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Hyperelliptic components of the moduli spaces of quadratic
differentials with prescribed singularities
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Abstract. Moduli spaces of quadratic differentials with prescribed singularities are not necessarily

connected. We describe here all cases when they have a special hyperelhpUc connected
component.

We announce the general classification theorem: up to the four exceptional cases in low
dimensional stratum, any stratum of meromorphic quadratic differentials is either connected, or
has exactly two connected components. In this last case, one component is hyperelliptic, the
other not.
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1. Introduction

A meromorphic quadratic differential ip on a Riemann surface M2 of genus g is

locally defined by ip f(z)(dz)2 where f(z) is a meromorphic function defined on
a chart (£/, z). If we have the form ip g(w)(dw)2 where g(w) is a meromorphic
function on V, the transition functions on U n V satisfies

f(z)
_

In this paper we consider quadratic differentials having only simple poles, if any.
We denote by Qg the moduli spaces of pairs (M2,tp), where M2 is a Riemann
surface and ip a meromorphic quadratic differential on it. Note that we have

divided by the mapping class group Mod(g).
Let (ki,..., kn) be the orders of singularities of ip, where k-% > 0 corresponds

to a zero zk*(dz)2 of order k-% and kj —1 corresponds to a simple pole —(dz)2

of a quadratic differential. It is a classical result following of the Gauss-Bonnet
formula that Y^ h Ag — A.
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Locally, in a simply-connected neighborhood of a nonsingular point, a quadratic
differential can be presented as a square of an Abelian differential, but globally it is

not the case in general. In this paper we consider only those quadratic differentials
which are not globally the squares of Abelian differentials.

The moduli space Qg is naturally stratified by the types of the singularities. We
denote by Q{k\,..., kn) Ç Qg the stratum of quadratic differentials [Mg, ip] G Qg
which are not the global squares of Abelian differentials, and which have the
singularity pattern [k\,..., kn), where ki takes values in { — 1,0,1, 2,... }. In some
situations we consider the strata of pairs [ip, Mg] where the Riemann surface is

provided with some fixed number of marked points, which are nonsingular points
of the quadratic differential ip. By convention we let ki 0 when the point Pi
is, actually, just a marked point. Sometimes we shall call the marked points the
fake zeros, and the zeros Po with k0 > 0 the true zeros. We use the exponential
notation km for k,k,k,... ,k repeated m times. For example, <2(14, 8, 2, 32) stands
for 2(1,1,1,1,8,2,3,3).

We are interested in the description of connected components of the moduli
spaces Q(ki,..., kn). In this paper we describe all connected components of a

special type: the hyperelliptic ones. A complete description of all connected
components of the moduli spaces Q{k\,..., kn) can be found in [La2]. It will be the
subject of a forthcoming paper.

Remark 1. In [KoZo] Kontsevich and Zorich classified connected components of
the moduli spaces of Abelian differentials, which implies the classification of the
moduli spaces of those holomorphic quadratic differentials which are globally the

squares of Abelian differentials.

Remark 2. In [Ma] and [Vel], Masur and Veech have independently proved that
the Teichmüller geodesic flow acts ergodically on each connected component of
each stratum of the moduli space of quadratic differentials; the corresponding
invariant measure being a finite Lebesque equivalent measure.

Motivated by this result, the classification of connected components of the
strata coincide with the classification of ergodic components of the Teichmüller
geodesic flow.

The paper has the following structure. In section 2 we present an overview of
the basic properties of quadratic differentials. In section 3 we construct the
hyperelliptic connected components and prove Theorem 1, that is our list is complete.
In section 4 we present the well-known relation between quadratic differentials and
measured foliations. Then we use measured foliations to prove Theorem 2: strata
with a hyperelliptic component are not connected except some particular cases in
low genera. We draw from our two main results the following
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Corollary 1. • The three following series of strata in Qg

?2 { Q(4(ff - k) - 6 ; 4k + 2) | 0 < k < g - 2}
F3 { Q(A(g-k)-& ; 2k + I ; 2* + 1) | 0 < k < g - 1}
J4 { Q((2(g - k) - 3 ; 2(g - k) - 3 ; 2k + 1 ; 2k + 1) | -1 < k < g - 2}

m genera g > 3 are non-connected. Each above stratum possesses one

component which is hyperelliptic and at least one other which is not.

• The following strata corresponding respectively to genus 1 and 2 are
connected and the whole stratum coincides with its hyperelliptic connected

component

e(-i -i 2) fs(2'2)
i and S(M'2)

In section 5 we announce the general classification theorem: up to four exceptional

cases in low genera the strata of meromorphic quadratic differentials are
either connected, or have exactly two connected components, and one of the two
components is hyperelliptic.

2. Mappings of the moduli spaces induced by ramified coverings
of a fixed combinatorial type

In this section we present some general information concerning the moduli spaces
of quadratic differentials. All proofs and details can be found in papers [Ma], [Vel],
[MaSm], [Ve2], [Ko], [KoZo].

Theorem (Masur and Smillie). Consider a vector [k\,..., kn) with all ^gNU
{—1}. Suppose that ^ki 0 mod4 and ^ki > —A. Then the corresponding
stratum Q(ki,. kn) is non-empty with the following four exceptions

Q(0),Q(1,-1) (in genus g I) and Q(4), Q(l,3) (in genus g 2).

Remark 3. It is clear that if a quadratic differential has a singularity of odd
order — 1 for a pole) then it may not be a global square of an Abelian differential.
But if all zeros are of even orders ki (except (k\,..., kn) (0) or (4)) then the
Theorem above says that there exist quadratic differentials with the singularity
pattern (k\,..., kn) which are not squares of Abelian differentials. For example,
on each complex curve of genus g 2, there exist quadratic differentials with two
zeros of order two which are not squares of Abelian differentials (see also Figure 3),
and there exist quadratic differentials with two zeros of order two which are the
global squares of Abelian differentials.
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Theorem (H. Masur; W. Veech). Any stratum Q{k\,..., kn) is a complex orhifold
of dimension

dimcQ(A;i, • • •, kn) 2g + n - 2.

Remark 4. The principal stratum, that is all singularities of the form are only
simples zeroes, can be identified with the cotangent fiber over the Teichmüller
space. So the dimension in this case is

2 • dimcTg 6g — 6.

This corresponds to the above formula with n Ag — 4. The general formula is

obtained by subtracting a dimension any time a zero is collapsed to higher order.

Proposition (Kontsevich). Any stratum Q{k\,... ,kn) with J2 kt —4 is
connected.

Proof. Since there is only one complex structure on CP1 we can work in the
standard atlas on CP1 C U (C* Uoo). In this atlas, we can easily find quadratic
differentials f(z)(dz)2 with any prescribed singularities at any prescribed points
(with the evident condition prescribed by degrees of singularities, Yl h —4) just
by choosing an appropriate rational function f(z). The space of configurations of
points on a sphere is connected; this implies the statement of the Proposition.

Construction 1 (Canonical double covering). Let M2 be a Riemann surface and
let ip be a quadratic differential on it which is not a square of an Abelian differential.
There exists a canonical (ramified) double covering i\ : M~ —> M2 such that tt*if)

where us is an Abelian differential on M~.
2The set of critical values of i\ on M2 coincide exactly with the set of singularities

of odd degrees of ip. The covering ir : M~ —? M2 is the minimal (ramified)
covering such that the quadratic differential tt*tp becomes the square of an Abelian

differential on M~.

Proof. Consider an atlas (Ut, zl)l on M2 M2\{singularities of ip} where we punctured

all the zeros and the poles of ip. We assume that all the charts C/j are
connected and simply-connected. The quadratic differential ip can be represented in
this atlas by a collection of holomorphic functions ft(zt), where zt G Ut, satisfying
the relations:

fdzÄ2

Since we have punctured all singularities of ip any function fi{z{) is nonzero at
Ui. Consider two copies £/- of every chart Ui : one copy for every of two branches

gf{zi) of g^(zi) := \Jf%{z%) (of course, the assignment of "+" or "—" is not
canonical). Now for every i identify the part of U^ corresponding to Ut D Uj with
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the part of one of Up corresponding to U3 n Ut in such way that on the overlap
branches would match

dzt
9t{zi{*5))--£ 9t{z5) onU+nUf.

Apply the analogous identification to every U. We get a Riemann surface with
punctures provided with a holomorphic 1-form w on it, where lj is presented by
the collection of holomorphic functions gf in the local charts. It is an easy exercise

to check that filling punctures we get a closed Riemann surface M~, and that us

extends to an Abelian differential on it. We get a canonical (possibly ramified)
double covering ty : M"~ —> M2 such that Tv*tp uj2.

By construction the only points of the base M2 where the covering might be

ramified are the singularities of ip. In a small neighborhood of a zero of even
degree 2k of ip we can chose coordinates in which ip is presented as z2k(dz)2. In
this chart we get two distinct branches ±zkdz of the square root. Thus the zeros
of even degrees of ip and the marked points are the regular points of the covering
7T. However, it easy to see that the covering ty has a ramification point over any
zero of odd degree and over any simple pole of ip.

Coho mo logical coordinates. We use the construction above to describe the
local cohomological coordinates on Q{k\,..., kn) proposed by Kontsevich.

Let [M, ip] G Q{k\,..., kn). Consider the canonical double covering tt : M —>

M described in above Construction 1 such that the pull-back Tr*tp J2 becomes
the global square of an Abelian differential iv on M. Let t be the natural involution
of M interchanging the points in the fibers of it. Let Pi,..., Pr G M be the true
zeros of lu. Since by construction t*lv —iv, the set {Pi,... ,Pr} is sent to itself
by the involution t. Consider the induced involution

of the relative cohomology group. The vector space H1(M, {Pi,..., Pr}; C) splits
into direct sum

H1(M,{Pu...,Pr}]C)=V1®V_1

of invariant and anti-invariant subspaces of the involution t*. We have already
seen that [lv] g V-\. A small neighborhood of [io] in the anti-invariant subspace
V-i gives a local coordinate chart of a regular point [M, ip] (not a fixed point for
a elliptic element of Mod(g)) in the stratum Q{k\,..., kn). D

In what follows we consider ramified coverings ty : M"~ —> M2 of arbitrary
degree d. We denote the ramification index of tt at a point P G M'j by e^ (P).
By convention we have ew(P) 1 at any regular point P of the covering it. The
Riemann-Hurwitz formula gives the value of the genus g of the covering Riemann
surface M~.
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Riemann Hurwitz Formula. Let tt : M~ —> M2 be an analytic map of degree

d between compact Riemann surfaces. The genus g of M"~ and the genus g of M2
are related by the formula

2g-2 d-(2g-2) + ]T (e,(P) - 1)

where ev(P) is the index of the ramification of tt at P.

Having a ramified d-fold covering tt : M~ —> Mg and a meromorphic quadratic
differential ip on Mg with a singularity pattern [k\,... ,kn) we will need to compute

the singularity pattern (h\,..., km) of the induced quadratic differential Tv*tp

on M?.

Lemma 1. Let ty : M~ —> Mg
be a (ramified) covering, and let tp be a meromorphic

quadratic differential on Mg. A point P G M~ is a singular point of the

induced quadratic differential i\*'ûj either if its image P 7r(P) is a singular point
of tp or if P is a ramification point of i\. The degree k of i\*'ûj at the point P and
the degree k of tp at the point P tt(P) are related as

Proof. Let P G Mg be a point of the base of the covering. Let the quadratic
differential have a singularity of order k at P. Recall that k —1 if P is a simple
pole of tp, and k 0 if P is, actually, a regular point. Let P be in the preimage
7T^1(P) of P. If P is a regular point of the covering tt then Tr*tp has at P a

singularity of the same degree k as the singularity P of ip.

Suppose that P is a ramification point of tt of index e^{P) b. We can choose

a local coordinate z in the neighborhood of the point P G Mg in such way that
tp zk(dz)2 in this coordinate. We can now chose the local coordinate w in a

neighborhood of P G M"~ in such way that the projection ty has the form z wb in
this coordinate. Then we get the following representation of the induced quadratic
differential Tv*tp in the neighborhood of the point P

n*'tP (z(w))k (d(z(w))y - wbk{wb-ldwf wb k+2b-2{dwf.

In particular, if the order of the covering is 2 then a singularity of \p gives either
one singularity of order 2k + 2 or two singularities of order k of Tv*tp.

We use the following obvious Corollary of Lemma 1.

Corollary 2. Let i\ : M~ —> M2 be a ramified covering, and let ip be a meromorphic

quadratic differential on M2. A preimage P tt^1(P) of a singular point P
of tp is a regular point of-K*ip only in the following two cases
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• the rarmficahon index e^ (P) of the point P is equal to 2, and tp has a simple
pole at P;

• the ramification index e„.(P) of the point P is equal to 1 and P is a fake
zero ofip. D

To complete this section we present a construction of a natural mapping of
the strata induced by a ramified covering of the fixed combinatorial type. This
mapping was introduced in [KoZo] to construct the hyperelliptic connected components

of the moduli spaces of Abelian differentials. In the next section we shall use

this mapping to construct the hyperelliptic connected components of the moduli
spaces of quadratic differentials.

Let Mg be a Riemann surface and let tpo be a quadratic differential on it which
is not a square of an Abelian differential. Let (ki,..., kn) be its singularity pattern.
We do not exclude the case when some of ki are equal to zero: by convention this
means that we have some marked points.

Let TV : M~ —> Mg be a (ramified) covering such that the image of any ramification

point of TV is a marked point, or a zero, or a pole of the quadratic differential
tpo- Fix the combinatorial type of the covering tt: the degree of the covering, the
number of critical fibers and the ramification index of the points in every critical
fiber. Consider the induced quadratic differential Tr*ipo on M~; let [k\,..., km) be

its singularity pattern.

Construction 2 (Ramified covering construction). Deforming slightly the initial

point [Mg, tpo] G Q(ki, kn) we can consider a ramified covering over the

deformed Riemann surface of the same combinatorial type as the covering it. This
new covering has exactly the same relation between the position and types of the

ramification points and the degrees and position of the singularities of the deformed
quadratic differential. This means that the induced quadratic differential it*ip has

the same singularity pattern {k\,. km) as tt*i(}q. Thus we get a local mapping

i,. kn) —> Q(ki, km)

Note that in general the corresponding global mapping is multi-valued. For
example, if there is a pair of singularities of ip of the same order k such that the
first one is the image of a ramification point of the covering and the other one is

not, then the corresponding map is multi-valued.
Note also that for ramified coverings of some special types the image of the

mapping belongs to a stratum of squares of Abelian differentials. This is the case,
for example, for the canonical double covering described in Construction 1.

"Forgetful" map. Consider a stratum of meromorphic quadratic differentials
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with m marked points

<zl\K\, kn, kn^l, Kn^m)

where ki ^ 0 for i 1,..., n and ki+n 0 for i 1,..., m. We have the following
forgetful map

Q{ki,..., kn, kn+i,..., kn+m) —> Q{ki,..., kn).

Remark 5. We are interested by the topology of the strata, that is the classification

of connected components of strata Q{k\,..., kn) with all ki ^ 0. One can
prove that the topology of strata with marked points and the topology of strata
without marked point coincide. Nevertheless we use strata with marked point,
that is some ki is equal to zero, for the above construction.

We use Construction 2 to obtain connected components of the strata with no
marked points. Thus we use, actually, the composition of the mapping defined
above with the forgetful map.

Convention. By convention we consider only those coverings ty : M —> M, that
have at least one ramification point in the fiber over any marked point of ip on the

underlying surface.

- We shall call the images of ramification points the critical values of it. Our
convention means that the marked points of ip form a subset of the critical values
Of 7T.

We complete this section with the following statement.

Lemma 2. With the above convention the mapping

Q{ku ...,&„)—>¦ Q{ki,..., km)

is locally an embedding.

Proof of Lemma 2. We need to prove that the mapping constructed above is locally
injective near a regular point [M, ip] in Q{k\,... ,kn). We use the cohomological
coordinates (see above) in the neighborhood of [M, ip] G Q(ki,..., kn) and in
the neighborhood of its image [M, ip] G Q(ki, ¦ ¦ ¦, km), where ip Tv*tp. These

coordinates linearize the mapping, and the proof becomes an exercise in algebraic
topology.

Take the two canonical double coverings (see Construction 1)

p : N —>¦ M and p : N —>¦ M

such that the pull-back p*tp J2 of the quadratic differential ip from M to N
becomes the global square of an Abelian differential w on N, and the pull-back
p*ip üj2 of the quadratic differential ip from MtoJV becomes the global square
of an Abelian differential us on N. If the quadratic differential ip is already the
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global square of an Abelian differential on M, the double covering p : N —> M is

not connected: it is composed of two copies of M, and the corresponding Abelian
differential on N corresponds to two branches iwof the globally defined square
root of ip.

It follows from the définition of the canonical double covering, that the diagram

can be completed to a commutative diagram

Moreover, the induced (ramified) covering it : N —> N can be chosen in such way
that Co it* u>. In particular, it intertwines the natural involutions f : N —> N and

t : N —> N, that is tt o f t o yf.

Denote by Q\,..., Qr the zeroes of lo on ./V. The set {Qi,..., Qr} is obtained
as an inverse image p^1 of the set of true zeros, the marked points and the poles
of ip.

Note that we do not mark any points at M (we are interested by classification
of strata without marked point, that is without fake singularities). Then the
Convention draw aside the trivial cases when the map is degenerated.

Denote by Qi, ¦ ¦ ¦ ,Qi the zeros of Co on N. Since us ty*lv, we see that any
zero Qi of us located at a regular point of the covering it is projected by it to a

zero of u>. It follows from Convention that the image of a zero Qj of Co located
at a ramification point of the covering it is also projected by yf to a zero or to a

marked point of lo. Thus

Hence the covering map tt induces a mapping

n*:H1(N,{Q1,...,Qr},C)^H1(N,{Q1,...,Ql},C). (I)
Since this mapping intertwines the natural involutions it* o f* t* o it*, the
subset V-i C H1(N, {Qi,..., Qr},C) anti-invariant under the involution t* is

mapped into the subset V-\ C Hl{N, {Qi,..., Qi\, C) anti-invariant under the
involution f*. The induced map it* : V_i —> y_i restricted to an appropriate
neighborhoods of [M,-i/1] € V_i and [M, ip] G V-i coincides with the mapping
Q(ki,..., A;n) —> Q(^i, • • •, ^m) written down in the cohomological coordinates.

It is obvious that the map of the absolute cohomology groups
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induced by the covering tt : N —> N is a monomorphism. It is not difficult to
see that, with our convention on the covering tt, the restriction of the mapping
tt* : V-\ —> V-\ to the anti-invariant subspace of t* is also a monomorphism,
which completes the proof of Lemma 2. Note that in general, the mapping tt*
defined on the relative cohomology group is not a monomorphism.

3. Hyperelliptic components

3.1. The Teichmüller geodesic flow

The group GL(2, R)+ acts naturally on the moduli space of quadratic differentials;
this action preserves the natural stratification of the moduli space.

The action of the diagonal subgroup of SL{2, R) on the moduli space of quadratic

differentials can be naturally identified with the Teichmüller geodesic flow on
the moduli space of curves for the Teichmüller metric.

Many important results in the theory of interval exchange maps, of measured
foliations and of dynamics on translation surfaces are based on the following
fundamental Theorem, proved independently by H. Masur [Ma] and by W. Veech [Vel]:

Theorem (H. Masur; W. Veech). The Teichmüller geodesic flow acts ergodically
on every connected component of every (normalized) stratum of the moduli space
of quadratic differentials; the corresponding invariant measure is a finite Lebesque

equivalent measure.

Proposition 1. The action of GL(2, R)+ on the strata commutes with the mapping

of Construction 2.

Proof. In the proof of Lemma 2, we use some coordinates to linearize the mapping.
It is easy to see that in these charts, the linear action commute with the mapping.

3.2. Hyperelliptic components

Let us apply Construction 2 in the following particular case.
Consider a meromorphic quadratic differential rip on CP1 having the singularity

pattern (2(g-k) -3, 2k + l, -l2fl+2), where A; > -1, g > 1 and g-k > 2. Consider
a ramified double covering tt over CP1 having ramification points over 2g + 2 poles
of ip, and no other ramification points. We obtain a hyperelliptic Riemann surface

M of genus g with a quadratic differential TT*tp on it. By Lemma 1 the induced
quadratic differential TT*tp has the singularity pattern (2(g — k) — 3, 2(<? — k) —

3, 2k + 1, 2k + 1). Construction 2 gives us a local mapping

Q(2(g -k)-3,2k + I, -I2s+2) -+ Q(2(g -k)-3, 2{g -k)-Z,2k + I, 2k + 1),
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where k > — 1, g > 1 and g — k > 2. Computing the dimensions of the strata we

get

dime Q(2(g -k)-:i,2k + 1, -l2s+2) 2 • 0 + (2g + 4) - 2 2g + 2

dime Q(2(g -k)-3,2(g-k)-3,2k + l,2k+l) 2g + 4-2 2g + 2.

Thus the dimensions of the strata coincide. By Lemma 2 the mapping is non-
degenerate.

When 2k + 1 =£ —1 the mapping

Q(2(g -k)-3,2k + 1, -l2s+2) -+ Q(2(<; - k) - 3, 2(ff - k) - 3, 2k + 1, 2fc + 1)

is globally defined. Since the stratum Q(2(g—k)— 3, 2fc+l, — l2s+2) is connected, as

any other stratum on CP1 by Proposition in section 2, see above, the image of the
mapping in the stratum Q(2(g — k) —3, 2{g — k) —3, 2k+l, 2fc + l) is also connected.
When 2k +1 —1 the mapping has 2c? + 3 branches corresponding to the choice of
the simple pole of ip where we do not have a ramification of the covering. However,
since we can deform the positions of the zero and the poles of ip on CP1 arbitrarily
(avoiding collapses, of course), the intersection of the image is non empty, so the
union of the images of the mapping Q(2g — 1, — l2s+3) —> Q(2g — l,2g — 1, —1, —1)

is connected.
Since the dimension of the strata coincide, and the mapping is non-degenerate,

we obtain an open set on the stratum Q(2(g — k) — 3, 2(g — k) — 3, 2k + 1, 2k + 1).

By Proposition 1, the action of the geodesic flow is relevant, thus by ergodicity of
this flow, the image of the mapping

Q(2(g -k)-3,2k + 1, -l2s+2) -> Q(2(g - k) - 3, 2{g - k) - 3, 2k + 1, 2k + 1)

gives us a full measure set in the corresponding connected component of the stratum

Q(2(g -k)-3, 2(g -k)-3,2k+ 1, 2k + 1).

Thus we obtain a connected component of these stratum.
Similarly to the previous case we can easily check coincidence of the dimensions

of the strata

Q(2(g -k)-3, 2k, -l2^1) -+ Q(2(g -k)-3, 2{g - k) - 3,4k + 2),

with k > 0, g > 1 and g — k > 1 and

Q(2g - 2k - 4, 2k, -I29) -+ Q(4(g -k)-6,4k + 2)

with k > 0, g > 2 and g — k > 2.

The images of these mappings give us connected components in the strata

Q(2(g - k) - 3,2(g - k) - 3,4k + 2).

and

Q(4(g-k)-6,4k + 2).
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Definition 1. The connected components constructed above are called the hyper-
elliptic components and are denoted by:

(1) Q(2(g-k)-3,2k+l, -l2s+2) -> QhvP(2(g-k)-3,2(g-k)-3,2k+l,2k+l),
where k > — 1, g > 1, g — k > 2. The corresponding double covering has

ramification points over 2c/ + 2 poles of meromorphic quadratic differential
on CP1.

(2) Q(2(g -k)-3, 2k, -l2^1) -+ Qfcw(2(<; - k) - 3, 2(c/ - k) - 3, 4fc + 2),
where A; > 0, g > 1 and g — k > 1. The corresponding double covering
has ramification points over 2g + 1 poles and over the zero of degree 2k of
meromorphic quadratic differential on CP1.

(3) Q{2g -2k-4, 2k, -I2") -> Qhvp{A(g -k)-6,4k + 2), where k > 0, g > 2

and g — k > 2. The corresponding double covering has ramification points
over all singularities of the quadratic differential on CP1.

Remark 6. The connected component Qhyp(2(g-k)-:i, 2(g-k)-3, 2k+l, 2k+l)
was first noticed by M. Kontsevich.

Remark 7. For the mapping

Q(2g - 2k - 4, 2k, -I29) -+ Q(4(g -k)-6,4k + 2)

one can see that the resulting quadratic differential is not the global square of an
Abelian differential in the following way. Take a path 7 on CP1 around the zero of
order 2k and a pole of the corresponding quadratic differential. The monodromy
of the covering along this path is trivial so it can be lifted on a path 7 in M. The
holonomy of the flat structure along the path 7 is non trivial, we can compute how
the tangent vector to the corresponding path 7 on M turns in the flat structure
defined by ip (see Figure 1). The counterclockwise direction is chosen as a direction
of the positive turn.

FlG. 1. A path 7 on the covering surface obtained by lifting of the path 7. Since Pi, P2 € M
are ramification points, the segments A1A2 and AqAs are located at the "different sheets" of

the covering M —> M, and not nearby.

We get some angle </> following the part A1A2 of the path which goes from one
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singularity to another. Then we make a turn by —tt/2 going along A2A3. Turning
around the singularity (the path A3 A4) we get the angle (&2+2)7r, which is followed
by another turn by —tt/2 now along A4A5. The path A^Aq gives the turn by — </>,

which is followed by another —tt/2 along AgAr- Turning around singularity along
ArAg we get the angle (k\ + 2)tt, and the loop is competed by the path AgAi
giving one more turn by — tt/2. All together this gives (k\ + ki + 2) • it.

In our special case, the resulting angle for the corresponding quadratic differential

is (2k+l)-TT, thus the corresponding measured foliation is not oriented and
consequently, the quadratic differential ip on M is not the global square of an Abelian
differential. The image of application above belong in strata Q(4(<? — k) — 6, Ak + 2)
and the application above is well defined.

Remark 8. In the each of the following cases

Q(-l,-l,-l,-l,0,0)^Q(2,2)
Q(-l,-l,-l,-l,0)^Q(-l,-l,2) (2)

Q(-l, -1, -1, -1) -+ Q(-l, -1, -1, -1)
the image stratum also has the same dimension as the original one. All the
corresponding ramified coverings have even degree 2d>2.

In the first case the covering has d ramification points of degree 2 over each of
four simple poles of the meromorphic quadratic differential on CP1 ; a single ramification

point of degree 2 over each of two marked points, and no other ramification
points.

In the second case the covering has d — 1 ramification points of degree 2 over
one of the poles; d ramification points of degree 2 over each of the remaining three
simple poles of the meromorphic quadratic differential on CP1; a single ramification
point of degree 2 over the marked point, and no other ramification points.

In the third case the covering has d—1 ramification points of degree 2 over each

of two poles; d ramification points of degree 2 over each of remaining two simple
poles of the meromorphic quadratic differential on CP1, and no other ramification
points.

The strata Q( — 1, —1, 2) and Q(2, 2) are in the list of hyperelliptic components
in the définition above; the corresponding surfaces of genus 1 and 2 are respectively
elliptic and hyperelliptic. We show in section 4, Lemma 7 that theses strata are
connected, which implies that the corresponding mappings have no interest for our
purposes. The stratum Q( —1, —1, —1, —1) corresponds to quadratic differentials
on CP1 so it is connected by Proposition of Kontsevich. Thus the third mapping
is of no interest for us neither.

The Theorem below asserts that there are no other connected components
which can be obtained using a similar construction.

Theorem 1. Let Q(ki, kn) be a stratum in the moduli space of meromorphic
quadratic differentials and let ty : M —> M be a covering of finite degree d > 1.
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Consider the mapping

Q{ki, kn) —>¦ Q{k\,. km)

induced by the covering i\ (see Construction 2). Suppose that the image stratum
is not a stratum of squares of Abehan differentials, and suppose that the mapping
is neither of one of the three types corresponding to hyperelhpüc components nor
of one of the three exceptional types (2). Then

dimc Q(ki, kn) < dimc Q(ki, ¦ ¦ ¦, km).

Proof. We introduce the integer parameters d, n, m, p, r responsible for the topo-
logical type of the pair: (covering tt, quadratic differential tp). Let d denote the
degree of the covering, n the number of true zeros which are critical values, m the
number of marked points, p the number of simple poles, r the number of
singularities of tp which are regular values for the covering it. See below for an explicit
example and details.

In the first part of the proof we derive from the relation dim Q dim Q

elementary inequality (9) for the positive integers d, n, m,p, r. The inequality has not
so many solutions. In Lemma 3 we show that solutions with d > 3, where d stands
for the number of branches of the covering tt, do not correspond to any nontrivial
mappings Q —> Q. In Lemma 4 we show that the only two-fold coverings tt which
give rise to the solution of the equation dim Q dim Q are exactly those which
correspond to hyperelliptic components.

M

M

n+l ,--,-Pn +m Pn+m+1 ,¦ ¦ ¦ ,Pn + m+p Pn +m+p+ 1 ,¦ ¦ ¦ ,-Pn + m+p+r

Marked points Simple Poles Non critical values of the covering 7r

FlG. 2. This example presents a covering of degree 5 with 21 ramification points. There are 9

critical values of tt. Here we have n m p r 3. The points P G ir^1{Pi) which
correspond to regular points of tt*^/> are painted in black. By convention we do not mark them.

Let us first introduce some notations. By (M, ip) we denote the initial Riemann
surface and a quadratic differential on it. We consider a ramified covering ty : M —>

M of degree d. We denote by Pi,..., Pn G M be the critical values corresponding
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to the true zeros of ip, i.e. to the zeros of degrees k-% > 0. Let Pn+i, ¦ ¦ ¦, Pn+m G M
be the critical values corresponding to the marked points (or, in the other words,
to the fake zeros of ip). Let Pn+m+i, ¦ ¦ ¦ ,Pn+m+p G M be the critical values

corresponding to the simple poles of ip. Let Pn+m+p+i, • • •, Pn+m+p+r G M be

the remaining true zeros and simple poles of ip which correspond to non-critical
values of it. (See an example at Figure 2).

We consider only those ramified coverings ty for which the induced quadratic
differential ip Tr*tp on M is not globally a square of a holomorphic 1-form. We
do not exclude from consideration the situation when the covering tt is actually a

regular covering.
Let us discuss now the location of singularities of the quadratic differential

ip Tr*ip on M. By convention we do not endow ip with any fake zeros: all
singularities of ip are either true zeros, or simple poles.

The computation of Lemma 1 shows that ip may have a singularity at a point
P G M either when ip has a singularity at tt(P) or when P is a ramification
point of 7T. Thus all zeros and poles of ip are located at the preimage of the
points Pi,..., Pn+m+p+r¦ Let us specify them precisely. (See also Figure 2 where
singularities are denoted by white bullets.)

At any preimage of any of the zeros P\,... ,Pn of ip we have a true zero of ip,

see Lemma 1. We have a zero of -0 at a preimage P G 7r~1(Pi) of a marked point
Pi, n + 1 < i < n + m, if and only if P is a ramification point of the covering tt,
e^{P) ^ 1. We have a pole or a true zero of -0 at a preimage P G tt^1(Pj) of a

simple pole Piy n + m + 1 <i<n + m+p, if and only if the ramification index
ej,-(P) of the covering ty at P is different from two, e^(P) ^ 2. At any preimage
of any singularity Pn+m+p+i, • • •, Pn+m+p+r of V1 we have a simple pole or a true
zero of ip. (See also an example presented at Figure 2.)

Now everything is ready for the computation of dimensions of the strata of
meromorphic quadratic differentials Q and Q corresponding to ip and ip.

Let g be the genus of the Riemann surface M. We have

dim Q 2g + n + m + p + r - 2. (3)

Denoting by g be the genus of the Riemann surface M we get

dim Q 2g + number of singularities of ?/> — 2

n

2g + V^ number of preimage P of tt^1 (PJ

n+m
+ V^ number of preimage P of tt^1(P:) of index ew(P) 7^ 1

î=n+l
n+m+p

+ VJ number of preimage P of tt^1(P:) of index e-K{P) ^ 2
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n+m+p+r
+ V^ number of preimage P of tt^1 (Pi) — 2

i=n+m+p+\
n+m+p

(2g — 2) + d ¦ r + VJ number of preimage P in ¦k~1{P1) (4)

n+m
— 2_. number of preimage P in -K~1{Pi) of ramification index one

i=n+l
n+m+p

number of preimage P in ¦n^1(Pi) of ramification index two.

Computing the genus g of the Riemann surface M by Riemann-Hurwitz
formula

2g-2 d-{2g-2)+ ^ (e,(P) - 1)

ramification points P of it

d ¦ (2g — 2) + y. {d ~ number of preimage)
critical values f\ of it

n+m+p
d ¦ (2g — 2) + d-(n + m+p)— ^J number of preimage P in tt^1 (Pt)

i=\
and substituting 2g — 2 in the formula (4) by the latter expression we get the
following answer:

dim Q d- {2g + n + m + p + r - 2) (5)

n+m
— 2_j number of preimage P in 7r^1(Pi) of ramification index one

t=n+l
n+m+p

— VJ number of preimage P G ¦n^1(Pi) of ramification index two.
i=n+m+l

Comparing the dimensions dim Q and dimQ given by equations (3) and (5) we

see that the equation
dim Q dim Q

is equivalent to the following one

(d- 1) -(2g + n + m+p + r -2)
n+m

2_. number of preimage P in 7r^1(Pi) of ramification index one

i=n+\
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n+m+p
+ V^ number of preimage P G ir~1(Pi) of ramification index two. (6)

By convention Pn+i, ¦ ¦ ¦, Pn+m € M are critical values of the d-fold covering
7T. Hence, among preimage of any P in rK~1{Pi), n+l<«<n + m there is at
least one preimage with ramification index different from one. This implies that
the number of preimage P in 7r~1(Pi) of ramification index one is at most d — 2.

The covering tt : M —> M is of order d. Hence, for any point Pi Ci M the
number of preimage P G rK~1{P{) of ramification index two has the following
obvious upper bound

number of preimage P in rK~1{Pi) of ramification index two

{d/2
when d is even

(d — l)/2 when d is odd.

Using these two obvious bounds we derive the following inequality from equation

(6)

\ m ¦ (d — 2) + p ¦ d/2 when d is even
(d-l)-(2g+n+m+p+r-2)< {

K ' '
' ' ~ \m-(d-2)+p-(d-l)/2 when dis odd

(8)

and its weakened version

(d - 1) • (2g - 2 + n + r) < p ¦ (1 - d/2) - m. (9)

In what follows we consider the nonnegative integer solutions of inequalities (8)
and (9). There are not so many of them since for most types of the covering ty

the dimension dim Q is greater than dim Q and the parameters d, n, m, p, r do
not obey neither equation (6) nor even inequalities (8) and (9). In Lemma 3 we
show that the solutions of inequalities with d > 3 do not correspond to any actual
ramified coverings tt. In Lemma 4 we study solutions of inequalities corresponding
to d 2, and show that the two-fold coverings tt giving solutions of equation (6)
are exactly those which corresponding to hyperelliptic components.

Lemma 3. // d > 3 then dim Q < dim Q.

Proof of Lemma 3. Suppose that dimensions of Q and Q coincide. We can apply
the inequalities above.

First of all, we are going to show that genus g of the underlying surface M must
be equal to 0. Suppose that g > 1, so inequality (9) gives (d—l)(n+r) < —p/2 — m.
If p > 0 or m > 0 then n + r must be negative, which is impossible. If p 0 and

m 0 then n r=p m 0 and we obtain the stratum Q(0) which is empty.
Thus the assumption g > 1 leads to a contradiction and we must have g 0 which
means that M-CP1.
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Now suppose that m > 0. Since the right-hand side of inequality (9) is strictly
negative, and d—1 > 0, the expression (2g — 2 + n + r) should be strictly negative.
Since g 0 this implies that

n + r < 1.

Now suppose that m 0. Using inequality (9), we get

(d - 1) • (n + r - 2) < p • (1 - d/2) < -p/2.

If p 0 then n + r<2sor+p<2 which is impossible since a meromorphic
quadratic differential on CP1 has at least four poles. Thus p > 0 and we again get
n + r < 1.

The above remarks show that we can restrict our considerations to the following
three (overlapping) cases:

To finish the proof of Lemma 3 we are going to show that all possible mappings
with d > 3 satisfying (6) are listed in (2). We shall use the following obvious
remark which is valid for any ramified covering tt : M —> M of degree d and any
point P £ M:

J2 e*(P) d. (10)

The case n + r 0 and m 0. Since n r m 0 and genus g 0,

we get a meromorphic quadratic differential with four simple poles Pi,..., P4 on
CP1, p 4. Let tj be the number of points in the fiber ¦n^1(Pi) (i 1,..., 4) of
ramification index two.

Taking the sum of expressions (10) over Pi, i 1,..., 4, we get

E e^p)+ E

4

E

On the other hand equation (6) gives

Note that, as m 0, the term corresponding to ramification index 1 in equation (6)
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does not appear. Thus we obtain

E e-(^) 4-

4

E
*=i Pe-n-\Pi)

This means that either there are two ramification points Pi, P^ of ramification
index different from 2, and then ew(Pi) 1, ew(P2) 3, or there are four
ramification points Pj, « f,... ,4 of ramification index different from 2, and then
e*(A) f.

The first solution suggests the map of the moduli spaces

But the stratum <2( —1,1) is empty (see above). The second solution corresponds
to the map Q(-l, -f, -f, -f —> Q(-l, -1, -1, -1) which is one of the maps (2),
and hence has no interest for us.

The case n + r 1 and m > 0. In this case either n 1 or r 1; denote

by A; the order of corresponding singularity of ?/>• The singularity is a true zero if
k > 0 or a pole if A; — 1; by convention on notations n, r it cannot be a marked

point. With this notation p 4 + k. We derive from (9) the following inequality:

-(d-l) < (4 + k)-(l-d/2)-m which gives d<3-k/2-m. If m > 1, as d > 3,

we obtain A; < —2 which is forbidden since we consider only simple poles. Thus
we must have m 0 and so k — 1. This implies that n 0 and r 1.

By inserting in inequality (9) we obtain d 3 or 4. The stronger inequality (8)
eliminates the solution d 3, so finally we get the solution d 4, where the
values of the other parameters are as follows: g n m 0; r 1, and the
corresponding point is a simple pole; there are three more simple poles, so r 3.

However, this solution gives the map Q( — 1, —1, —1, —1) —> Q( — 1, —1, —1, —1)

of the moduli spaces from the exceptional list (2), and hence has no interest for
us.

The case n + r 0 and m > 0. Since n r 0 and genus g 0, we get
a meromorphic quadratic differential with p 4 simple poles on CP1 and with
m > 0 marked points. Using inequality (8) we derive that if d is odd, we have

m 0 which is a contradiction. So d must be even and again by using this
inequality with d even, we deduced that 1 < m < 2.

If m 1, then we have a single marked point Pq g M. We derive the following
relation from equation (6):

(d-l).(1+4-2)
2_j number of preimage P in tt^1(P^) of ramification index two

poles f\
+ number of preimage P G tt^1(Pq) of ramification index one
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Let t be the number of preimage P G 7r~1(Po) of ramification index one over the
marked point Pq. By Convention, at least one preimage of a marked point has

ramification index greater then one, thus (fO) implies t < d — 2. Taking into
consideration (7) we obtain from the equality above the following inequality

3- (d-l) <2-d + t

and hence we have

d--i <t <d-2.
It is not difficult to see that if t d — 3 we obtain the following map

but Q(4) is empty.
If t d — 2 the equality above implies that

2_j number of preimages P in ir~1(Pi) of ramification index two 2 • d — 1

P% poles

and taking in consideration (10) we get

E E

where Pi,..., P4 are the simple poles. It is not difficult to see that in this case we
obtain the map

Q(-l, -1,-1, -1,0) ^Q(-l, -1,2)
which belongs to the list (2) and hence does not interest us.

By similar arguments we conclude that if m 2 we get the map

which belongs to the list (2) and hence does not interest us.

Lemma 3 is proved.

It remains to consider the two-fold coverings in order to complete the proof of
Theorem 1.

Lemma 4. If d 2 then the strata obey the relation

dim Q dim Q

only in the cases listed in Theorem 1 and in exceptional list (2).

Proof of Lemma 4- We suppose that the dimensions coincide. As the degree
of the covering is two, there are no ramification points in M of index one over



Vol. 79 (2004) Hyperelliptic components of the moduli spaces 491

marked points Pn+i, ¦ ¦ ¦, Pn+m on M, and there is exactly one point over each

pole Pn_|_m_|_i,..., Pn+m+r in the set of critical values of tt. Thus the equation (6)
transforms into the following one

2g + n + m + r - 2 0.

This equation shows that the genus g of the underlying surface might be either
1 or 0. If g 1 we get n m r 0 and hence the meromorphic quadratic
differential on a surface of genus g 1 does not have either zeros nor marked
points. Hence it does not have simple poles neither, which implies that it is the

square of an Abelian differential.
Thus g 0 and n + m + r 2. We consider separately the following three

cases:

{n + m 0 I n + m 1 I n + m 2

r 2 \r=l [r 0.

The first two cases give us either the first two maps from Définition 1 or the
exceptional map Q( — 1, — 1, — 1, —1) —> Q( — 1, — 1, — 1, —1) from the list (2).

The third case gives the mapping (when it is defined)

Q(h,k2, -lfci+fc2+4) -+ 0(2*! + 2, 2fc2 + 2) (11)

with kt > 0.

A ramified double covering over CP1 has even number of ramification points.
Since in our case we have ramification points over the two singularities of degrees k\
and ki and over all simple poles, this implies that the number ki+k2+6 is even, and
hence k\ and ki has the same parity. When both of them are odd, one can recognize
in (11) the canonical ramified double covering described in Construction 1. Thus
in this case the resulting quadratic differential is the global square of an Abelian
differential, and this case does not interest us.

When both k\, ki > 0 are even we obtain the map of the third type from
Définition 1. This completes the proof of Lemma 4.

Theorem 1 now follows immediately from Lemmas 3 and 4.

4. Quadratic differentials versa flat structures

In this section we present a well-know relation between quadratic differentials and
fiat structures on Riemann surfaces. We use this relation to prove that the strata,
that possess a hyperelliptic connected component, are not connected except several

particular cases in low genera.
A fiat surface with cone type singularities is a surface which possesses locally

the geometry of a standard cone. We can define it by a fiat Riemanman metric
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with specific isolated singularities. The standard cone possesses a unique invariant:
it is the angle at the vertex. Here we consider only half-translation flat surfaces:

parallel transport of a tangent vector along any closed path either brings the vector
v back to itself or brings it to the centrally-symmetric vector —v. This implies
that the cone angle at any singularity of the metric is an integer multiple of it.

Let ip be a meromorphic quadratic differential on a Riemann surface M2. Then
it is possible to construct an atlas on M\{singularities} such that rip dz in any
coordinate chart. As dz2 dw2 implies z ±w + const, we see that the charts of
the atlas are identified either by a translation or by a translation composed with
a central symmetry. Thus a meromorphic quadratic differential ip induces a half-
translation flat structure on M\{singularities}. On a small chart which contains a

singularity, coordinate z can be chosen in such way that ip zkdz2, where k is the
order of the singularity (k 0 corresponds to a regular point, k — 1 corresponds
to a pole and k > 0 corresponds to a true zero). It is easy to check that in a

neighborhood of a singularity of ip, the metric has a cone type singularity with the
cone angle (k + 2)tt.

A meromorphic quadratic differential ip also defines on M a pair of transversal
foliations. Let z be a canonical coordinate for tp i.e. let locally outside of singularity
ip (dz)2. The horizontal (respectively vertical) foliation defined by ip is the
foliation y const (resp x const) locally where z x + ty. The vertical
(horizontal) foliation defined by ip is oriented if and only if the quadratic differential
ip is the square of an Abelian differential.

Similarly, an Abelian differential defines a translation structure on the Riemann
surface: now the holonomy representation of the corresponding flat metric in the
linear group is trivial. In particular, all cone angles at the singularities are integer
multiples of 2tt.
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FlG. 3. Consider the following identifications of the boundary of this polygon: identify the
corresponding pairs of segments with the numbers 1, 2 and 3 by translations; identify the
corresponding pairs of segments with the numbers 4 and 5 by centrally symmetries. We get a
half-translation surface. In this case it has genus g 2 and the meromorphic differential induced
from the quadratic differential (dz)2 in the plane has two zeros of order 2 on this surface. The
singularities are conical point in the flat metric with a cone of angle 4?r. Note that since the
horizontal foliation is not oriented the corresponding quadratic differential is not the square of
an Abelian differential, though all cone angles of the singularities in the flat metric are integer

multiples of 2?r.

Reciprocally, a half-translation structure on a Riemann surface M and a choice
of a distinguished "vertical" direction defines a complex structure and a meromor-
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phic quadratic differential ip on M. In many cases it is very convenient to present a

quadratic differential with some specific properties by an appropriate flat surface.
Consider, for example, a polygon in the complex plane C with the following property

of the boundary: the sides of the polygon are distributed into pairs, where
the sides in each pair are parallel and have equal length. Identifying the
corresponding sides of the boundary by translations and central symmetries we obtain
a Riemann surface with a natural half-translation flat structure. The quadratic
differential dz2 on C gives a quadratic differential on this surface with punctures.
The punctures correspond to vertices of the polygon; they produce the cone type
singularities on the surface. It is easy to see that the complex structure, and the
quadratic differential extends to these points, and that a singular point of the
flat metric with a cone angle (k + 2)tt produces a singularity of order k (a pole
if A; —1) of the quadratic differential. (See also Figure 3 which illustrates this
construction.)

Remark 9. The area of M with respect to the flat metric defined by a meromor-
phic quadratic differential is finite if and only if ip does not possess poles of order

greater than 1. This explains why we consider quadratic differential with simple
poles only.

4.1. Non-connectedness of the strata

Now, we prove that strata with a hyperelliptic connected component are not
connected in general. We present a particular geometric property of surfaces, that
belong to a hyperelliptic component, and then we construct appropriate flat
surfaces which do not verify this property.

Let us consider a flat surface (M, ip) in a hyperelliptic component of the stratum
Q(Ak + 2, A(g - k) - 6), where k > 0, g > 2, g - k > 2. By définition, there exist
a ramified double covering -n : M —> CP1 such that rip ir*ripo where -00 is a

meromorphic quadratic differential on CP1. We consider the canonical atlas on M
such that locally ip dz2 in a neighborhood of a regular point and ip zkdz2 in a

neighborhood of a singularity. In this atlas, the hyperelliptic involution t : M —>

M is affine. Moreover, t is an isometry of the flat metric defined by ip. The two
zeros of ip are fixed points of t

Suppose that there exist a geodesic saddle connection joining the two zeros

- a geodesic segment in the flat metric defined by ip having no singularities m
its interior, and having the two zeros of ip as the endpoints. Then this saddle
connection have an image by t of the same length and it is also a saddle connection.

So if there is a horizontal saddle connection (which is a singular leaf of the
horizontal foliation joining the two singularities) then there exists another one of
the same length going in the same direction.

In particular, if a quadratic differential ip having two zeros of orders Ak + 2 and
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4(g — k)—6 defines a horizontal foliation such that all horizontal saddle connections
between the two zeros have different lengths, then (M, ip) does not belong to
the hyperelliptic component of Q(Ak + 2,4(gr — k) — 6). Since the hyperelliptic
component of this stratum is nonempty, it would imply that the stratum is not
connected.

The similar argument can be applied to the strata Q(2(g — k) — 3, 2(g — k) —

3, 2k + 1,2*;+ 1) and Q(2(g - k) - 3, 2{g - k) - 3, Ak + 2).
We use this idea to construct appropriate flat surfaces such that the corresponding

quadratic differentials do not belong to hyperelliptic components. We use the
following two Lemmas which are particular cases of the corresponding Lemmas of
Eskin, Masur and Zorich ([EMZ], [MaZo]); see also analogous Proposition 4.7(6)
in the paper [HuMa] of Hubbard and Masur.

Lemma 5. Consider a surface in Q{k\, kn). Choose l\, li G { — 1,1, 2, 3, 4,... },
as follows

• if ki is odd, h -\- h k\, /j any.
• if ki is even, h -\- h k\, lt even.

For any tpo G Q{k\, &2j • • • j kn) and for any sufficiently small e > 0 (depending on
tpo) it is possible to construct a deformation tp G Q(h, h, &2j • • •, kn) of tpo such

that the corresponding flat metric has a horizontal saddle connection of length e

joining the singularities P\ and Pi of orders l\ and li-
The deformation can he chosen to he local: the flat metric does not change

outside of a small neighborhood of the zero of multiplicity k\.

Lemma 6. Consider a surface in Q{k\,. kn). Let k\ he odd and let k\ l\ +
h + h, where /j G { — 1,1, 2, 3, 4, } are also odd. For any tpo G Q{k\, &2, kn)
and for any sufficiently small e > 0 (depending on tpo) it is possible to construct
a deformation tp G Q(h, li, I3, ^2, • • •, kn) of tpo such that the corresponding flat
metric has two horizontal saddle connection of length e joining the singularities
Pi, Pi andPi^P?, of orders I1J2J3 correspondingly.

The deformation can be chosen to be local: the flat metric does not change
outside of a small neighborhood of the zero of multiplicity k\.

Proof of Lemma 5. Let Pq G M be the singularity of tpo of order k\. Consider a

small metric disk D with the center in Po and of radius R in M in the flat metric
on M defined by the quadratic differential tpo- We choose R to be small enough,
so that D does not contain other singularities of tpo-

In fact, D is glued from k\ + 2 Euclidean half-disks of radius R where the
corresponding radii of the half-disks are pairwise identified, see the left sides of
Figures 4 and 5. Note that the pictures are schematic: the angle of every sector
is actually equal to tt.

To make a local deformation of the Euclidean metric inside D we reglue the
radii borders of Euclidean half-disks in a different way. Figure 4 illustrates how to
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break a zero of even degree k\ when even number k\ + 2 of half-disks are adjacent
to the vertex into two zeros of even degrees l\ and 1-2- Now there are l\ + 2 and
1-2 +2 half-disks adjacent to the corresponding vertices. Note that the angles of all
sectors are, actually, again equal to it. Figure 5 illustrates how to break a zero of
odd degree k\ into a zero of even degree l\ and a zero of odd degree li-

FlG. 4. Breaking up a zero of order 4 into two zeros of orders 2. Note that the surgery is local:
we do not change the flat metric outside of the neighborhood of the zero.

0,-1-

\ 5
''

e + S

/
e-S

FlG. 5. Breaking up a zero of order 3 into two zeros of orders 1 and 2 correspondingly. Note
that the surgery is local: we do not change the flat metric outside of the neighborhood of the

zero.

Proof of Lemma 6. The proof of Lemma 6 is completely analogous to the proof of
Lemma 5. It is illustrated at figure 6.
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e - 2<S

/e + S

<5 " <5 /

CMH

e- <5 e-<5

FlG. 6. Breaking up a zero of order 3 into three zeros of orders 1. Note that the surgery is
local: we do not change the flat metric outside of the neighborhood of the zero.

Theorem 2. The strata which possess a hyperelliptic component are non
connected except for the following cases corresponding respectively to genus 1 and 2

[0(2,2)
and I Q(l,l,2)

I 0(1,1,1,1).

when the whole stratum coincides with its hyperelliptic connected component.

Q(-l, -1,1,1)

Proof of Theorem 2. We decompose the proof into three Lemmas. In the first,
we prove that the strata of the list above are connected. In the second, we prove
Theorem 2 for strata with 2 and 3 singularities. In the third we prove the Theorem
for strata with fours singularities.

Lemma 7. The following strata are connected

Q(-l, -1, 2), Q(-l, -1,1,1) in genus 1,

Q(2, 2), Q(l, 1, 2), Q(l, 1,1,1) in genus 2,

they coincide with the corresponding hyperelliptic component.

Proof of Lemma 7. We use an idea drawn from the book of Farkas-Kra [FaKr].
See also [La2] for another proof, using the combinatorics of "generalized permutations"

We prove this Lemma for Q(2, 2). For the other strata, the demonstration is
similar. First of all, take a point [M, ip] G <2(2, 2). In genus 2, all curves are

hyperelliptic so we can suppose that a representative of M is given by an algebraic
curve

w
l=\
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where z-% ^ z3 for i ^ j and z-% G C. There is a (ramified) double covering
¦n : M —> CP1 defined by ir(w,z) z. Let r be the hyperelliptic involution

dz
t(w,z) (—w,z). With these notations, we can see that u>\ — and lui

w
dz

z ¦ — form a basis of holomorphic Abelian differentials on M. It easy to see that
w

ujf,uJ2 an(i wi • W2 are linearly independent in the space of holomorphic quadratic
differentials which has dimension 3g — 3 3. So the family {lû\^lû\^lû\ ¦ 1V2}

forms a basis in the space of holomorphic quadratic differentials on M. By direct
computation, we can see that T*ivt —ust and consequently, any holomorphic
quadratic differential is invariant under t.

Let (M, ip) G Q(2, 2) and let P\ and P2 be the two zeros of ip. We have

hence t either fixes the two zeros or interchanges them.
Suppose that the second case occurs. Let zq tt(Pi) tt(P2). Since by

assumption t(P\) 7^ P2, we see that zo is a noncritical value of the covering, and
hence zq ^ zi for any 1 1,..., 6. We can construct a quadratic differential tpo on
CP1 with six simple poles at the images zi G CP1 of the ramifications points, and
a zero of order 2 at zq. Then the covering -n : M —> CP1 is exactly the covering of
Construction 1 so Tr*ipo <^2 possesses two zeros of order two at the same points
as the two zeros of ip. Hence ip const -J2 which contradicts the assumption that
ip is not a global square of an Abelian differential.

Thus the two zeros Pi and P^ are the fixed points of the hyperelliptic involution.
Let zq tt(Pi), z0 tt(P2). We can construct a quadratic differential -00 on CP1

with four poles at the images of ramifications points, and with two fake zeros
at zo and z0 correspondingly. As above, ip const ¦ Ti*ipo- But by construction
Tr*ipo belongs to the hyperelliptic connected component (see Construction 2). Thus

p e Qhyp(2, 2) and hence Q(2, 2) Qh«P(2, 2) is connected.
This completes the proof of Lemma 7 in the case of the stratum Q(2, 2). The

proof for other cases is completely analogous.

Now we prove Theorem 2 for the general strata with 2 and 3 singularities.

Lemma 8. The strata

Q(4(g -k)-6,4k + 2) with k>0,g>3andg-k>2
and

Q(2(g-k)-3,2(g-k)-3,4k + 2)

with g > 3, k > 0,g — k > 1 or g 2 and k 1

are non-connected.
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Proof of Lemma 8. By the Theorem of Masur and Smillie [MaSm] (see also the
statement of the theorem at the beginning of section 2) the stratum Q{4g — 4)
is non-empty when genus g > 3. Consider a flat surface corresponding to some

[M, ipo] & Q(4g —4) such that the horizontal measured foliation is uniquely ergodic,
in particular minimal. (The genericity of this property is proved in [Ma] and
in [Vel].) Consider a small disk around the zero of the quadratic differential.
Applying Lemma above, we can break the zero of order Ag — 4 into two zeros of
orders 4(g — k) — 6 and 4k+ 2 correspondingly with a very short horizontal saddle
connection 7 joining them. By construction there are no other short horizontal
saddle connections. So the quadratic differential ip G Q(4(g — k) — 6,4k + 2) thus
constructed does not belong to hyperelliptic connected component of Q(4(g — k) —

6, 4k + 2) (see the beginning of this section). This proves the first statement.
Consider now the stratum Q(2(g -k)-3, 2{g + k) - 1) with k > 0, g - k > 1.

By the Theorem of Masur and Smillie [MaSm] this stratum is non-empty if g > 3

or if g 2 and k 1.

Take a flat surface corresponding to a quadratic differential from this stratum
such that the corresponding horizontal foliation is minimal (see above). Then if we
break the zero of order 2(g + k) — 1 into two zeros of orders 2(g — k) — 3 and 4k+ 2

joined by a very short horizontal saddle connection we get a surface which belongs
to the non-hyperelliptic component of the stratum Q(2(g—k)— 3, 2(gr—fc)—3,4k+2).

The only strata to which we cannot apply this method are the stratum with two
poles and a simple zero Q( — 1, —1,2) in genus 1 and the stratum with two simples
zeros and a double zero Q(l, 1, 2) in genus 2. In these two cases the initial (non-
perturbed) quadratic differentials would belong to Q( — 1,1) and Q(l, 3) which are

empty.
Lemma 8 is proved.

Let us prove proposition for strata with four singularities.

Lemma 9. The strata

Q(2(g -k)-3, 2{g -k)-3,2k + 1, 2k + 1)

with g > 3, k > —1, g — k > 2 or g 2 and k — 1

are non-connected.

Proof of Lemma 9. Consider the stratum Q(2(g — k) — 3, 2(g + k) — 1) with g > 3,

k > —1, g — k > 2. By the Theorem of Masur and Smillie [MaSm] this stratum is

non-empty.
Take a flat surface corresponding to a quadratic differential from this stratum

such that the corresponding horizontal foliation is minimal (see above). By
Lemma 6 we can break the zero of order 2(g + k) — 1 into three zeros of orders
2(g — k) — 3, 2k + 1, 2k + 1, joined consecutively by very short horizontal saddle
connections. We use a local perturbation of the flat metric, which not rather ere-
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ate a short horizontal saddle connection going to the unperturbed zero of order
2(g — k) — 3. We get a flat surface corresponding to a quadratic differential from
the stratum Q(2(g - k) - 3, 2{g -k)-3,2k + 1, 2k + 1).

The hyperelliptic involution interchanges the corresponding zeros of any ip' G

Qhvp(2(g - k) - 3, 2{g - k) - 3, 2k + 1, 2A; + 1). By construction the quadratic
differential constructed above is asymmetric, and hence it belongs to the non-
hyperelliptic component of the stratum Q(2(g—k)— 3, 2(c/—fc) — 3, Ak+2). Lemma 9

is proved.

Now, Theorem 2 follows from Lemmas 8 and 9.

5. Announcement of the Classification Theorem

In [KoZo] Kontsevich and Zorich have shown that the connected components of
the moduli spaces of Abelian differentials are classified exactly by two invariants:
the hyperellipticity and the parity of the spin structure.

The story for the moduli space of quadratic differential is more complicated.
For example, the strata Q(12) and Q( —1,9) do not have any hyperelliptic
components. In addition, in paper [Lai], we show that all quadratic differentials in a

fixed strata must have the same parity of the spin structure. In the previous case,
the spin structure is 0 for any quadratic differential in each of these two strata.
However, it was proved by A. Zorich by a direct computation of the corresponding

extended Rauzy classes that each of these two strata has exactly two distinct
connected components.

In [La2] we give the following general description of all connected components
of any stratum of the moduli spaces Q{k\,..., kn):

Theorem 3. Let us fix g > 5. Then all strata of the moduli space Qg listed in
Theorem 2 have exactly two connected components: one is hyperelliptic - the other
not.

All other strata of the moduli space of meromorphic quadratic differentials Qg

are non-empty and connected.

And for small genera we have:

Theorem 4. Let us fix g < 4. The components of the strata of the moduli space

Qg fall in the following description
• In genera 0 and 1, any stratum is connected.

• In genus 2 there are two hyperelliptic non-connected strata. All other strata
of 0,2 are connected.

• In genera 3 and A, any hyperelliptic stratum possesses two connected

components: one is hyperelliptic - the other not. All other strata, with 4 exceptional

cases, are connected.
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• The 4 above particular cases are

Qfl=3(-1,9), Qfl=3(-1,3,6), Qfl=3(-1,3,3,3), Qfl=4(12)

and these strata have two connected components.
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grateful to A. Zorich, P. Hubert and the Referee for their remarks concerning this
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