y0 + Y1 + : : : Replacing Y by Y ¡ Y¡1 and taking this time the limit of Yt we

see that Y0 lies in g¤ B too; by an easy induction we also see that every Yk is in
g¤ B as well So for any germ Y of g¤ m and any k ¸ 1 the k-th polynomial
term in the Taylor series for Y lies in g¤ B This means that g¤ B is a graded
Lie algebra Moreover it is an irreducible and transitive one see the de¯nitions in
the survey [7] ; the list of those was written down by E Cartan: in view of the list
there are only two possibilities; g¤ B may be all of g B or a subalgebra of the Lie
algebra of P GL n+1; R two subcases But the last case has ¯nite dimension at
most n2 + 2n whereas for the choice of g in 7 there are n2 +n + n2 n+1

2
degrees

of freedom: so for generic g this last case is excluded ¤

8 Proofs and ¯nal remarks

We start this paragraph with an easy fact:

Proposition 8 1 The closure of any ¤-orbit contains a source or a sink of f
Proof The basins of attraction/repulsion of sinks/sources of f are cells whose

complementary set is a closed subset § of M with empty interior consisting of
those points who go from a saddle to another along the intersection of their stable
and unstable manifolds If some m 2 M lies on § then the closure of its orbit
contains a saddle ¯ of f This saddle is sent by g outside § necessarily within the

basin of a source or sink s of f Then the closure of ¤:m contains ¯ and that of
¤:¯ contains s ¤

The proof of theorem A is now a rather straightforward consequence of what
has already been obtained By proposition 8 1 the ½-orbit of any m 2 M meets the

basin of some source or sink s of f Near s de¯ne a linearizing map Á which turns

f into a diagonal matrix A then apply theorem 6 2 to A and h Á ±f ± g¡1
± Á¡1:
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we see that g¤ is nontrivial at s and contains the image Á X of a nonzero constant
¯eld By theorem 7 1 it must then coincide with g in some neighborhood U of s
Thus g¤ m g m by proposition 5 2 so that G¤ G by proposition 5 1; this
is another way of enunciating theorem A

Next we show theorem C For that we consider another action ½0 near ½ with
generators f 0 and g0 and assume that some homeomorphism c exists such that
c ± f f 0

± c and c ± g g0
± c Just above starting with A Á ± f ± Á¡1 and

h Á ± f ± g¡1
± Á¡1 we constructed a vector ¯eld X de¯ned near s; the same

construction done with f 0; g0 and a linearizing map Á0 for f 0 will yield a ¯eld X 0

de¯ned near s0 the source of f 0 which is near f : remember that f is structurally
stable Then since c sends by assumption f to f 0 and g to g0 it must conjugate
the °ow of X with that of X 0 Now consider some ° 2 ¡ and apply the same

construction to the action ½° such that ½° °0 ½ ° ± °0
± °¡1 : we see that c

sends ½ ° ¤ X to ½0 ° ¤ X 0 as well But then since g¤ B g B for some

neighborhood B of s it is possible within the in¯nite family of ¯elds ½ ° ¤X to
¯nd n of them X1; : : : ; Xn which are transverse at s and satisfy [Xi; Xj ] 0

Integrating the local °ows of these ¯elds near s will provide us with a new local
chart Ã : Rn; 0 M; s Then the °ows of the images X

01
; : : : ; X0n

of these ¯elds

by c will give us a second local chart Ã0 : Rn; 0 M; s0 with the properties that
both charts are analytic and Ã0 c ± Ã This means of course that c is analytic in
a neighborhood of s

We would now like to conclude this paper with a few natural questions

Question 8 2 Is the proximity assumption on ½ and ½0 necessary for theorem C
to hold

Question 8 3 In Section 6 we use the dynamical properties of transformations

with a ¯xed point and a jacobian that lies in the Poincar¶e domain Can something

still be done when the ¯xed points of f and g lie within the Siegel domain

A complete answer to this question would be a prerequisite for the next one:

Question 8 4 What can be said under the restrictive assumption that ¡ preserves

a volume form or a symplectic structure or whatever

Finally a small generic di®eomorphism of the 2-sphere has at least one source

and one sink so maybe our methods could be improved to yield:

Conjecture 8 5 In the set of couples of Di® S2 there is an open neighborhood
of Id; Id and a dense and open subset U of it such that if f; g is in U then it
spans a rigid group of transformations which acts minimally on every Jk S2

As for the answer to these questions we admit that we haven't got a clue
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