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Isospectral simply-connected homogeneous spaces and the
spectral rigidity of group actions

Craig J Sutton

Abstract We generalize Sunada's method to produce new examples of closed locally non-
isometric manifolds which are isospectral In particular we produce pairs of isospectral simply-
connected locally non-isometric normal homogeneous spaces These pairs also allow us to see

that in general group actions with discrete spectra are not determined up to measurable conjugacy
by their spectra In particular we show this for lattice actions
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1 Introduction

Spectral geometry is the study of the relationship between the geometry of a Rie-
mannian manifold X; m and the spectrum of the associated Laplace{Beltrami
operator ¢ acting on C1 X Speci¯cally one is concerned with the extent to
which the spectrum encodes geometric information While the spectrum does

determine some geometric properties such as total scalar curvature volume and
dimension in general it does not determine a Riemannian manifold up to isometry
This was demonstrated for the ¯rst time by Milnor in 1964 when he produced ex-
amples of 16-dimensional tori which are isospectral yet non-isometric [Mil] Hence

in order to better understand the interplay between the geometry of a Riemannian
manifold and its spectrum other such examples must be studied

During the past two decades many new non-isometric isospectral spaces have

been found e g [GW] [BT] [BG] [Gt1] [Gt2] [Gor1] [Sza1] and [GGSWW] 1

The ¯rst examples of topological signi¯cance were produced by Vign¶eras and Ikeda

In [Vig] examples of 3-dimensional hyperbolic spaces with non-isomorphic funda-
mental groups were constructed and in [Ike] isospectral lens spaces were produced
These examples demonstrated for the ¯rst time that the topology of the manifold

1 For a more comprehensive discussion of the spectral geometry landscape the reader is en-
couraged to see [Gor2]
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is not a spectral invariant However it is worth noting that these isospectral spaces

along with all other understood examples have a common universal cover
Inspired by a result from number theory Sunada produced the ¯rst general

method for constructing pairs of isospectral manifolds

Theorem 1 1 Sunada's method [Sun] Let X; m and X0; m0 be Rieman-
nian manifolds and ¼ : X X0 be a ¯nite Riemannian covering with covering

transformation group G Now suppose ¼1 : X1 X0 and ¼2 : X2 X0 are the

Riemannian coverings corresponding to subgroups ¡1;¡2 · G respectively If for
every g 2 G we have # gG \ ¡1 # gG \ ¡2 where gG denotes the conjugacy
class of g then X1 and X2 are isospectral

Many of the examples of isospectral pairs that arise in the literature can be

explained by Sunada's method or one of its generalizations One generalization
that will be of interest to us is the following

Theorem 1 2 Sunada{Pesce method [Pes] Let X; m be a Riemannian man-
ifold G · Isom X; m closed K the generic stabilizer of the action of G on X
see Section 2 2 and ¡1;¡2 · G be discrete such that the manifolds ¡1nX and

¡2nX are compact If the quasi-regular representations ¼G¡1
and ¼G

¡2
of G are

K-equivalent see Section 2 1 then the Riemannian quotients ¡1nX; m1 and

¡2nX;m2 are isospectral

As with all previous generalizations of Sunada's method pairs arising in this
manner are not simply-connected Also the resulting pairs have a common Rie-
mannian covering namely X and consequently are locally isometric This causes

us to wonder whether one can generalize Sunada's method so that it produces

locally non-isometric simply-connected isospectral pairs

A natural approach to this would be to take quotients of simply-connected Lie
groups by non-trivial connected subgroups which leads us to the following long
standing problem in the spectral geometry community

Question Are there examples of Riemannian manifolds X;m such that one

can ¯nd H1; H2 · Isom X; m non-trivial and connected such that the quotient
manifolds X H1; m1 and X H2; m2 are isospectral yet non-isometric

In this paper we are able to answer this question positively Using a gener-
alization of the Sunada{Pesce method and a result of Larsen and Pink [LP] we

establish the following

Main Result Theorem 3 6 There exists a connected simply-connected semi-
simple real Lie group H which for in¯nitely many n 2 N admits reducible faithful
representations ½1; ½2 : H SU n where ½1 6 a

»
½2 see De¯nition 3 1 and H1
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½1 H and H2 ½2 H are not conjugate by Aut SU n If we equip SU n with
a bi-invariant metric m then the simply-connected normal homogeneous spaces

SU n H1; m1 and SU n H2;m2 are isospectral yet locally non-isometric

Recently we have learned that Schueth has also obtained examples of isospec-
tral homogeneous spaces [Sch2] In fact she produces a continuous family of
pairwise isospectral left-invariant metrics on a simply-connected Lie group Our
examples can be distinguished from Schueth's in that they are normal homoge-
neous spaces; that is they have the metric induced by the bi-invariant metric on G
and our spaces are quotients of G by non-trivial connected subgroups H1; H2 · G
which are representation equivalent see De¯nition 2 1 They can also be distin-
guished from Schueth's examples in that the method of construction necessitates

an enormous dimension for the resulting homogeneous spaces An estimate shows

the simplest example to have a dimension on the order of 1010

The spaces constructed in this paper along with those of Schueth [Sch1 Sch2]
Gordon [Gor3] and Szab¶o [Sza2] are the only known examples of closed simply-
connected locally non-isometric isospectral spaces Schueth Gordon and Szab¶o
construct their isospectral spaces by ¯xing a particular simply-connected manifold
and then creating isospectral metrics on this space through various interesting

techniques Consequently the resulting isospectral spaces are always homeomor-
phic At the present time it is unclear to the author whether the isospectral pairs

presented in this paper are homeomorphic A negative answer would demonstrate

for the ¯rst time that the universal cover is not a spectral invariant 2

The structure of this paper is as follows In Section 2 we will discuss the proof
of the generalized Sunada{Pesce method We will use this method in Section 3 to
construct new examples of isospectral yet locally non-isometric pairs of Rieman-
nian manifolds In Section 4 we will establish a method for constructing isospectral
¯ber bundles with isospectral ¯bers Finally we recall that a well-known theorem
of von Neumann states that two actions of an abelian locally compact group with
discrete spectra are measurably conjugate if the actions are isospectral [vN] In
Section 5 we will use the examples constructed in Section 3 to demonstrate that
group actions with discrete spectra are not classi¯ed up to measurable conjugacy
by their spectra and hence von Neumann's result is not true in general

Notation We will use the following notation

1 We will let Spec ¢ denote the spectrum of the Laplacian taking multiplic-
ities into account

2 Given a representation ½ : G GL V of a Lie group G we will let ResG
H ½

denote the restriction of ½ to H for any subgroup H · G

2 In looking for simpler candidates for non-homeomorphic isospectral simply-connected spaces
one might consider the Alo®{Wallach spaces [AW] as normal homogeneous spaces These spaces
are simply-connected however it can be shown that isospectral normal homogeneous Alo®{
Wallach spaces are necessarily isometric and hence homeomorphic see [Bla] [JLPR] or [Sut]



704 C J Sutton CMH

3 Given a Lie group G a closed subgroup H · G and a representation ¿ :
H GL V we will let IndG

H ¿ denote the induced representation see

p 705

4 Given two representations ½1 : G1 GL V1 and ½2 : G2 GL V2 we let
½1  ½2 : G1 £ G2 GL V1 V2 denote the outer tensor product given
by ½1  ½2 g1; g2 ½1 g1  ½2 g2

5 Given two representations ½; V and ¿; W of a Lie group G we will let
[½ : ¿ ] denote the multiplicity of ¿ in ½ In the case where E is a ¯eld
extension of F we will let [E : F ] denote the degree of the extension

6 We will use the symbol \·" to denote both vector subspaces and subgroups

Acknowledgements The work presented in this paper is part of my thesis [Sut]
carried out at the University of Michigan It is my great pleasure to thank my
advisor Ralf Spatzier for introducing me to the area of spectral geometry and
more importantly for being a generous and supportive mentor I am also indebted
to Gopal Prasad for making me aware of the work of Larsen and Pink concerning
dimension data and to Krishnan Shankar for discussing homogeneous spaces with
me Thanks also go to the referee for providing helpful comments concerning the

exposition of this article

2 Generalized Sunada{Pesce method

Developing techniques for constructing isospectral manifolds is one of the central
concerns of inverse spectral geometry The examples these techniques yield allow
us to discover the geometric data that cannot be recovered from the spectrum of
the Laplacian In this section we will generalize Sunada's well-known method for
constructing pairs of isospectral manifolds More speci¯cally we will generalize the

Sunada{Pesce method to allow one to obtain isospectral pairs by taking quotients

by non-trivial connected groups By considering such quotients we open up the

possibility that the resulting isospectral pairs need not have a common Riemannian
covering or common universal cover which is impossible under other versions of
Sunada's method In fact in Section 3 we will show that through this method we

can construct many pairs of isospectral simply-connected locally non-isometric
spaces We begin by reviewing the concept of relatively equivalent representations

2 1 Relative equivalence

Two representations ½1 : G GL V1 and ½2 : G GL V2 of a Lie group G
are said to be equivalent denoted by ½1 » ½2 or ½1; V1 » ½2; V2 if there

exists a vector space isomorphism T : V1 V2 such that ½2 g ± T T ± ½1 g
for any g 2 G Now consider a representation ½ : G GL V of a unimodular
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Lie group G For any compact subgroup K of G and any representation ¿; W of
K we may consider the vector subspace V ¿ ´ ©V® · V where the direct sum is
taken over K-invariant subspaces V® · V such that ResG

K ½ ; V® » ¿; W The

representation ResG
K ½ ; V ¿ can then be extended to a representation of G by

considering the vector space

V¿ ´ \fL · V : V ¿ · L and L is G-invariantg:

This subrepresentation will be denoted by ½¿ ; V¿ For any two representations

½; V and ~½;
e
V of G we will agree to say they are ¿ -equivalent denoted by

½ »¿ ~½ or ½; V »¿ ~½;
e
V if the subrepresentations ½¿ ; V¿ and ~½¿ ;

e
V¿ are

equivalent
In this paper we will be concerned with representations of G which are 1K-

equivalent where 1K denotes the trivial representation of K on C To be consistent
with [Pes] we will refer to this as K-equivalence and we will denote V 1K and

½1K ; V1K by V K and ½K ; VK respectively As usual we will let
b
G denote the

set of equivalence classes of irreducible representations of G and we will agree to
let

b
GK denote the set of equivalence classes of representations of G which admit

non-trivial K-¯xed vectors; that is
b
GK ´ f[ ½; V ] 2 b

G : VK 6 0g We will
illustrate the concept of K-equivalence by constructing two representations of a
group G which are K-equivalent for some subgroup K · G but not equivalent
In doing this it will be useful to review the method of induction

Let G be a locally compact group H a closed subgroup and ½ : H GL V
a unitary representation of H The representation ½ gives a representation of G
known as the induced representation denoted by IndG

H ½ which acts on the

vector space

e
V ´ ff : G V L2-function : f gh ½ h ¡1f g for all h 2 H;

almost every g 2 Gg

by
IndG

H ½ g f x ´ f g¡1x

for any g 2 G and f 2 e
V In the case where ½ 1H is the trivial representation

of H IndG
H ½ is a representation of G on L2 G H known as the quasi-regular

representation of G with respect to H which we will denote by ¼G
H We now

make the following observation

Observation Let G be a Lie group Now consider subgroups K;H1; H2 · G
closed such that KnG Hi fpointg equivalently Hi acts transitively on KnG

for i 1; 2 then ¼G
H1 »K ¼G

H2 If G is compact and dim G H1 6 dim G H2

then we may conclude ¼G
H1 6» ¼G

H2

For n ¸ 2 we can see that if G SO 4n ; H1 U 2n ; H2 Sp n and
K SO 4n¡1 then the above implies that the representations ¼G

H1
and ¼G

H2
are
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K-equivalent yet inequivalent Indeed we view K as a subgroup of G under the

imbedding A 7 [1]©A and we consider H1 and H2 as subgroups of G by using the

standard imbedding of complex and quaternionic matrices into the real matrices

see [Kna p 34-36] Then since H1 and H2 act transitively on S4n¡1 KnG
we see that KnG Hi fpointg for i 1; 2 Hence ¼G

H1 »K ¼G
H2

however since

dim G H1 6 dim G H2 for n ¸ 2 we ¯nd that ¼G
H1 6» ¼G

H2
We conclude this section with a little jargon

De¯nition 2 1 Let G be a compact Lie group and K · G compact We will say
that two closed subgroups H1; H2 · G are

1 Representation equivalent if ¼G
H1 » ¼G

H2

2 K-equivalent if ¼G
H1 »K ¼G

H2

2 2 The method

Before stating our method for constructing isospectral Riemannian manifolds we

recall the notion of the generic stabilizer

De¯nition 2 2 Suppose G is a Lie group which has a proper C1-action on a
manifold X For each x 2 X let Gx denote the stabilizer of x There exists a
subgroup K of G called the generic stabilizer with the following properties:

1 For all x 2 X K is conjugate to a subgroup of Gx

2 There exists an open and dense subset U in X such that for all x 2 U K
and Gx are conjugate

Orbit spaces of the type G K are known as principal orbits

With this terminology we may now state the following proposition

Theorem 2 3 Generalized Sunada{Pesce technique Let X; m be a compact
Riemannian manifold and G · Isom X; m a compact Lie group We will let K
denote the generic stabilizer of the action of G on X Now suppose H1; H2 · G
are closed K-equivalent subgroups which act freely on X and are such that the

Riemannian submersions ¼i : X X Hi i 1; 2 have totally geodesic ¯bers It
then follows that the Riemannian manifolds X H1 and X H2 are isospectral on
functions

As in Pesce's original paper [Pes] the proof of this theorem is an application
of Frobenius' reciprocity theorem and a result of Donnelly But ¯rst we recall the

following result
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Lemma 2 4 Let Ek; m and Bn; mB be Riemannian manifolds Let ¼ : E;m
B; mB be a Riemannian submersion with totally geodesic ¯bers then the

eigenfunctions of B are functions whose pullbacks are eigenfunctions on E In
fact if f is an eigenfunction of ¢B with eigenvalue ¸ then its pullback f ± ¼ is an
eigenvalue of ¢E with eigenvalue ¸ Hence we see that Spec ¢B ½ Spec ¢E

Proof Let f 2 L2 B be such that ¢Bf ¸f and let ~f f ± ¼ 2 L2 E be its

pullback to E Now ¯x x 2 E and let f°1; :::; °kg be a collection of geodesics such
that °i 0 x for all i and f _°1 0 ; :::; _°k 0 g is an orthonormal basis for TxE with
f _°1 0 ; :::; _°n 0 g vertical that is tangent to the ¯ber through x Then

¢E
~f x ¡

k

X
1

d2

dt2
~f ± °i 0

¡
k

X
n+1

d2

dt2
~f ± °i 0

¡
k

X
n+1

d2

dt2 f ± ¼ ± °i 0

¢Bf ¼ x

¸ ~f x :

1

This shows us that pullbacks of eigenfunctions on B are eigenfunctions on E with
the same eigenvalue So we obtain Spec ¢B ½ Spec ¢E ¤

Proof of Theorem 2 3 Let ¢;¢1; and ¢2 denote the Laplace{Beltrami operator
on X; X H1 and X H2 respectively Since ¼i : X X Hi i 1; 2 has totally
geodesic ¯bers it follows from Lemma 2 4 that Spec ¢i ½ Spec ¢ for i 1; 2 We

also recall that the action of Isom X;m on L2 X commutes with the Laplacian
Hence Isom X; m preserves the eigenspace decomposition of L2 X So for any

¸ 2 Spec ¢ and H · Isom X; m closed we have a representation ¼H¸ of H on
L2 X; m ¸ given by ¼H

¸ h :f f ± h¡1 In our situation we will be interested in
¼G
¸ ; ¼H1

¸ ; and ¼H2

¸ for ¸ 2 Spec ¢
Now it is clear that for any ¸ 2 Spec ¢ we have dim L2 X Hi ¸ [¼Hi¸ : 1Hi]

Indeed for H · Isom X; m closed we let L2 X H ff 2 L2 X : h:f
f for all h 2 Hg One can see that L2 X H L2 X H and it follows that
L2 X H ¸ L2 X H¸

Hence dim L2 X H ¸ [¼H
¸ : 1H ] We may now conclude

that X H1; m1 and X H2; m2 are isospectral if and only if [¼H1

¸ : 1H1 ]
[¼H2

¸ : 1H2 ] for all ¸ 2 Spec ¢ Since it is clear that for every H · G ¼H
¸

ResG
H ¼G

¸ Frobenius reciprocity gives us the following:



708 C J Sutton CMH

[¼Hi¸ : 1Hi ] [ResG
Hi ¼G

¸ : 1Hi ]

h ResG
Hi ³X

½2 b
G

[¼G
¸ : ½]½´ : 1Hii

X
½2 b

G

[¼G
¸ : ½][ResG

Hi ½ : 1Hi ]

X
½2 b

G

[¼G
¸ : ½][IndG

Hi 1Hi : ½]

X
½2 b

G

[¼G
¸ : ½][¼G

Hi : ½]:

2

We now recall the following theorem of Donnelly

Theorem 2 5 [Don] p 25 Let G be a compact Lie group and X a compact
smooth G-space with principal orbit type G K; that is K is the generic stabilizer of
the G-action on X Then the decomposition of L2 X into G-irreducibles contains

precisely those ¯nite dimensional representations appearing in the decomposition
of ¼G

K
IndG

K 1K the quasi-regular representation of G with respect to K Also

if the orbit space X G has dimension greater than 1 then each irreducible appears

an in¯nite number of times

Now by Frobenius reciprocity we have [¼G
K

: ½] [ResG
K ½ : 1K ] for each ½ 2 b

G
So we conclude from the above theorem that [¼G

¸ : ½]
6

0 for some ¸ 2 Spec ¢ if
and only if ½K is non-trivial Consequently for i 1; 2 we see that

[¼Hi¸ : 1Hi ] X
½2 b

GK

[¼G
¸ : ½][¼G

Hi : ½]:

Finally as a result of the K-equivalence of ¼G
H1

and ¼G
H2

we obtain isospectrality

¤

3 Building new examples

In this section we will use Theorem 2 3 along with a result of Larsen and Pink [LP]

to produce the ¯rst pairs of non-isometric isospectral manifolds which are of the

form X H1; m1 and X H2; m2 where H1; H2 · Isom X; m are nontrivial and
connected In particular we will obtain the ¯rst examples of isospectral simply-
connected locally non-isometric normal homogeneous spaces

We begin by introducing a slightly more general notion of equivalence of rep-
resentations

De¯nition 3 1 Two representations ¿1 : G GL V1 and ¿2 : G GL V2 are
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said to be automorphically equivalent denoted ¿1 a

»
¿2 or ¿1; V1 a

»
¿2; V2 if

there exists a Lie group automorphism ® : G G and a vector space isomorphism
T : V1 V2 such that T ± ¿1 g ¿2 ® g ± T for all g 2 G

Clearly equivalence implies automorphic equivalence just by taking ® to be the

identity map However a dramatic di®erence between these two de¯nitions can be

obtained by considering the irreducible representations of the additive group R
For each µ 2 C we obtain an irreducible representation of R on C given by ¼µ x v
e2¼iµxv for any x 2 R and v 2 C These are all the inequivalent irreducible
representations of R but we see that for µ; # 2 Rnf0g ¼µ x ¼#

µ
#x hence all

of the non-trivial irreducible representations are automorphically equivalent 3

Now consider G a connected complex reductive Lie group and let ½ : G
GL V be a faithful representation of dimension n The dimension data of

½; V is de¯ned as

f ¾ : GL V GL W ; dim W G : ¾ is a homomorphism and dimW < 1g:

The objective of [LP] is to determine the extent to which the dimension data of
½; V determines the group G and/or the representation ½ : G GL V The

main result of their paper is the following

Theorem 3 2 [LP] p 377 Let G be a connected complex Lie group with ½; V
a ¯nite dimensional faithful representation Then

1 The dimension data determine G up to isomorphism That is if ¿ : G0

GL V is another representation of a connected complex Lie group G0 with
the same dimension data then G and G0 are isomorphic as Lie groups

Notice that G and G0 act on the same vector space V

2 If ½ is irreducible the dimension data determine ½ up to automorphic equiv-
alence That is if there exists another faithful irreducible representation
¿ : G GL V of G with the same dimension data then ½ and ¿ are
automorphically equivalent

3 There exists a G as above which admits a countably in¯nite number of pairs

of reducible representations ½1; V and ½2; V of G where V is of arbi-
trarily large dimension such that ½1 and ½2 have the same dimension data
and ½1 6 a

»
½2

Remark 3 3 In [LP] the term automorphically equivalent is not used Instead
they use isomorphic We have introduced this term so as not to cause confusion
with the usual notion of equivalence which is sometimes referred to as isomorphic

Our interest lies in the third part of the above theorem We note that the

3 This example was pointed out to the author by A Knapp A less dramatic example is obtained
by comparing the standard representation of i : SU n GLn C and ¾ : SU n GLn C

given by ¾ g i g where the bar denotes complex conjugation
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method Larsen and Pink employ to produce the automorphically inequivalent
pairs of representations with the same dimension data actually yields self-dual
representations That is in the above ½1 » ½

¤1
and ½2 » ½

¤2
where for any

representation ¿ : G GL W ¿ ¤ g ´ ¿ g¡1 t is the contragredient represen-
tation Indeed we recall that on p 392 of [LP] the group G is constructed as a
product of non-isomorphic semisimple Lie groups G1; : : : ; Gr whose root systems

©1; : : : ; ©r ½ BCn are subsystems of maximal rank n They then choose formal
characters v1; : : : ; vr 2 Z[¤BCn ]Wn ´ Z[Zn]Wn where Wn f§1g

n o Sn is the

Weyl group of BCn and Sn is the permutation group on n elements such that for
all i; j 1; : : : ; r there exists a faithful representation ½ij : Gi GL Vij with
formal character vj Since the formal character vj is invariant under f§1g

n o Sn
it follows that if ¸ is a weight of vj then so is ¡¸ Hence any representa-
tion with formal character vj is self-dual Larsen and Pink then consider the

faithful representations ½1 ©¾2Ar ½1¾ 1  ¢ ¢ ¢  ½r¾ r : G GL V1 and
½2 ©¾2Sr¡Ar ½1¾ 1  ¢ ¢ ¢  ½r¾ r : G GL V2 where

V1 M
¾2Ar

V1¾ 1  ¢ ¢ ¢  Vr¾ r

and
V2 M

¾2Sr¡Ar
V1¾ 1  ¢ ¢ ¢  Vr¾ r :

It is then clear that ½1 » ½
¤1

and ½2 » ½
¤2

and that V1 ¼ V2 ´ V The representa-
tions ½1; V and ½2; V are the representations alluded to in Theorem 3 2 3

If one now considers compact real forms we see that part three of Theorem 3 2
can be recast as follows

Corollary 3 4 There exists a compact connected semisimple real Lie group H
such that for in¯nitely many n 2 N there exist faithful representations ½1; ½2 :
H SU n with the same dimension data and such that ½1 6 a

»
½2 and ½1 6 a

»
½

¤2In fact H1 ½1 H and H2 ½2 H are not conjugate by Aut SU n ; that is
there are no automorphisms ® of SU n such that ® H1 H2

Proof The ¯rst part of this theorem is standard representation theory and follows

for example from [Var Theorem 4 11 14] As for the statement concerning the

non-conjugacy of H1 and H2 we recall the following

Proposition 3 5 see p 56 of [Oni2] Let G be a connected simple non-abelian
compact Lie group and H a connected and simply-connected Lie group

1 Let ¾; ¿ : H G be two homomorphisms with discrete kernels Then there
exists ® 2 Aut G such that ® ¾ H ¿ H if and only if ¿ ® ± ¾ ± ¯
for a certain ¯ 2 Aut H

2 Two homomorphisms ¿; ¾ : H SU n are conjugate by Aut SU n if
and only if ¿ » ¾ or ¿ » ¾¤ Here conjugate by Aut SU n means there
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exists ® 2 Aut SU n such that ¿ ® ± ¾

Now let's suppose ® H1 H2 for some ® 2 Aut SU n Then the ¯rst part
of the above shows us that ½2 ® ± ½1 ±¯ for some ¯ 2 Aut H The second part
of Proposition 3 5 then implies that ½2 » ½1 ± ¯ or ½2 » ½

¤1 ± ¯ That is ½2 a

»
½1

or ½2 a

»
½

¤1
which is a contradiction Hence H1 and H2 are not conjugate by

Aut SU n ¤

Now let H1 ½1 H ; H2 ½2 H · SU n be two realizations of H as in
Corollary 3 4 Since H1; H2 · SU n have the same dimension data with respect
to the standard representation of SU n it follows from Frobenius' Reciprocity
that ¼G

H1 » ¼G
H2

Now if we consider SU n with the bi-invariant metric then it
is clear that SU n acts on itself by isometries and that ¼i : SU n SU n Hi
the projection mapping is a Riemannian submersion with totally geodesic ¯bers

for i 1; 2 It then follows from Theorem 2 3 that the quotient spaces SU n H1
and SU n H2 are isospectral From their construction as quotients of SU n it is
clear from O'Neill's formula [O'N] that these spaces have non-negative sectional
curvature We also note that it follows from the exact homotopy sequence of a weak
¯bration that these spaces are simply connected see [Swi Chapter 4] We now
turn our attention to the task of showing these spaces are locally non-isometric

It is well-known that simply-connected homogeneous spaces are isometric if and
only if they are locally isometric Consequently it is enough to show that these

spaces are non-isometric In [Oni1] the isometry groups of homogeneous spaces

are studied and we see that for i 1; 2 the connected component of the identity
element Isom G Hi 0 is the locally direct product of G and [NG Hi Hi]0 which
is denoted by G ¢

[NG Hi Hi]0 As Hi and G are connected and Hi is semi-simple
it follows that [NG Hi Hi]0 » ZG Hi 0 for each i Hence for i 1; 2 we have

Isom G Hi 0 » G ¢ ZG Hi 0

and
Isom G Hi 0

¹ei » Hi ¢ ZG Hi 0;

where ¹ei ¼i e and ¼i : G G Hi is the canonical projection for i 1; 2
We now assume there is an isometry f : G H1; m1 G H2; m2 Without

loss of generality we may assume that f ¹e1 ¹e2 The isometry f then induces a

Lie group isomorphism ® : Isom G H1
0 Isom G H2

0 given by ® ª f ±ª±
f¡1 Since ® must map simple factors to simple factors and G SU n is a simple
factor contained in neither ZG H1 or ZG H2 we conclude that ® G G and
® ZG H1

0 ZG H2
0 Also since ® Isom G H1

0
¹e1 Isom G H2

0
¹e2 it follows

that ® H1 H2 So we see that our isometry f induces an automorphism ® :
G G such that ® H1 H2 which is a contradiction by Corollary 3 4 Hence

our spaces are not isometric and consequently they are locally non-isometric
We may summarize our work thus far as follows
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Theorem 3 6 There exists a connected simply-connected semi-simple real Lie
group H which for in¯nitely many n 2 N admits reducible faithful representa-
tions ½1; ½2 : H SU n where ½1 6 a

»
½2 and H1 ½1 H and H2 ½2 H

are not conjugate by Aut SU n If we equip SU n with a bi-invariant metric
m then the simply-connected normal homogeneous spaces SU n H1; m1 and
SU n H2; m2 are isospectral yet locally non-isometric

Remark 3 7 We o®er the following comments

1 It is clear that if one picks ¡1; ¡2 · SU n discrete such that [¼G
¡1

: ½]

[¼G
¡2

: ½] for all ½ 2 \SU n H1 \SU n H2 then ¡1n SU n H1 and

¡2n SU n H2 are isospectral yet locally non-isometric
2 There is no SU n -equivariant homeomorphism between SU n H1 and

SU n H2 However we cannot at this time determine whether the spaces

are homeomorphic
3 The smallest value of n in Theorem 3 6 will be quite large this follows from

the comment on p 393 of [LP] In fact we estimate that the dimension of
the smallest resulting homogeneous space is on the order of 1010

4 Isospectral ¯ber bundles

In the previous section we saw that the study of dimension data can lead to
examples of isospectral pairs which are quotients of compact Lie groups In this
section we will show that by considering dimension data we can also ¯nd isospectral
pairs which arise as quotients of Lie groups of non-compact type Indeed we will
establish the following result

Proposition 4 1 Let G be a semisimple Lie Group of non-compact type K · G
a maximal compact subgroup and ¡ · G a co-compact lattice Let ½ : G GL V
be a ¯nite dimensional faithful representation so we may consider G to be a closed
linear group Now suppose H1; H2 · K are closed act freely on G and have the

same dimension data with respect to K It follows that ¡nG H1 and ¡nG H2
are isospectral on functions

The spaces ¡nG H1 and ¡nG H2 are ¯ber bundles over ¡nG K with ¯bers

¡\K nK H1 and ¡ \K nK H2 respectively

Proof Endow G with a metric which is left G-invariant and right K-invariant
hence when restricted to K it is bi-invariant Now select a co-compact lattice

¡ · G Then for any ¯nite dimensional unitary representation ¾ : K GL V¾

of K we may construct a locally homogeneous bundle ¼ : E¾ ¡nG K Indeed
let K act on ¡nG £ V¾ by k: x; v xk¡1; ¾ k v Then we let E¾ ¡nG £
V¾ K f x; v : x; v 2 ¡nG £ V¾g where x; v f xk¡1; ¾ k v : k 2 Kg
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We let ¼ : E¾ ¡nG K be given by x; v
7 x Then ¼¡1 x f x; v : v 2 V¾g

is the ¯ber over x 2 ¡nG K
We let L2 ¡nG K; E¾ denote the set of L2-sections of E¾ Then as a vector

space L2 ¡nG K; E¾ is isomorphic to

e
V¾ ´ f e

F :¡nG V¾ :
e
F is L2; ¾ k ¡1

e
F x

e
F xk ; for all k2K; a e x 2 ¡nGg:

This can be seen in the following manner Let F 2 L2 ¡nG K;E¾ then for all x 2
¡nG K we know F x 2 ¼¡1 x Hence F x x;

e
F x Now for F to be well

de¯ned we must have for all x 2 ¡nG and for all k 2 K x;
e
F x » xk;

e
F xk

but this occurs if and only if ¾ k ¡1

e
F x

e
F xk So the correspondence is clear

On
e
V¾ we see that K acts by k:

e
F x

e
F xk ¾ k ¡1

e
F x

We now recall that for any two measure spaces X;¹ and Y; º we have

L2 X £ Y L2 X  L2 Y and if we have an action of a group L on X £ Y

then L2 X £L Y L2 X  L2 Y L Now given that ¡nG ¡nG £K K and
by the Peter-Weyl Theorem L2 K ©¾2 b

K ©
dim ¾

i 1 V¾ we see:

L2 ¡nG L2 ¡nG L2 K K

L2 ¡nG  ©¾2 b
K ©

dim ¾

i 1 V¾
K

©¾2 b
K ©

dim ¾

i 1 L2 ¡nG  V¾
K

©¾2 b
K ©

dim ¾

i 1 L2 ¡nG K;E¾

©¾2 b
K ©

dim ¾

i 1
e
V¾ :

3

Then for any H · K we have L2 ¡nG H L2 ¡nG H
©¾2 b

K ©
dim ¾

i 1 e
V H

¾

In the case that ¾ is a ¯nite dimensional irreducible representation of K we see

that for F 2 e
V¾ we know

e
F ´ 0 or V¾ L Im

e
F the linear span of Im

e
F

Also if
e
F 2 e

V H
¾ H · K then we see Im

e
F ½ V H

¾ These facts imply that
for ¾ 2 b

K and
e
F 2 e

V H
¾ nf0g we have V¾ L Im

e
F ½ V H

¾ ½ V¾ hence we

conclude V H
¾ V¾ if and only if

e
V H

¾ 6
0 Therefore for any H · K we have

L2 ¡nG H ©f¾2 b
K: ResK

H
¾ idg ©

dim ¾

i 1 e
V H

¾

We now recall that the bundle E¾ admits a locally invariant connection rwhich is the push-forward of the invariant connection on the homogeneous bun-
dle ~E¾ G £ V¾ K The connection r de¯nes a quadratic form D¾ on
C1 ¡nG K; E¾ given by

D¾ f Z

¡nG K
krf x k

2dx:

The quadratic form D¾ de¯nes an elliptic operator ¢¾ on L2 ¡nG K; E¾ known
as the Laplace operator If ¾ is irreducible ¢¾ is equal to a shift of the restriction
of the negative of the Casimir element of G by a constant determined by ¾ Now for
any H · K we see that ¢ on L2 ¡nG H is given by ¢ ©f¾2 b

K: ResKH
¾ idg

¢¾

It then follows from this and the above that if H1; H2 · K have the same dimension
data with respect to K then ¡nG H1 and ¡nG H2 are isospectral ¤
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Remark 4 2 If we let H1; H2 ·K ´ SU n be as in Theorem 3 6 G SLn C
and ¡ · G be co-compact then we see that ¡nG H1 and ¡nG H2 are isospectral
¯ber bundles over ¡nG K with isospectral ¯bers ¡\K nK H1 and ¡\K nK H2

5 Group actions and a theorem of von Neumann

We now conclude our paper by considering the spectra of group actions

Let G be a locally compact group and X;¹ a measure space where X is a

G-space and ¹ is a ¯nite G-invariant measure We then obtain a representation of
G on L2 X;¹ given by g ¢f x f g¡1

¢x The decomposition of L2 X;¹ into
G-irreducible representations with their multiplicities taken into account is said
to be the spectrum of the action of G on X If the decomposition of L2 X;¹
into G-irreducibles is a countable direct sum of ¯nite dimensional irreducible rep-
resentations we say that the spectrum of the action is discrete Two G actions

are said to be isospectral if their spectra coincide

A theorem of von Neumann states that two actions of a locally compact abelian
group are measurably conjugate if their spectra are discrete and coincide [vN]
Spatzier considered the problem of spectral rigidity of group actions in the case of
groups of non-compact type and obtained the following result

Theorem 5 1 [Spa] Let G be a non-compact almost simple connected real al-
gebraic group whose complexi¯cation is one of the following types:

1 An with n ¸ 26

2 Bn with n ¸ 27

3 Bn or Dn with n ¸ 13

Then G has properly ergodic actions which are isospectral yet not measurably con-
jugate

However the spectra of these actions are necessarily non-discrete In particular
if G is of non-compact type and X;¹ is a G-space then the G-irreducibles

which occur in the decomposition of L2 X;¹ are in¯nite dimensional Using the

examples constructed in Theorem 3 6 we can show that in general actions with
discrete spectra are not characterized up to measurable conjugacy by their spectra

Indeed we obtain the following result

Proposition 5 2 Let G SU n H1 and H2 be as in Theorem 3 6 Any dense

subgroup £ · G has actions on the measure spaces G H1; dx1 and G H2; dx2
with discrete spectra which are isospectral but the actions are not measurably con-
jugate

Proof Let £ · G be dense and let G act on G H1 and G H2 in the usual way
We then get actions of £ on G H1; dx1 and G H2; dx2 Let us suppose these



Vol 77 2002 Isospectral simply-connected homogeneous spaces 715

£-actions are measurably conjugate That is suppose there exists F : G H1

G H2 a measurable isomorphism such that F µ:x µ:F x for all µ 2 £ When

A ff : G H1 G H2 measurableg is endowed with the topology of convergence

in measure it is a standard Borel space and we have a natural Borel action of G
on A given by g:f x g:f g¡1:x It can be seen that for all f 2 A Gf the

stabilizer of f is closed Since £ is dense and £ ½ GF we have GF G So F
is a G-map The same can be said for F¡1

Now there exists L1 : G H1 G H2 continuous such that F L1 a e and
there exists L2 : G H2 G H1 continuous such that F¡1 L2 a e Then
L2 ± L1 I a e and L1 ± L2 I a e where I denotes the identity From
continuity we obtain equality everywhere Consequently L L1 : G H1 G H2

is a homeomorphism which is also a G-map
It is clear that G¹e1 H1 where ¹e1 eH1 Then since L is a G-map we see

H1 · Gf ¹e1 Hg
2 for some g 2 G From the fact that L is also a homeomorphism

we see Hg
2 · G¹e1 H1 We have thus established that H1 and H2 are conjugate

in G However by construction this is false We are then led to conclude that the

£-actions are not measurably conjugate
Since £ · G is dense we know that the spectra of the £-actions coincide

with the spectra of the respective G-actions By construction the G-actions on
G H1; dx1 and G H2; dx2 have discrete spectra and are isospectral Hence

the £ actions have discrete spectra and are isospectral ¤

From Proposition 5 2 it follows that there are arithmetic lattices which admit
actions with discrete spectra that are isospectral yet not measurably conjugate

Indeed we recall the following result

Proposition 5 3 Restriction of scalars Let F ½ R be an algebraic number
¯eld with d [F : Q] < 1 and let O be the ring of integers in F Now suppose

G · SL n; R is de¯ned over F and let ¾1 id; ¾2; : : : ; ¾d denote the d distinct up
to complex conjugation imbeddings of F in C Then GO imbeds as an arithmetic
lattice in

G¾1
£ ¢ ¢ ¢ £ G¾d

via the natural embedding g
Á

7

¾1 g ; : : : ; ¾d g where G¾i denotes the Galois
conjugate of G by ¾i Furthermore if G is simple then Á GO is irreducible

If we let F Q[p2] then SU m; l m+ l ¸ 2 the set of matrices in SL m+ l
which preserve the quadratic form P

m
i 1 x2

i ¡p2 P
m+l
i m+1 x2

i
is de¯ned over F

In this case the only non-trivial imbedding of F inside C is given by ¾ x+p2y
x¡p2y and O Z[p2] From Proposition 5 3 it follows that ¡ Á SU m; l O
is an irreducible arithmetic lattice in SU m; l £ SU m + l In the case where

min m; l ¸ 1 we see that SU m+ l is the maximal compact factor in SU m; l £
SU m + l and hence it follows from the irreduciblity of ¡ that ¼ ¡ is dense in
SU m+ l where ¼ : SU m; l £SU m+l SU m+l is the canonical projection
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If we now let SU n H1 and H2 be as in Proposition 5 2 then we see that there

is an irreducible arithmetic lattice ¡ in SU n ¡ 2; 2 £ SU n which has actions

on SU n H1 and SU n H2 with discrete spectra that are isospectral yet not
measurably conjugate

Remark 5 4 After a more careful review of the literature we have recently
learned that a counterexample to the spectral rigidity of group actions is con-
tained in [Mac] Mackey observes that if G; H1; H2 is a triple of groups where

H1 and H2 are non-conjugate representation equivalent subgroups of G then the

G-actions on G H1 and G H2 are isospectral but not measurably conjugate He

then gives an example of such a triple of groups taken from [Tod] where G S16 is
the permutation group on 16 elements and H1 and H2 are two order 16 subgroups
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