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Commentarii Mathematici Helvetici

A gap theorem for hypersurfaces of the sphere with constant
scalar curvature one

Hil¶ario Alencar* Manfredo do Carmo* and Walcy Santos*

Abstract We consider closed hypersurfaces of the sphere with scalar curvature one prove a
gap theorem for a modi¯ed second fundamental form and determine the hypersurfaces that are
at the end points of the gap As an application we characterize the closed two-sided index one

hypersurfaces with scalar curvature one in the real projective space

Mathematics Subject Classi¯cation 2000 53C42

Keywords Scalar curvature sphere Cli®ord torus index one projective space

1 Introduction

To state our main result we need some notation
x : Mn Sn+1 1 will be a closed compact without boundary hypersurface

of the unit sphere Sn+1 1 We denote by A the linear map associated to the

second fundamental form and by k1; : : : ; kn its eigenvalues principal curvatures

of M We will use the ¯rst two elementary symmetric function of the principal
curvatures:

S1

n

Xi 1

ki; S2

n

Xi<j 1

kikj :

We will also use the normalized means: the mean curvature H
1

n
S1 and the

scalar curvature R given by n n¡ 1 R¡ 1 S2 Finally we introduce the ¯rst
two Newton tensors by

P0 Id; P1 S1Id¡A:

Clearly P1 commutes with A and it is also a self-adjoint operator We will show
later see Remark 2 1 that if R 1 and S1 ¸ 0 then all eigenvalues of P1 are

nonnegative hence we can consider pP1

*Partially supported by CNPq Brazil
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We can now state our gap theorem

Theorem 1 Let x : Mn Sn+1 1 be a closed orientable hypersurface with
scalar curvature R 1 equivalently S2 0 Assume that S1 does not change

sign and choose the orientation such that S1 ¸ 0 Assume further that

kpP1Ak
2 · traceP1:

Then:
i k

pP1Ak
2 traceP1:

ii Mn is either a totally geodesic submanifold or Mn Sn1 r1 £ Sn2 r2 ½

Sn+1 1 where n1 + n2 n r2
1 + r2

2 1 and µr2

r1
¶

2

¯ satis¯es the quadratic
equation:

n1 n1 ¡ 1 ¯2 ¡ 2n1n2¯ + n2 n2 ¡ 1 0:

Our theorem was inspired by a similar theorem on minimal submanifolds of the

sphere ¯rst proved by J Simons [S] part i and latter completed part ii by
S S Chern M do Carmo and Kobayashi [CdCK] and independently by H B
Lawson [L]

Remark The condition on the modi¯ed second fundamental form in above theo-
rem can not be dropped as can be seen by the following example: Let M6 S7 1
be an isoparametric hypersurface with principal curvatures given by

¸1 ¸2 µ; ¸3
µ + 1

1 ¡ µ
; ¸4 ¸5 ¡

1

µ
and ¸6 ¡

1¡ µ

1 + µ
;

where µ is given by µ s13 + p165

2
see [M] It is easy to see that M6 has

R 1 and S1 > 0 We would like to thank Luiz Amancio de Sousa Junior for
showing us this example

As an application of Theorem 1 we will present a characterization of index
one closed hypersurfaces with constant scalar curvature one of the real projective

space P R n+1 For minimal submanifolds this result was obtained recently by M
do Carmo M Ritor¶e and A Ros [dCRR]

Before giving a formal statement we need some considerations Hypersurfaces

of a curvature one space form with constant scalar curvature one are solutions to
a variational problem see [Re] [Ro] [BC] whose Jacobi equation is

T1f L1f + fkpP1Ak
2 + traceP1gf 0:

Here f 2 C1 M and L1 is a second order di®erential operator given by

L1f div P1rf ;
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where rf is the gradient of f Notice that L1 generalizes the Laplacian However
di®erently from the Laplacian L1 is not always elliptic J Hounie and M L Leite

[HL] have proved that if S3 6 0 everywhere then L1 is elliptic Of course from
the de¯nition of L1 it follows that L1 is elliptic if and only if P1 is positive de¯nite

or negative de¯nite For the next theorem we will assume that L1 is elliptic and
P1 is positive de¯nite Denote by Ind M the Morse index of M i e the number
of negative eigenvalues of T1

Theorem 2 Let x : Mn P R n+1 1 be a closed two-sided hypersurface with
scalar curvature one Then Ind M ¸ 1 and if Ind M 1 M is the Cli®ord
hypersurfaces obtained by the projection of the Cli®ord torus of Theorem 1

2 Preliminaries

In this section we will present some properties of the rth Newton tensors in M and
describe the Cli®ord hypersurfaces of P R n+1

2 1 The rth Newton tensors

We introduce the rth Newton tensors Pr : TpM TpM which are de¯ned
inductively by

P0 I;
Pr SrI ¡APr¡1; r > 1;

where Sr Xi1<¢¢¢<ir
ki1 : : : kir is the rth symmetric function of the principal cur-

vatures k1; : : : ; kn
It is easy to see that each Pr commutes with A and if ei an eigenvector of A

associated to principal curvature ki then

P1 ei ¹iei S1 ¡ ki ei:

In [Re] Reilly showed that the Pr 's satisfy the following

Proposition 2 1 [Re] see also [BC] { Lemma 2 1 Let x : Mn Nn+1 be an
isometric immersion between two Riemannian manifolds and let A be its second
fundamental form The r'th Newton tensor Pr associated to A satis¯es:

1 trace Pr n¡ r Sr;
2 trace APr r + 1 Sr+1;
3 trace A2Pr S1Sr+1 ¡ r + 2 Sr+2

It follows from 3 that if S2 0 trace A2P1 ¡3S3
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Remark 2 1 Observe that if S2 0 we have that
S2

1 jAj
2 + 2S2 ¸ k2

i ; for all i:
Thus 0 · S2

1 ¡ k2
i S1 ¡ ki S1 + ki what implies that all eigenvalues of P1

are nonnegative if S1 ¸ 0 that is P1 is a nonnegative operator We also remark
that if S2 0 and P1 has one eigenvalue equal to zero then

P1A ´ 0: 1

In fact if ¹i0 0 then ki0 S1 As S2
1 jAj

2 we get

Xi 6 i0
k2
i0 0:

So ki 0 for all i 6 i0 hence P1A ´ 0

Associated to each Newton tensor Pr we de¯ne a second order di®erential
operator

Lr f trace PrHess f :

If Nn+1 has constant sectional curvature it follows from Codazzi equation see

Rosenberg [Ro] p 225 that Lr is

Lr f divM Prrf :

Hence Lr is a self-adjoint operator and for any di®erentiable functions f and g on
Mn

Z
M

fLrgdM Z
M

gLrfdM 2

We observe that for r 0 L0 is the Laplacian which is always an elliptic operator
For r > 0 we have to add some extra condition in order to ensure that Lr is elliptic
For hypersurfaces of Rn+1 with Sr 0 Hounie and Leite [HL] were able to give

a geometric condition that is equivalent to Lr being elliptic In fact their proof
can be generalized to hypersurfaces of the sphere and we have that

Theorem 2 1 [HL] { Proposition 1 5 Let M be a hypersurface in Rn+1 or Sn+1

with Sr 0 2 · r < n Then the operator Lr¡1 f div Pr¡1rf is elliptic at
p 2 M if and only if Sr+1 p

6

0

Thus for hypersurfaces with S2 0 L1 is an elliptic operator if and only if
S3 6 0 Since L1 f divM P1rf it follows that the ellipticity of L1 implies

that P1 is de¯nite hence then S1 6 0

Let a 2 Rn+2 be a ¯xed vector Let x : M Sn+1 1 ½ Rn+2 be an isometric
immersion with S2 0 and let N be its unit normal vector The functions f
hN; ai and g hx; ai satisfy see [BC] lemma 5 2

L1 g ¡ n¡ 1 S1g 3



Vol 77 2002 A gap theorem for hypersurfaces of the sphere 553

and

L1 f 3S3f: 4

2 2 Cli®ord hypersurfaces of P R n+1

We are now going to describe some properties of the Cli®ord hypersurface in
P R n+1 A Cli®ord torus in Sn+1 1 is given by the product immersion of
M Sn1 r1 £Sn2 r2 with n1 +n2 n and r2

1 +r2
2 1 which is a closed hyper-

surface of Sn+1 1 It is easy to see that this immersion is invariant under the an-

tipodal map hence it induces an immersion of M into P R n+1 This hypersurface

will be called Cli®ord hypersurface If x : Sn1 r1 £Sn2 r2 Sn+1 1 is a Cli®ord
torus then the unit normal vector at a point p p1; p2 2 Sn1 r1 £ Sn2 r2 is
given by

N µ¡r2

r1
p1;

r1

r2
p2¶ :

Thus the principal curvatures of M are r2

r1
with multiplicity n1 and ¡r1

r2
with

multiplicity n2 It is easily checked that the scalar curvature of M is equal to one

S2 0 if and only if µr2

r1
¶

2

¯ satis¯es the quadratic equation:

n1 n1 ¡ 1 ¯2 ¡ 2n1n2¯ + n2 n2 ¡ 1 0: 5

We will show in a while that only one of the torus given by 5 yields S1 > 0
Notice that L1 is an elliptic operator and in order to calculate the index of M we

¯rst observe that in a principal basis P1 is a diagonal matrix whose elements are

½ n1 ¡ 1 r2

r1 ¡ n2
r1

r2
¾ with multiplicity n1

and

½n1
r2

r1 ¡ n2 ¡ 1 r1

r2
¾ with multiplicity n2:

Thus

traceP1 n¡ 1 S1 n¡ 1 µn1
r2

r1 ¡ n2
r1

r2
¶ :

We will need the following relation:

kpP1Ak
2 ¡3S3 n¡ 1 S1:

The ¯rst equality is a general fact that follows from Proposition 2 1 part 3 by
setting r 1 and S2 0 The second equality is speci¯c for Cli®ord tori with
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S2 0 and can be proved as follows Write:

S1 n1
r2

r1 ¡ n2
r1

r2
;

S2
n1 n1 ¡ 1

2 µ r2

r1
¶

2

+ n2 n2 ¡ 1

2 µr1

r2
¶

2

¡ n1n2;

S3
n1 n1 ¡ 1 n1 ¡ 2

6 µr2

r1
¶

3

¡
n2 n2 ¡ 1 n2 ¡ 2

6 µ r1

r2
¶

3

+n1n2 n2 ¡ 1

2 µr1

r2
¶

2 r2

r1 ¡
n1n2 n1 ¡ 1

2 µr2

r1
¶

2 r1

r2
:

By introducing the condition S2 0 into S3 we obtain after a long but straight-
forward computation that

3S3
1

2 ·¡2 n¡ 1 n1
r2

r1
+ 2 n¡ 1 n2

r1

r2
¸ ¡ n¡ 1 S1;

and this proves our claim Thus the Jacobi operator reduces to
T1 f L1 f + fkpP1Ak

2 + traceP1gf L1 f + 2 n¡ 1 S1f:

If ' const: L1 ' 0 and

T1 ' + 2 n¡ 1 S1' 0:

Thus the ¯rst eigenvalue of T1 is negative hence Ind M is at least 1 Now let us

look at the second eigenvalue of T1 By using the expression of the eigenvalues of
P1 given above we have that

L1 f div P1rf
½ n1 ¡ 1 r2

r1 ¡ n2
r1

r2
¾ ¢n1 f + ½n1

r2

r1 ¡ n2 ¡ 1 r1

r2
¾ ¢n2 f ;

where ¢ni is the Laplacian in Sni ri ; i 1; 2 Thus the second eigenvalue of L1

is given by

¸2 ¡½ n1 ¡ 1 r2

r1 ¡ n2
r1

r2
¾º¢n1

2 + ½n1
r2

r1 ¡ n2 ¡ 1 r1

r2
¾ º¢n2

2 ;

where º¢ni
2 is the ¯rst nonzero eigenvalue of ¢ni that corresponds to an eigen-

function which is invariant by the antipodal map see [BGM] chap III CII Thus

¸2 ¡·½ n1 ¡ 1 r2

r1 ¡ n2
r1

r2
¾

n1

r2
1

+ ½n1
r2

r1 ¡ n2 ¡ 1 r1

r2
¾

n2

r2
2
¸

¡1

r3
1r3

2
©

[n1 n1 ¡ 1 ¡ n1 n¡ 1 r2
1]r2

2 + [n2 n¡ 1 r2
2 ¡ n2 n2 ¡ 1 ]r2

1ª:

6



Vol 77 2002 A gap theorem for hypersurfaces of the sphere 555

Observe that
S1 n1

r2

r1 ¡ n2
r1

r2

n1r2
2 ¡ n2r2

1

r1r2
: 7

The fact that S2 0 is equivalent to

n n¡1 r4
1¡2n1 n¡1 r2

1 +n1 n1¡1 n n¡1 r4
2¡2n2 n¡1 r122+n2 n2¡1 0:

8

By using 7 and 8 we have that
[n1 n1 ¡ 1 ¡ n1 n¡ 1 r2

1 ]r2
2 n¡ 1 S1r3

1r3
2

and
[n2 n¡ 1 r2

2 ¡ n2 n2 ¡ 1 ]r2
1 n¡ 1 S1r3

1r3
2 :

Thus

¸2 ¡2 n¡ 1 S1:

Since the second eigenvalue of T1 is given by ¸2 + 2 n¡ 1 S1 it is equal to zero

This shows then that the Cli®ord hypersurfaces of P R n+1 have index one

Remark Observe that by equation 7 the condition S1 ¸ 0 means that
n1r2

2 ¡ n2r2
1 ¸ 0:

On the other hand since ¯ µr2

r1
¶

2

the above inequality implies that

n1¯ ¸ n2: 9

The condition S2 0 is equivalent to
n1 n1 ¡ 1 ¯2 ¡ 2n1n2¯ + n2 n2 ¡ 1 0; 10

and one can easily see that only one solution of 10 is compatible with 9

3 A gap theorem for hypersurfaces of the sphere with R 1

In this section we prove a gap theorem for hypersurfaces of the sphere with R 1

Theorem 3 1 Theorem 1 of the Introduction Let x : Mn Sn+1 1 be a
closed orientable hypersurface with scalar curvature R 1 equivalently S2 0
Assume that S1 does not change sign and choose the orientation such that S1 ¸ 0

Assume further that
kpP1Ak

2 · traceP1:

Then:
i k

pP1Ak
2 traceP1:
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ii Mn is either a totally geodesic submanifold or Mn Sn1 r1 £ Sn2 r2 ½

Sn+1 1 where n1 + n2 n; r2
1 + r2

2 1 and µr2

r1
¶

2

¯ satis¯es the quadratic
equation:

n1 n1 ¡ 1 ¯2 ¡ 2n1n2¯ + n2 n2 ¡ 1 0:

Proof Let us calculate 1
2L1kAk

2 Since R 1 S2 n n¡ 1 R¡ 1 0 by the

Gauss' formula Thus kAk
2 nH 2 S2

1 Hence

1

2L1kAk
2 1

2L1S2
1 S1L1S1 + hP1rS1;rS1i:

From [AdCC] Lemma 3 7 by using that 2S2 n n¡ 1 R¡ 1 0 we have

L1S1 jrAj
2 ¡ jrS1j

2 + nkAk
2 ¡ S2

1 + 3S1S3:

Therefore

L1S1 jrAj
2 ¡ jrS1j

2 + n¡ 1 S2
1 + 3S1S3: 11

Now by using Proposition 2 1 3 we obtain that

kpP1Ak
2 traceP1A2 ¡3S3:

Then equation 11 becomes

L1S1 jrAj
2 ¡ jrS1j

2 + n¡ 1 S2
1 ¡ S1kpP1Ak

2:

Thus

1

2L1kAk
2 S1L1S1 + hP1rS1;rS1i

S1 jrAj
2 ¡ jrS1j

2 + n¡ 1 S2
1 ¡ 3S1kpP1Ak

2 + hP1rS1;rS1i
S1 jrAj

2 ¡ jrS1j
2 + S2

1 n¡ 1 S1 ¡ kpP1Ak
2 + hP1rS1;rS1i:

Since M is compact we obtain

0
1

2
Z

M
L1kAk

2dM

Z
MfS1 jrAj

2 ¡ jrS1j
2 +S2

1 n¡ 1 S1 ¡ k
pP1Ak

2 + hP1rS1;rS1igdM:

12

We recall the following result see [AdCC] { Lemma 4 1 :

Lemma 3 1 [AdCC] Let M be an n-dimensional compact hypersurface in an
n + 1 -dimensional unit sphere Sn+1 If the normalized scalar curvature R is

constant and R¡ 1 ¸ 0 then

jrAj
2 ¡ jrS1j

2 ¸ 0: 13
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Since S1 ¸ 0 and P1 is positive we have that
hP1rS1;rS1i kpP1rS1k

2 ¸ 0: 14

Our hypothesis and inequalities 13 and 14 implies that the right-hand side of
12 is non-negative Thus we conclude that

S1 jrAj
2 ¡ jrS1j

2 + S2
1 n¡ 1 S1 ¡ kpP1Ak

2 + hP1rS1;rS1i 0: 15

Since each term in above equation is non-negative we have

S1 n¡ 1 S1 ¡ kpP1Ak
2 0:

Observe that when S1 0 kAk
2 0 and k

pP1Ak
2 0 Since by Lemma 2 1

traceP1 n¡ 1 S1 the ¯rst part of the theorem is proved
Now let us assume that k

pP1A p k
2 n¡1 S1 p ; for all p 2 M If S1 p 0

for all p 2 M since S2 0 kAk
2 0 and M is totally geodesic Let us suppose

that there exists a point p0 in M such that S1 p0 > 0 So the set A ½ M
where S1 p > 0 is an open and non-void set of M We claim that P1 is positive

de¯nite in A In fact if P1 has one eigenvalue equal to zero then by Remark 2 1

P1A ´ 0 and since k
pP1A p k

2 n ¡ 1 S1 p ; we conclude that S1 0 which
is a contradiction On each connected component of A we have that

hP1rS1;rS1i 0

and

jrAj
2 ¡ jrS1j

2 0:

Since P1 is positive de¯nite the ¯rst equation implies that rS1 0 This implies

that jrAj
2 0 by the second equation i e the second fundamental form of M is

covariant constant It follows that the component A is a piece of a Cli®ord torus

by using the following theorem of H B Lawson [L] { Theorem 4 see also [CdCK]
Lemma 3

Theorem 3 2 [L] Let Mn be an isometrically immersed hypersurface of Sn+1

over which the second fundamental form is covariant constant Then up to isome-
tries of Sn+1 Mn is an open set of Sk r £ Sn¡k p1 ¡ r2

Finally since along the boundary of A kAk
2 S2

1 0 we conclude that
@A ; and M is a Cli®ord torus ¤

4 Characterization of index one closed hypersurfaces with R 1
in the real projective space

In this section we will assume that the operator L1 is elliptic and will describe the

index of closed hypersurfaces in the real projective space P R n+1 In order to do

that we are going to use the covering map of Sn+1 onto P R n+1 The following

result will be needed
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Lemma 4 1 Let Mn Sn+1 is a closed orientable hypersurface with R 1

Then the index of the quadratic form

I f; f ¡Z
M

fT1fdM

¡Z
M

fL1f + n¡ 1 S1 ¡ 3S3 f2dM

is greater than one

Proof First of all observe that for constant functions f const: we have that

I f; f ¡ Z
M

fL1f + n¡ 1 S1 ¡ 3S3 f2dM

¡ Z
M

n¡ 1 S1 ¡ 3S3 f2dM < 0:

Thus ind M ¸ 1
Suppose that this index is equal to one Let fe1; : : : ; en+2g be an orthonormal

basis of Rn+2 If we write the normal vector ¯eld of the immersion as N
n+2

Xi 1

niei

we obtain that
L1 ni 3S3ni; for all i 1; : : : ; n + 2:

Thus

I ni; ni ¡Z
M

n¡ 1 S1 n2
i
dM · 0:

Since the functions ni are linearly independent the index one hypothesis implies

that n ¡ 1 of the n0is have to be null and since jN j 1 after reordering if
necessary we have n1 1 and ni 0 for i 2; : : : ; n+2 Thus the normal vector
¯eld N e1 This implies that Mn is totally geodesic On the other hand since

L1 is elliptic we have that S1 > 0 and this contradicts the fact that Mn is totally
geodesic We conclude then that ind M > 1

The main result of this section is the following characterization of index one

closed hypersurfaces of P R n+1

Theorem 4 1 Theorem 2 of the introduction Let x : Mn P R n+1 1 be a
closed two-sided hypersurface with scalar curvature one Then Ind M ¸ 1 and

if Ind M 1 M is the Cli®ord hypersurfaces obtained by the projection of the

Cli®ord torus of Theorem 3 1

Proof The proof is inspired by the proof of the minimal case in [dCRR] Observe

that the index one hypothesis implies that M must be connected Since by lemma
4 1 Sn+1 does not have an index one hypersurface with R 1 x cannot lift to an
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immersion of M into Sn+1 Thus we obtain that there exists a connected twofold
covering fM M and an isometric immersion

e
x : fM Sn+1 which is locally

congruent to the immersion of M in P R n+1 An object in fM that corresponds

to an object in M will be denoted by the same notation as in M If we denote by
¼ : fM fM the isometric involution induced by the covering then

e
x must satisfy

e
x ± ¼ ¡

e
x

and since

e
x M is two-sided fM is orientable and

N ± ¼ ¡N;

where N is the unit normal vector ¯eld of the immersion We have that the

immersion

e
x is such that R 1 and S3 6 0 By ellipticity we can choose the

orientation of fM in such way that S1 > 0
Let ¸1 be the ¯rst eigenvalue of the operator

T1 ' L1 ' + n¡ 1 S1 + 3S3 ':

We know that its ¯rst eigenspace is one-dimensional and generated by a function

' that does not change sign on fM Now let '1 ' ± ¼ Since ¼ is an isometry
we obtain that T1 '1 ¸1'1 This implies that ' §' ± ¼ Observe that if

' ¡' ± ¼ ' has to change sign on fM Thus ' ' ± ¼

From the fact that Ind M 1 we obtain that any function u : fM R such

that u ± ¼ u and Z

fM
u'dfM

0 satis¯es

I u; u ¡Z

fM
fuL1u + n¡ 1 S1 + 3S3 u2

gdfM ¸ 0:

Moreover if such a function u satis¯es I u; u 0 then u is a Jacobi function
that is

L1u + n¡ 1 S1 + 3S3 u 0:

Given a; b 2 Rn+2 let Áa;b : fM Rn+2 be de¯ned by

Áa;b h

e
x; ai

e
x + hN; aiN + h

e
x; biN:

By doing the calculation coordinatewise and using equations 3 and 4 we have

that
L1

e
x ¡ n¡ 1 S1

e
x

and
L1 N 3S3N:

Thus

L1 h

e
x; ai

e
x ¡2 n¡ 1 S1h

e
x; ai

e
x¡ P1A at ;

L1 hN; aiN 6S3hN; aiN ¡ P1A2 at

and
L1 h

e
x; biN [¡ n¡ 1 S1 + 3S3]h

e
x; biN ¡ P1A bt ;
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where at; bt are the tangent projection of a and b This implies that
T1 Áa;b ¡[ n¡ 1 S1 + 3S3][h

e
x; ai

e
x¡ hN; aiN ] + Xa;b; 16

where Xa;b is a tangent vector ¯eld Then

¡Z

fM
hT1 Áa;b ; Áa;bidfM

Z

fM
[ n¡ 1 S1 + 3S3][h

e
x; ai2 ¡ hN; ai

2 ¡ h

e
x; bihN; ai]dfM :

Now by 2 we have

Z

fM
[ n¡ 1 S1 + 3S3]h

e
x; bihN; aidfM

¡Z

fM
fhN; aiL1 h

e
x; bi ¡ h

e
x; biL1 hN; ai gdfM

0:

Thus

¡Z

fM
hT1 Áa;b ; Áa;bidfM Z

fM
[ n¡ 1 S1 + 3S3][h

e
x; ai

2 ¡ hN; ai
2]dfM : 17

Observe that the above expression does not depend on b We are going to show

that for any a 2 Rn+2 it is possible to choose b 2 Rn+2 such that Z

fM
'Áa;bdfM

0

To do this consider a linear map F : Rn+2 Rn+2 given by

F b Z

fM
'h

e
x; biNdfM :

We claim that F is injective thus a linear isomorphism In fact if b
6

0 is
such that F b 0 one has that 17 with Á Á0;b h

e
x; biN implies that

I Á; Á 0:

Then T1 Á 0 On the other hand for a 0

T1 Á X0;b ¡P1A bt 0; 18

where bt is the tangent projection of b along

fM
Since P1 is positive de¯nite 18

says that A bt 0 on fM which is the same that hN; bi is constant along

fM As

we have that N ± ¼ ¡N we get that hN; bi 0 This implies that the function
u h

e
x; bi satis¯es that Hessu X; Y hX; Y iu We need the following result of

M Obata

Theorem 4 2 [O] { Theorem A In order that a complete Riemannian man-
ifold of dimension n ¸ 2 admit a non-constant function Á with HessÁ X; Y
c2ÁhX; Y i it is necessary and su±cient that the manifold be isometric to a sphere
Sn c of radius 1

c in the n + 1 Euclidean space
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Thus if u is non-constant then fM is isometric to a unit sphere and since

fMis isometrically immersed in Sn+1 1 this implies that fM is totally geodesic On

the other hand if u is constant fM is totally umbilic Since S2 0

fM is again
totally geodesic In both cases S2

1 jAj
2 0 which is a contradiction to the fact

that S1 > 0 Thus the claim is proved

Take an orthonormal basis fa1; : : : ; an+2g of Rn+2 By using the isomor-
phism F for any i 1; : : : ; n + 2 it is possible to ¯nd bi 2 Rn+2 such that
Z

fM'
Áai;bidfM

0 Thus each coordinate Áij of Áai;bi is such that Z

fM
'ÁijdfM

0

Then I Áij ; Áij ¸ 0 From equation 17 we have

0 ·
n+2

Xi 1

Z

fM
[ n¡ 1 S1 + 3S3][h

e
x; aii2 ¡ hN; aii2]dfM

n+2

Xi 1

Z

fM
[ n¡ 1 S1 + 3S3] j

e
xj

2 ¡ jN j
2 dfM

0:

This implies that T1 Áai;bi 0; i 1; : : : ; n + 2 Hence
hT1 Áai;bi ;

e
xi 0 and

by equation 16 we obtain that
[ n¡ 1 S1 + 3S3]h

e
x; aii 0; i 1; : : : ; n + 2:

But this is only possible if n¡1 S1+3S3 0 Since k
pP1Ak

2 ¡3S3 n¡1 S1

theorem 3 implies that fM is a Cli®ord torus ¤
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