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Skew loops and quadric surfaces

Mohammad Ghomi¤ and Bruce Solomon

Abstract A skew loop is a closed curve without parallel tangent lines We prove: The only
complete surfaces in R3 with a point of positive curvature and no skew loops are the quadrics

In particular: Ellipsoids are the only closed surfaces without skew loops Our e®orts also yield
results about skew loops on cylinders and positively curved surfaces
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52A15
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1 Introduction

Here we study the relationship between surfaces in R3 and closed curves without
parallel tangent lines Examples of such curves which we call skew loops were

¯rst constructed by B Segre in 1968 [19]1 to disprove a conjecture of H Steinhaus

Quite recently Wu constructed skew loops in every knot class [27] and the ¯rst
author has written down explicit examples on convex surfaces [10] 2 Despite this
general failure of Steinhaus' conjecture however Segre noted that it does hold for
loops that lie on ellipsoids paraboloids and certain symmetric cylinders Here we

add convex hyperboloids to Segre's list show that certain asymmetric cylinders do
admit skew loops and use these facts to prove that the positively curved quadrics

are actually characterized by the absence of skew loops:

Theorem 1 1 Let M be a connected 2-manifold and F : M R3 be a C2 im-
mersion Suppose that F has positive Gauss curvature at a point of M Then the

following are equivalent:
1 F M lies on a quadric surface

2 F M contains no C2 skew loops

¤ The ¯rst author was partially supported by the NSF grant DMS-0204190
1 Porter gave an apparently independent construction in 1970 [17]
2 In [10] skew loops were used to solve the \shadow problem" formulated by H Wente

which is related to the stability of constant mean curvature surfaces
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In particular if F is a complete immersion and admits no C2 skew loops it is an
embedding and M is simply connected

Any loop on a right cylinder over an open planar curve has a pair of vertical
tangent lines and hence cannot be skew So for purposes of the implication 2 1
in Theorem 1 1 the assumption of positive curvature at one point is not super°uous

Moreover since closed surfaces compact 2-manifolds without boundary always

have such a point Theorem 1 1 yields:

Corollary 1 2 Ellipsoids are the only closed C2 surfaces immersed in R3 which
admit no C2 skew loops ¤

Characterizations of ellipsoids have a long and rich history [3 p 151] [16] [13]
Most such theorems however are stated and proved within the class of convex
bodies where the surfaces are a priori embedded and topologically spherical Ours

avoids both these restrictions

We prove Theorem 1 1 by developing a sequence of intermediate results: In
Section 2 we use regular homotopy to show that positively curved surfaces admit no
skew ¯gure-eights Proposition 2 5 Applying this fact in Section 3 we then prove

that convex quadrics have no skew loops This involves a Lorentzian generalization
following [8] and [21] of Jacobi's Theorem on indicatrices that bisect the sphere

[22 p 407] In Section 4 we prove our asymmetric \cylinder lemma" Proposition
4 1 : Any cylinder with a strictly convex asymmetric base contains a skew loop
We then exploit this fact in Section 5 using a stretching argument to show that
surfaces without skew loops have symmetric local cross sections By a result of
W Blaschke this property characterizes quadrics and thus gives Theorem 1 1

We conclude with three appendices The ¯rst proves a result ¯rst stated by
Segre which gives a strong converse to the asymmetric cylinder lemma mentioned
above but still leaves the existence of skew loops on certain cylinders undeter-
mined We discuss this and other open problems in Appendix B then conclude

with a few historical notes in Appendix C

2 Preliminaries: skew loops and their tantrices

A Ck immersed loop is a Ck mapping ° : S1 'R 2¼ R3 with nowhere-vanishing

velocity °0 We say ° is skew i® k ¸ 1 and

°0 t £ °0 s
6

0 2 1

for all distinct t; s 2 R 2¼ The tantrix of ° is the mapping ¿ : S1 S2 given by
¿ t : °0 t k°0 t k:

Note 2 1 We will frequently use the following observations: i a±ne bijections

of R3 map skew loops to skew loops and ii ° is skew i® ¿ S1 is embedded and
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disjoint from its antipodal re°ection i e ¿ t 6 §¿ s for all distinct t; s 2 R 2¼

The curvature of a C2 immersed loop is the speed of its tantrix k¿ 0 t k In
Sections 3 and 5 we need to perturb skew loops while keeping them skew:

Lemma 2 2 C2 skew loops with nonvanishing curvature form an open subset in
the space of all C2 immersed loops in R3 relative to the C2 topology

Proof Let ° be a C2 skew loop with tantrix ¿ and nonvanishing curvature Then
¿ is C1 immersed Suppose

e
° is a C2 loop close to ° in the sense of C2 metric on

C2 loop space Then
e
° has nonvanishing curvature as well and therefore has a C1

immersed tantrix
e
¿ Further

e
¿ is close to ¿ in the C1 metric So

e
¿ is embedded

because ¿ is embedded and embeddings are open in C1 immersed loop space [14
p 37] Finally since ¿ avoids its antipodal image it avoids some neighborhood of
that image So by the triangle inequality

e
¿ avoids its antipodal image as well

and
e
° is skew ¤

Deformations of loops through immersions|regular homotopies|arise natu-
rally for us since they continuously deform the tantrix of a loop as well A basic
theorem of H Whitney [26] states that in R2 ' C every loop is regularly homo-
topic to either the ¯gure-eight

°0 eit : cos t 1 + i sin t ;

or to one of the degree-k circle coverings given by

°k eit : ei k t ; k §1; §2; : : : :

On S2 ' C [ f1g however S Smale [20] showed that there are just two regular
homotopy classes: that of the ¯gure-eight °0 and of the equator °1 These facts

lead to the following lemmas useful both here and in Section 3

Lemma 2 3 Every C2 loop on S2 is regularly homotopic in S2 to its own tantrix

Proof The C1 homotopy h : [0; ¼ 2] £ I S2 given by

h µ; t : ¾ t cos µ + ¿ t sin µ

deforms any immersed curve ¾ into its tantrix ¿ : ¾0 To see that h is regular
recall the spherical Frenet equation ¿ 0 ¡¾ + ·g º where ·g is the geodesic
curvature of ¿ and º : ¾ £ ¿ Setting ¾µ t : h µ; t we compute

¾
0µ

t ¾0 t cos µ + ¿ 0 t sin µ ¿ t cos µ + ·g º t sin µ ¡ ¾ t sin µ:

Since ¾ ¿ and º are orthonormal ¾
0µ

6

0 So ¾µ is an immersion ¤

Lemma 2 3 implies that the tantrix of any C2-immersed loop in S2 is immersed
a well-known fact [11 18] that generalizes to loops on any positively curved surface:
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Lemma 2 4 The tantrix ¿ of any C2-immersed curve ¾ on a positively curved
surface M is immersed in S2

Proof Parametrize ¾ by arclength so that ¿ ¾0 The component of ¿ 0 along a
unit normal n on M is then given by ¿ 0 ¾00 k ¾0 n where k denotes

normal curvature Since M is positively curved k
6

0 Hence ¿ 0
6

0 ¤

A Ck ¯gure-eight ® on a surface M is any Ck loop regularly homotopic to a

loop ¯ in an open coordinate disc Á : U R2 with Á ± ¯ °0 the \standard"
¯gure-eight above Lemmas 2 3 and 2 4 yield:

Proposition 2 5 Let f : M R3 be a C2-immersed positively curved surface

Then the tantrix of any ¯gure-eight on M is again a ¯gure-eight In particular
M admits no skew ¯gure-eights

Proof By de¯nition any ¯gure-eight ® ½ M is regularly homotopic to a copy ¯
of our \standard" ¯gure-eight °0 in a coordinate disc U Lemma 2 4 then implies

that the tantrix ¿® of ® is regularly homotopic to that of ¯: ¿® » ¿¯ It therefore

su±ces to show that ¿¯ is a ¯gure-eight on S2

After a regular homotopy of ¯ we may assume that U is so small that f U is
a graph over one of its tangent planes Then after an a±ne transformation ¯ lies

in a coordinate disc U ½ M with image f U contained in the graph of a convex
C2 function h0 : D2 R where D2

½ R2 is the open unit disc We may then
realize ¯ as a graph ¯0 over a ¯gure-eight ° : S1 D2:

¯0 t ° t + h0 ° t k
where k : 0; 0; 1 We may also assume dilate further if necessary that the

eigenvalues of the Hessian D2h0 lie between 0 and 1 throughout D Now express

the southern hemisphere of S2 similarly as the graph of a function h1 : D2 R
The eigenvalues of D2h1 are everywhere at least 1 so the graphs of the functions

h² x : h0 x + ² h1 x ¡ h0 x
give a deformation of f U into S2 through positively curved surfaces By Lemma
2 4 the tantrices of the ¯gure-eights ¯² t : ° t + h² ° t k are all immersed
In particular ¿¯ » ¿¯1 By Lemma 2 3 ¿¯1 » ¯1 Thus ¿¯ » ¯1; which is a

¯gure-eight on S2 ¤

3 Nonexistence of skew loops on quadrics

The tantrix of a C3 loop on S2 if embedded bisects the sphere [8] [21] It
follows that the tantrix of a C3 loop on S2 crosses either itself or its antipodal
image and hence that S2 contains no C3 skew loops Segre observed that by
a±ne invariance this fact extends to ellipsoids and elliptic paraboloids Here we
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sharpen the argument in [21] to rule out C2 skew loops on these same surfaces 3

and craft a Lorentzian version that includes the two-sheeted hyperboloids

Note 3 1 Our methods in this section do not apply to curves that are only C1

Further we do not know whether S2 admits a skew loop which is C1 but not C2

Let Q denote the symmetric bilinear form on R3 characterized by

Q x;x x2 + y2 ¡ z2;

for all x : x; y; z 2 R3 The connected non-singular level sets of Q x; x are

hyperboloids of revolution each homothetic to one of the following:

§ : ©x 2 R3 : Q x; x ¡1; z > 0ª hyperboloid of two sheets

e
§ : ©x 2 R3 : Q x; x +1ª hyperboloid of one sheet :

3 1

Di®erentiating Q along an arc ¾ immersed in either § or
e
§ gives

Q ¾0; ¾ ´ 0: 3 2

Thus:

Lemma 3 2 Every point p in § or
e
§ is Q-normal to that surface at p ¤

Next parametrize § and
e
§ by X : R £ 0;1 R3 and

e
X : R £ R R3

respectively as follows:

X u; v : ¡ cos u sinh v ; sin u sinh v ; cosh v ¢;

e
X u; v : ¡ cos u cosh v ; sin u cosh v ; sinh v ¢:

Since Q Xu; Xu ; Q Xv ;Xv > 0 and Q Xu; Xv 0 Q induces a Riemannian
metric on § 4 So we may de¯ne the Q-tantrix of an immersed loop ¾ on § via

¿Q t :
¾0 t

pQ ¾0 t ; ¾0 t
:

Note 3 3 Since Q ¿Q; ¿Q +1 the Q-tantrix of a loop on § lies on
e
§ Further

¿Q is the radial projection of the standard tantrix ¿ into
e
§ Therefore much like

¿ the Q-tantrix of a skew loop on § is embedded and avoids its antipodal image

In contrast to §
e
§ inherits a Lorentzian structure from Q Indeed the vectors

e+ : e
Xu

cosh v
; e¡ :

e
Xv 3 3

3 The absence of C2 skew loops on spheres was also established in 1971 by White [25]
4 This is the well-known hyperbolic metric on §
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form a global frame on
e
§ with

Q e+; e+ +1 ; Q e¡; e¡ ¡1 ; and Q e+; e¡ 0 : 3 4

If we project out the Q-normal direction the standard covariant derivative D on
R3 becomes a torsion-free Q-preserving connection r on

e
§ Let denote the

corresponding connection 1-form associated to our frame fe+; e¡g by setting

z : Q rze+; e¡ ; for all z 2 T
e
§: 3 5

One may verify that in the local coordinates associated with
e
X

¡ sinh v du; 3 6

and that in conjunction with Lemma 3 2 di®erentiation of 3 4 yields

rze+ ¡Q rze+; e¡ e¡ ¡ z e¡;

rze¡ +Q rze¡; e+ e+ ¡ z e+:
3 7

Lemma 3 4 If a loop ® in
e
§ is the Q-tantrix of a C2 loop on § then R®

0

Proof Suppose ® ¿Q the Q-tantrix of an arc ¾ immersed in § Since ¿Q is a
multiple of ¾0 3 2 implies that Q ¿Q; ¾ ´ 0 Lemma 3 2 then yields that ¾ t
is tangent to

e
§ at ¿Q t So we may expand ¾ relative to the frame ¯eld given

by 3 3 Since Q ¾; ¾ ´ ¡1 and ¾ is C2 this uniquely determines a function
µ : S1 R such that

¾ t sinh µ t e+ + cosh µ t e¡ :

Note that we evaluate the frame vectors here at ¿Q t Di®erentiating the above

with respect to t using 3 7 yields

r¿
0Q

¾ ¡µ0 ¡ ¿
0Q ¢ cosh µ e+ + sinh µ e¡ :

On the other hand by Lemma 3 2 ¿Q t is Q-normal to
e
§ at ¿Q t So

0 ¡pQ ¾0; ¾0 ¿Q¢> ¾0 > ¡D¿
0Q

¾¢> r¿
0Q

¾;

which yields that ¿
0Q ´ µ0 along ¿Q But the integral of µ0 vanishes along ¿Q

since µ is continuous and ¿Q is a loop Hence R¿Q
0: ¤

We now have the tools we need to prove that positively curved quadrics admit
no skew loops and thereby establish half of our main theorem

Proof of the implication 1 2 of Theorem 1 1 There are 3 cases:

Case 1: Hyperboloids Each nappe of a hyperboloid of two sheets is a±nely
isomorphic to the hyperboloid § de¯ned by 3 1 So it su±ces to show that §
admits no C2 skew loops Suppose toward a contradiction that there exists a
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C2 skew loop ¾ : S1 § with Q-tantrix ¿Q Since § is di®eomorphic to a plane

and ¾ may not be a ¯gure-eight Proposition 2 5 Whitney's theorem forces ¾

to be regularly homotopic to a k-fold tracing ck of some horizontal circle k 6 0

The Q-tantrix of ck is then a k-fold tracing ¿k of the circle z ´ 0 in
e
§ and

since § has positive curvature the homotopy ¾ » ck induces a regular homotopy
¿Q » ¿k Lemma 2 4 By Note 3 3 ¿Q is embedded and disjoint from its own
antipodal image The embeddedness forces k 1 and along with the antipodal
disjointness this means that ¡¿Q S1 [ ¿Q S1 bounds an annular domain  ½ e

§
with C1 boundary Combining Stokes' Theorem with Lemma 3 4 we then get
R d R@ 0: By 3 6 however d cosh v du dv a non-vanishing 2-
form So the integral of d cannot vanish and we have our contradiction

Case 2: Ellipsoids All ellipsoids are a±nely equivalent so we need only check
the spherical case which has been discussed by Segre [19] and White [25] Alter-
natively one can proceed as in Lemma 3 4 replacing sinh and cosh by sin and
cos respectively After suitably restricting their domains the parametrizations X
and

e
X for § and

e
§ now become patches for S2 Arguing as in Lemma 3 4 one

then shows that the tantrix of a loop on S2 must annihilate the integral of the

corresponding connection form which is now ¡ sin v du The ¯nal argument of
Case 1 then goes over almost verbatim because d sin v du cos v du dv gives the

area form on S2 except at the poles which we can avoid with a slight rotation

Case 3: Paraboloids By a±ne equivalence it su±ces to rule out skew loops

on the graph z x2 + y2 One easily checks that this paraboloid call it P can
be C2-approximated arbitrarily well on any compact subset by an ellipsoid of the

form

x2 + y2 + ³ z
2r ¡ r´

2

r2: 3 8

Further note that since P has positive curvature any loop on P has nonvanishing
curvature Thus it follows from Lemma 2 2 that for su±ciently large r any skew
loop on P can be perturbed to form a skew loop on one of the ellipsoids de¯ned
by 3 8 above Such a loop would contradict the result of Case 2 so P contains no
skew loop ¤

4 Asymmetric convex cylinders

When a Ck loop ° : S1 R2 bounds a convex domain we say ¡ : ° S1 is a Ck

oval We say ¡ is centrally symmetric when re°ection through a point leaves it
invariant Otherwise it is asymmetric We say ¡ is strictly convex if ° is C2 and
its curvature never vanishes Our main aim in this section is to show:

Proposition 4 1 Cylinder Lemma The cylinder over any asymmetric strictly
convex C2 oval ¡ ½ R2 contains a C2 skew loop with nonvanishing curvature
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This follows easily once we prove three preliminary results Our strategy boils
down to the careful analysis of a classical parametrization: Recall that when ¡ is
strictly convex its outward unit normal n : ¡ S1 is injective We may therefore

employ the support parametrization ° : R R2 of ¡ given by

° t : n¡1 eit : 4 1

Note that one loses a derivative in passing from ¡ to ° When ¡ is merely C2 this
somewhat complicates the proof that ° is an immersion:

Lemma 4 2 Let ¡ ½ R2 be a strictly convex C2 oval with support parametriza-
tion ° Then v : k°0

k 6 0 Moreover ¡ is symmetric if and only if v is
¼-periodic

Proof De¯ne the support function of ¡ via

h t : heit; ° t i 4 2

real inner product Since feit; ieitg is a basis for R2 we then have a 2¼-periodic
C1 function ¹ : R R such that

° t ¡h t + i¹ t ¢ eit: 4 3

By 4 1 eit is normal to ¡ at ° t so we also have

°0 t v t i eit: 4 4

Now di®erentiate 4 3 and compare with 4 4 to see that ¹ h0 and

° t ¡h t + i h0 t ¢eit: 4 5

As ° is C1 this shows that h is C2 Further di®erentiating 4 5 and using 4 4
we get

v h00 + h:

We now make indirect use of the curvature formula · : h°00; i°0i k°0

k
3 to show

that v
6

0 If ° is C2 one can di®erentiate 4 4 to evaluate °00 and directly
calculate · 1 v Since ¡ is strictly convex we have · 6 0 and hence v

6

0 as

claimed Here ° is only C1 so we ¯rst approximate ¡ in C2 S1; R2 by a sequence

of C3 ovals ¡` The support parametrization of each ¡` will then be C2 so that for
¡` we do have ·` 1 v` But the curvatures ·` and speeds v` of the ¡`'s converge

uniformly to · and v respectively In the limit we therefore obtain · 1 v as

claimed
To get our ¯nal conclusion suppose that ¡ is symmetric about the origin The

re°ection ½ x ¡x then sends the tangent line at ° t to some parallel line

tangent to ¡ Given 4 1 the only such tangency occurs at ° t + ¼ Thus

° t + ¼ ¡° t
for all t 2 R By 4 2 this forces both h and v h00 + h to be ¼-periodic
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Conversely suppose v is ¼-periodic Then all its odd Fourier coe±cients must
vanish Since h00 + h v the same must hold for h modulo a solution hw; eitiof the homogeneous equation h00 + h 0 By 4 2 however we eliminate this
anomaly if we translate ¡ by ¡w Doing so makes h ¼-periodic and by virtue of
4 5 the oval parametrized by ° is now ½-invariant The original untranslated

oval ¡ is then symmetric ¤

We shall de¯ne and denote the even and odd parts of a function f : S1 R by

f+ t : f t + f t + ¼

2
; and f¡ t : f t ¡ f t + ¼

2
;

respectively identifying S1 with R 2¼ via eit $ t With this notation we can
give a simple condition for the skewness of a \graphical" loop

e
° on the cylinder

over ¡:

Lemma 4 3 Suppose ¡ ½ R2 is a strictly convex C2 oval with support para-
metrization ° Let z : S1 R be C1 and set v : k°0

k k : 0; 0; 1 Then

e
° t : ° t + z t k is a skew loop if and only if for all t 2 R we have

v+ t z
0+

t ¡ v¡ t z
0

¡
t 6 0:

Further if z is C2 then
e
° has nonvanishing curvature

Proof Expressing °0 as in 4 4 above and using the identity i ei¿ £ k ei¿ we

compute that

e
°0 t £

e
°0 s ¡°0 t £ °0 s ¢ + ¡z0 s °0 t ¡ z0 t °0 s ¢ £ k

v t v s eit £ eis + v t z0 s eit ¡ v s z0 t eis

v t v s sin t¡ s k + v t z0 s eit ¡ v s z0 t eis:

Note that
e
° fails to be skew whenever this quantity vanishes for some t s 2 R

with t 6´ s mod 2¼ Since the k component vanishes only when s ´ t+ ¼ mod 2¼

e
° is thus skew if and only if

v t z0 t + ¼ + v t + ¼ z0 t 6 0

for all t 2 R Now note that for any function f : R 2¼ R we have the identities

f t f+ t + f¡ t ; f+ t + ¼ f+ t ;

f t + ¼ f+ t ¡ f¡ t ; f¡ t + ¼ ¡f¡ t :

Applying these to v and z0 in the preceding formula gives the ¯rst conclusion of
the lemma Finally note that since ° is strictly convex k°00 t k 6 0 Thus if z
is C2 then k

e
°00 t k 6 0 as well So

e
° has nonvanishing curvature ¤

The technical result below will provide the key constructive step in our proof
of the cylinder lemma



776 M Ghomi and B Solomon CMH

Lemma 4 4 Let e o : S1 R be continuous functions which are even and odd
respectively and suppose that e+o > 0 Then either o ´ 0 or we have a continuous

function ¹ : S1 R such that:

1 RS1 ¹ 0; 2 ¹ is even; and 3 e¹ > ¡o2:

Proof Assume o
6´ 0 and identify S1 with R 2¼ as usual To prove the lemma

we will construct a continuous function ¹ : [0; ¼] R with
10

R
¼

0 ¹ t dt 0; 20 ¹ ¼ ¹ 0 ; and 30 e¹ > ¡o2 on [0; ¼] :

The even extension of this function to all of S1 then clearly has the properties 1
2 and 3 that we seek

To begin observe that our hypotheses automatically imply e > 0 throughout
S1 Otherwise the evenness of e would imply e · 0 at both points of some

antipodal pair t;¡t 2 S1 Since we assume e + o > 0 everywhere this would force

o > 0 at both t and ¡t contradicting the oddness of o We thus have positivity
of e which allows us to de¯ne

¿ :
1

¼
Z

¼

0

µ o t 2

1 + e t
¶ dt > 0 :

Next note that the zero set of an odd function is both nonempty and invariant
under re°ection through the origin After a rotation we may therefore assume

o 0 o ¼ 0 and de¯ne the function we seek:

¹ t : ¿ ¡
o2 t

1 + e t
:

Clearly ¹ satis¯es 10 And we arranged that o 0 o ¼ 0 so we have

¹ 0 ¹ ¼ ¿ which gives 20 Finally we obtain 30 by combining our
de¯nition of ¹ with the positivity of e and ¿ :

e t ¹ e t ¿ ¡ µ e t
1 + e t

¶ o t 2 > ¡µ e t
1 + e t

¶ o t 2 > ¡o t 2:

This proves the Lemma ¤

We now prove the main result of this section our cylinder lemma:

Proof of Proposition 4 1 By Lemma 4 3 it su±ces to produce a height function
z : S1 R such that for all t 2 R

v+ t z
0+ t > v¡ t z

0¡
t ; 4 6

where v is the speed of the support parametrization of ¡ First note that our
asymmetry hypothesis on ¡ combines with Lemma 4 2 to guaranteed that v is not
even and hence v¡ 6´ 0 Moreover being odd v¡ has a well-de¯ned antiderivative

on S1 We form z¡ by taking any such antiderivative and subtracting o® its
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average on S1 Clearly this makes z¡ a non-trivial odd function and because

v¡ is continuous z¡ is C1 Since z
0¡ ¡v¡ 4 6 now becomes

v+ t z
0+ t > ¡¡v¡ t ¢

2
: 4 7

It remains to construct an even C1 function z+ : S1 R whose derivative satis¯es

4 7 Lemma 4 4 does precisely that: Set e : v+ o : v¡ 6´ 0 there and let
z

0+
: ¹ Lemma 4 2 ensures us that e + o v+ + v¡ v > 0 so Lemma 4 4

indeed applies Conclusions 1 and 2 of the latter now guarantee that z
0+

has

an even antiderivative z+ on S1 and conclusion 3 reduces to the key estimate

4 7 ¤

5 Quadricity of surfaces without skew loops

Our ¯rst step in this section is to use the existence of skew loops on asymmetric
convex cylinders Proposition 4 1 to restrict the symmetry of surfaces without
skew loops:

Lemma 5 1 Let S ½ R3 be a C2 embedded surface without skew loops Suppose

that there exists a plane H ½ R3 which meets the interior of S transversely along

a strictly convex oval ¡ : S \H Then ¡ is symmetric

Proof After a rigid motion we may assume that H coincides with the xy-plane

Since S meets H transversely along ¡ we may choose ² > 0 small enough to make

S0 : f x; y; z 2 S : jzj < ² g

a topological annulus transversal to H with @S0 \ H ; Let C denote the

cylinder perpendicular to H with base ¡ Then S0 may be represented as a graph
over C That is there exists an open neighborhood A of ¡ in C and a C2 function
g : A R such that S0 fa + g a º a : a 2 Ag where º is the outward unit
normal vector ¯eld on S Now use the dilatations ¹c : R3 R3 de¯ned for each
c ¸ 1 by ¹c x; y; z : x; y; c z to de¯ne a 1-parameter family of C2 functions

gc : A R; gc : g ± ¹1 c:

Note that gc and its derivatives tend to zero uniformly on A as c 1 This
follows from the continuity of g and the chain rule because g 0 on ¡ while near
¡ the derivatives of g are continuous because S0 intersects H transversally

Suppose now that ¡ is not symmetric Then Proposition 4 1 gives a C2 skew
loop ° : S1 C with nonvanishing curvature After a shrinking dilatation we

may assume that ° S1
½ A For every c ¸ 1 we may then de¯ne a loop °c on

the a±nely stretched surface ¹c S0 by setting

°c t : ° t + gc¡° t ¢ º¡° t ¢:
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Since gc 0 uniformly on ° S1 along with its derivatives as c 1 we see that
°c ° in the C2 sense It then follows by Lemma 2 2 that °c eventually becomes

skew Thus for su±ciently large c > 0 the stretched surface ¹c S0 admits a skew
loop As an a±ne map however ¹c sends skew loops to skew loops So S0 must
itself admit a skew loop|a contradiction ¤

By a convex body K ½ R3 we mean a compact convex subset with nonempty
interior We say planes P1; P2 are close if we can represent them by linear equa-
tions

hn1;xi h1 and hn2; xi h2 with jn1 ¡ n2j
2 + jh1 ¡ h2j

2 < ² for some

² > 0

Theorem 5 2 Blaschke [2] Let K ½ R3 be a convex body whose boundary is
C2 near a point p 2 @K Suppose that whenever a plane su±ciently close to Tp@K
intersects K its intersection with @K is centrally symmetric Then a neighborhood
of p in @K lies on a quadric surface

Blaschke's result localizes a theorem of Brunn that characterizes ellipsoids as

convex bodies having only symmetric cross sections 5 Coupling it to Lemma 5 1
we quickly complete the proof our main theorem

Proof of the implication 2 1 of Theorem 1 1 Let X ½ M be the largest open
subset whose image F X lies on a quadric Then X is also closed and M is con-
nected so we need only show that X 6 ; To do so let U be an open neighborhood
of a point p in M where the curvature is positive We may choose U small enough
so that S : F U is the graph of a function on the tangent plane TF p @K Since

the curvature is positive at p this function has positive de¯nite Hessian and is
therefore convex So S lies on the boundary of a convex body K ½ R3 Since

S has positive curvature at F p the tangent plane TF p @K intersects K only
at F p This gives an ² > 0 so that every plane H ½ R3 within distance ² of
TF p @K satis¯es H \ @S ; Then ¡ : H \ @K lies in S Whenever the

intersection is transversal ¡ is a C2 strictly convex oval because S has positive

curvature Lemma 5 1 now makes ¡ symmetric But ¡ was an arbitrary transverse

cross-section of S near p so Blaschke's Theorem 5 2 forces a neighborhood of p to
lie on a quadric surface This completes the proof ¤

Appendix A Symmetric cylinders

Proposition A 2 below gives a strong converse to the existence of skew loops on
asymmetric cylinders Proposition 4 1 This result was known to Segre [19] but
we recount a proof for completeness Let us agree that an L-periodic unit-speed

5 Olovjanischniko® see [15] and [4 p 346] proves an even more general version requiring
no regularity at p
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loop c : R R2 has arclength symmetry with respect to a point p 2 R2 if
c t + L 2 p ¡ c t for all t 2 R

Note A 1 For embedded loops one can show that arclength symmetry is equiv-
alent to central symmetry In particular Proposition A 2 holds for cylinders over
embedded centrally symmetric loops For immersed loops arclength symmetry
is slightly stronger than central symmetry however; centrally symmetric ¯gure-
eights for instance admit no arclength-symmetric parametrization Indeed one

can put a skew loop on the cylinder over a centrally symmetric ¯gure-eight Exam-

ple:
e
° t ³cos t; sin 2t; t

¼ ¡ ¡ t
¼ ¢

15´ The arclength symmetry condition below

therefore seems essential

Proposition A 2 If a C1 loop ¡ ½ R2 admits a parametrization with arclength
symmetry then the cylinder S : ¡ £ R ½ R3 admits no skew loops which are
transverse to the lines in S

Proof Suppose ¡ has length L and has an L-periodic parametrization c : R R2

which is arclength-symmetric about the origin Let S : ¡ £ R and suppose

e
° : S1 S is a C1 loop We may then reparametrize

e
° via

e
° t : c t + z t k; A:1

where z is C1 and nL-periodic for some n 2 Z By our symmetry assumption
c t + L 2 ¡c t Hence

c0 t + L 2 ¡c0 t ; A:2

and

Z
nL

0
¡z0 t + z0 t + L 2 ¢ dt ¡z t + z t + L 2 ¢

¯
¯
¯

nL

0
0:

The mean value theorem for integrals now gives a t0 2 [0; nL] for which

z0 t0 + L 2 ¡z0 t0 : A:3

Equations A 1 A 2 and A 3 therefore combine to yield
e
°0 t0+L 2 ¡e

°0 t0
This makes the tangent lines to

e
° at t0 and t0 + L 2 parallel a contradiction ¤

Appendix B Open problems

Which surfaces in R3 admit skew loops Theorem 1 1 settles this question for
surfaces with a point of positive curvature so it remains to ask:

Problem B 1 Which nonpositively curved surfaces admit skew loops

Could it be true that the only surfaces without skew loops and a point of
negative curvature are quadric mirroring Theorem 1 1 If so it would remain to
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study °at surfaces 6 Complete °at surfaces are generalized cylinders [12] When
embedded and symmetric these admit no skew loops which are transversal to the

generators of the cylinder by Proposition A 2 The main open question about °at
surfaces is then:

Problem B 2 Which asymmetric cylinders admit skew loops

Proposition 4 1 shows that strict convexity is su±cient and one can show that
the tantrix of any loop on a cylinder whose base has winding number j¶j > 1 must
self-intersect; these cylinders do not admit skew loops

Our work raises some regularity questions too We state one of them in Note

3 1: Does S2 contain a C1 skew loop The regularity of the underlying surface

raises another: Skew loops necessarily have one derivative so a version of Theorem
1 1 in the C1 category would be fairly optimal with regard to regularity Our last
question highlights a simple relevant test case:

Problem B 3 Does a cylinder capped by hemispheres admit skew loops

This surface is C1 and piecewise quadric; if it admits a skew loop Theorem 1 1

is already optimal
Finally we remark that when one regards R3 as RP3 minus a plane at in-

¯nity all ellipsoids are projectively equivalent not just to each other but to the

elliptic paraboloids and 2-sheeted hyperboloids too The referee has observed that
these are precisely the quadrics on which we have ruled out skewloops and hence

our results may extend to RP3 in an interesting way We hope to explore this
possibility in a future paper

Appendix C Historical notes

According to P Du Val [7] H Steinhaus conjectured the non-existence of skew
loops in 1966 during a lecture given at Sussex B Segre present at this lecture

responded by proposing a counterexample in a lecture of his own the next day
Segre eventually published a corrected version of his counterexample in 1968 [19]
Porter's version of the construction in 1970 [17] is somewhat more explicit but
Segre's paper contains many other results including the non-existence of skew
loops on spheres To prove the latter fact he appeals to a \bel teorema" published
by W Fenchel in 1934 [8]: The tantrix of a spherical curve if embedded bisects S2

It seems that this result was absorbed by very few beside Segre It immediately
implies a well-known theorem of Jacobi on the normal indicatrix of a space curve

6 Serge Tabachnikov has recently ruled out skew loops on negatively curved quadrics and on
simply-connected °at surfaces [23] In fact by extending the technique of White [25] he rules
out n-dimensional compact skew \branes" on all hyperquadrics in Rn+2 for all n



Vol 77 2002 Skew loops and quadric surfaces 781

but the many subsequent references to Jacobi's Theorem we know e g [22] [5]
[6] and even Fenchel's own 1951 survey [9] make no mention of it It has since

been rediscovered at least twice: by Avakumovi¶c [1] and by the second author
[21]

The non-existence of skew loops on spheres was also proved by J H White [25]
in 1971 using a Morse-theoretic argument Unlike Segre who notes that the result
extends to ellipsoids and elliptic paraboloids White mentions only the sphere

Neither author suggests that hyperboloids admit no skew loops nor gives any hint
that they surmised our main result here
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