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Auslander—Reiten theory over topological spaces

Peter Jareenben

Abstract, Auslander—Reiten triangles and qui\ers are intioduced into algebraic topology. It is

pio\ed that the existence oi Ausländer Reiten triangles characterizes Poincaré duality spaces,
and that the Auslander Reiten quiver is a weak homotopy invariant.

The theory is applied to spheres whose Ausländer—Reiten triangles and quivers are computed.
The Ausländer—Reiten quiver over the d-dîmensîonal sphere turns out to consist of ci— 1 copies of
Z/i<x>. Hence the quiver is a sufficiently sensitive invariant to tell spheres of different dimension

apart.
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0. Introduction

In this papei, two conceptb from representation theory are introduced into
algebraic topology: Auslander-Ueiten Mangles and Auslander-Reiten quivers

The highlights are that existence of Ausländer—Reiten triangles characterizes
Pomearé duality spaces (theorem 6.3), that Auslander-Reiten triangles and quivers
over spheres can be computed (theorems 8.12 and 8.13). and that the Ausländer

Reiten quivei is a sufficiently sensitive invariant to tell spheres of different
dimension apait (corollarj 8 11)

After this brief survey, let me describe the paper at a more leisurely pace
The idea to use methods from the representation theory of finite dimensional

algebras in algebraic topology comes as follows:
if. k is a field and X is a simply connected topological space with diixift lï*(X k)

< 0Oj then the singular cochain difleiential graded algebra C (X;k) is equivalent
b\ a series of quasi-isomorphisms to a differential graded algebra i? which is finite
dimensional over h, by the methods of [5, proof of thm. 3.6] and [6, exam 6,

p. 146]

Hence it seems obvious to trv to stud} R and therebj G*[X] h) with methods
from the representation theory of finite dimensional algebras. A natural place to
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start is with the derived category of differentia] graded modules D(i?.) which is the

playing ground for ho.rxiologi.ca,] algebra over It. Note that by [12. thm. Ill 4.2],
the category D(R) is equivalent to D(G*(X;fe}}.

A number of concepts present themselves which are used to analyze the structure

of derived categories in representation theory. I will concentrate on two
important ones' Ausländer Reiten triangles and Auslander Reiten quivers. Their
definitions are recalled in 1.1 and 2.1 below, but let me make some remarks.

Auslander-Reiten triangles are certain special triangles among the distinguished
triangles in a triangulated category. They are the triangulated counterpart to
Auslander-Reiten sequences which pervade representation theory, see for instance [1|.

Not all triangulated categories have Ausländer— Reiten triangles, but those that do

enjoy many advantages as described in [7], [8[, and [13].
The Auslander Reiten quiver of an additive category is an important structural

invariant. The vertices are certain isomorphism classes in the category, and the
arrows are determined by certain morphisms. One can think of the quiver as an
"X-ray image" of the category. Auslander Reiten quivers of additive categories
are used extensively in representation theory, see [1].

Auslander-Reiten triangles and quivers are intimât eh' connected: 11 a suitable
triangulated category has Auslander-Reiten triangles, then thev give enough
information to compute the Ausländer—Reiten quiver ol the category (lemma 2 2),
and they even give the quiver the extra structure of so-called stable translation
quiver (definition 2.3 and corollary 2.4).

Now, one can hope that the tools of Auslander-Reiten triangles and quivers
will be as useful in studying the derived category D{C*~(X,k)) as they are in
representation theory. This paper shows that at least something can be gained:

Section 6 considers Auslander Reiten triangles, and proves (essentially) that
they exist in the category Dc (C¥(X; k)) if and only if the topological space A" has

Poincaré duality over k (theorem 6.3) Here Dc [Cr(X, /,-)) is the full subcategory
at compact objects of D(C*(X; k)) (that is, the objects M lor which Ilom(A/,-)
commutes with set indexed coproducts).

Section 7 considers the Auslander-Reiten quiver of DC(C¥(A': k)). and proves
that it is a weak homotopy invariant of X (proposition 7.1).

Section 8 applies the theory to spheres, and computes the Auslander—Reiten

triangles and the Ausländer Reiten quiver of DC(C*(S'J] k)) for d > 2 when the
characteristic of k is zero (theorems 8.12 and 8.13). The quiver consists of d — 1

components, each isomorphic to ZA^, and it is observed that hence, the quiver
of DC(C*(.S"/; k)) is a sufficiently sensitive invariant to tell spheres of different
dimension apart (corollary 8.14).

On the way to these results, the indecomposable objects ol the category
Ds(C¥(>9d; k)) are determined, and it is proved that each object is the coproduct
of finitely many uniquely determined indecomposable objects (proposition 8.10).
This gives a fairly accurate picture of DC(C (Sd;k)) which may be ol independent
interest.
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The initial sections 1 to 5 of the paper are organized as follows: Sections 1 and
2 briefly recall Ausländer—Reiten triangles and quivers, and sections 3 to 5 develop
the theory of Ausländer Reiten triangles over a general differential graded algebra
R which has the advantage of being typographically lighter than C*(X;k). and
not mathematically harder.

Let me end the introduction by giving some notation.
Throughout the paper, k denotes a field.
Differential Graded Algebras are abbreviated DC1.As, and Differential Graded

modules are abbreviated DG modules.
Standard notation is used for triangulated categories and for derived categories

and functors. The suspension functor is denoted S and the £'th cohomology functor
is denoted H!. The notation is cohoinological (degrees indexed by superscripts,
differentials of degree +1).

Module structures are occasionally emphasized by subscript notation. So for
instance, M^s indicates that M has compatible right-structures over R and S.

Let S be a DGA over k.
S'^ denotes the graded algebra obtained by forgetting the differential of S,

and if M is a DG S-module then A/fc denotes the graded ^-module obtained by
forgetting the differential of M.

The opposite DGA of S is denoted 5op, and has the product s
°P t (-1 )HMf.s.

DG right-S-modules are identified with DG left-i>"jp-modules
DC(»V) denotes the full subcategory of the derived category D(S) which consists

of compact objects, that is, objects M for which the functor Hom(A/, — J commutes
with set indexed coproducts.

D (5*) denotes the full subcategory of D(S) which consists of objects M with
dim.it HM < oc.

I write
D(-) Horrifc (-,k).

This duality functor is defined on k-vector spaces. It can also be viewed as defined
on modules, graded modules, or DG modules, and as such it interchanges left-
modules and right-modules The functor D induces a duality of categories

DE(5) T-^ DE(5op).
D

Note that D5 is a DG leff/righf-5-module, like S itself.
ff D is a triangulated category and M is an object of D, then an object is said

to be finitefy built (rorri M il if is m the smallest triangulated subcategory of D

which contains M and is closed under retracts.

1. Auslander—Reiten triangles

Sections 1 and 2 are introductory.



Vol. 79 (2004) Auslander Reiten theory 163

This section recalls the definition of Anslander-Reiten triangles and a few of
their properties

Let D be a triangulated category.

Definition 1.1. A distinguished triangle

is called an Ausländer Raten triangle if
(i) Each morphism M —> N' which is not a section factors through p..

(ii) Each morphism A'' —> P which is not a retraction factors through v.
(iii) 7T / 0.

This version of the definition is taken from [11, def. 2.1]. By [11, sec. 2], it is

equivalent to the original definition. [8, 3.1], in the setup of [8].
(liven an object P. there may or may not exist an Auslander Reiten triangle

as in the definition But if there does, then it is determined up to isomorphism by
[8. prop. 3.5(i)]. This allows the following definition.

Definition 1.2. Given an object P Suppose that there is an Auslander Reiten
triangle as in definition 1.1. Then M is denoted tP, and the operation t is called
the Ausland&r—Reiten translation ol D.

Note that tP is only defined up to isomorphism.

Remark 1.3. By |11, lern. 2.3], in an Auslander-lleiten triangle, the endomor-
phism rings of the end terms M and P are local. In particular, M and P are
indecomposable

Hence the following definition.

Definition 1.4. Suppose that for each object P with local endomorphism ring.
there exists an Ausländer Reiten triangle as in definition 1.1. Then D is said to
haue Auslander Reiten triangles.

Note that in the situation ol the definition, some authors would only say that
D has right Auslander-Reiten triangles.

2. The Auslander—Reiten quiver

This section recalls the definition of the Auslander-Reiten quiver and its connection

with Ausländer Reiten triangles.
Let D be an additive category.
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A niorphism M -^ X is called irreducible if it is neither a section or a retraction,

but satisfies that in any factorization /t pa, cither o is a section or p a

retraction.

Definition 2.1. The Auslander-Reiten quiver of D hah ah vertices the isomorphism

classes [AI] of indecomposable objectb It hah one arrow from [AI] to [N]
when there is an irreducible niorphism AI —> N and no arrows from [AI] to [X]
otherwise.

This is the simplest version of the Ausländer Reiten quiver There are versions
with various embellishments, but 1 will not consider any of those.

Now let D be a Ar-lincar triangulated category where each Horn space is finite
dimensional over k and each indecomposable object has local endomorphism ring.
The following lemma is immediate from [8, prop. 3.5

Lemma 2.2. Let M —> N —> P —* be an Auslander Reden triangle. Suppose
that N H Nj is a splitting into indecomposable objects, and let N' be some

indecomposable object. Then the following statements are equivalent.

fi) There ?s an irreducible morphism AI —> N'.
(ii) There is an irreducible morphisrn N' —? P.
(ni) There is a j so that N' Nj.

This shows that il D has Auslander-Heiten triangles, then knowledge ol the
Auslander-Reiten triangles gives full knowledge of the Auslandcr-lleiten quiver.

Moreover, there is the notion of stable translation quiver.

Definition 2.3. A quiver is said to be a stable translation quiver il it is equipped
with an injective map r called the translation, which sends vertices to vertices in
a way so that the number of arrows from t[P] to [N1] equals the number of arrows
from [N<] to [P]

Corollary 2.4. If D has Auslander Reiten triangles, then the Auslander Reiten

quiver, equipped with the rnap [P\ i—4 [rP\ induced bg the Ausländer-Re ite.n

translation, is a stable translation quiver.

Proof. By [11, sec. 2], the left hand end term tP ol an Auslander-Reiten triangle
determines the triangle up to isomorphism. In particular. tP determines P up to
isomorphism, so the map [P] >-> [tP] is injective.

Moreover, lemma 2.2 implies that the Auslander Reiten quiver has an arrow
[tP] [AI] —> [N1] if and only if it has an arrow [N1] —- [P]. D
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3. Derived categories

Sections 3, 1, and 5 develop the theory of Auslander Reiten triangles over a general
DGA denoted R.

This section collects some lemmas on derived categories of DC! modules.

Setup 3.1. In the rest of the paper. It denotes a DCA over the field k satisfying:

(i) R is a coehain DGA, that is. Rl 0 for i < 0.

(ii) R° k.
(Hi) R1 0.

(iv) dim* R < co.

Note that R/R^x k is a DG left/right-Ä-module.

First a general lemma which holds by [9, thm. 5.3].

Lemma 3.2, Let S be a DGA over k. Then the objecta of DC(S>) are exactly the

ones which are finitely built from gS.

The rest of this section deals with R, the DGA from setup 3.1. If M is a DG
left-i?-niodule, then a semi-free resolution F —* M is called minimal iî the differential

dp takes values in R-1 F. whence k ®r F and Hom.n(F. k) have vanishing
differentials. See [6, clip. 6] for general information on semi-free resolutions. The
following lemma is well known although I give a few extra details: see [5, appendix].

Lemma 3.3. Let M be a DG lefl-R-module for which u inf{ i | WM ^ 0 } is

finite, and for which each H*M is finite dimensional over k.

(i) There is a minimal semi-free resolution F —> M which has a semi-free
filtration with quotients as indicated.

V u [}(-)q) \i UT>(ji) y u lr>(~|2)

0 C F(0) C L(V) C F(l) C L(2) C F{'ï) C • •• C F,

x / \ /
where superscripts (jj) and (Sj) indicate coproducts. Each yj and each

is finite, and 70 y^ 0.

(ii) / Äaue

^ JJ L <A '

where each, ß„ is finite.
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The following truncation lemma uses that H° is k, and is an exercise in linear
algebra

Lemma 3.4. (i) Let M be a DG kft-R-module for which a inf{ * | HW ^ 0}
is finite. Then there exists an infective quasi-isomorphisvn of DG left-R-
modules U —> M with UJ 0 for j < u,

(ii) Let ,\ he a DG left-R-rnodvle for which v sup{ i \ II'X / 0} is finite.
Then there exists an sarjecbve quasi-isomorphism of T)G Ieji-R-modules
X —> V with V'i 0 Jor j >v.

Lemma 3.5. (i) Let M and N in D (i?) fee given. Then L have

y(M, N) < oo.

(ii) Ij M is an indecomposable object of D (R). then the endomorphism ring
(M, M) is local.

Proof, (i) This is trivia] if A" is isomorphic to zero, so f can suppose that it is not.
Let F —> M and G —> AT be semi-free resolutions chosen according to

lemma 3.3(i). Since J have dirûft H < ce, lemma 3.3(ii) implies dims F^ < cc
and dirrife GJ < oo for each j.

As N is in Df(/?) and is not isomorphic to zero, the same is true for G, so

u Inf{ i | WG ^ 0 } and v sup{ i | R'G =£ 0 } are finite By using both parts of
lemma 3.1,1 can replace G with a truncation G' so that G' is concentrated between
degrees u and v. and so that G and G' are connected by two quasi-isomorphisms.
As G' is a truncation of G. I have dim^ G'J < oc for each j.

But dims, F1 < oo and dims- G'^ < oo for each j and G' concentrated between
degrees u and v imply

dimj; J lom/((i''. G')J < oo

for each j. and so

I-IomD(R)(AfJiV) ^ Ilü(Rllomfi(A/,iV)) 11°(IlomR(/¦',(?'))

also has dims Homp^^M, Ar) < oo.

fii) By part fi) and [14, p. 52], it is enough to see that idempotent morphisms
in Df(i?) split. But by [3. prop. 3.2] they even do so in D(i?) because D(i?J is a

triangulated category with set indexed coproducts. D

Lemma 3.6. There is the inclusion Dc(i?) C Df(R).

Proof. This is clear by lemma 3.2 because &R is in D [R). D

Remark 3.7. Lemmas 3.5 and 3.6 say that Df(/?) and Dc(/?) are triangulated
categories of the type considered in the latter part of section 2, so the results of
section 2 apply to them.
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Lemma 3.8, Let F and X be DG left-R-mod a les with

and with X3 0 for j > v. Then

bup{?| ll'(HomR(FA')) / 0} < -v \-v.

Proof, This follows since

BomH{F. X)b Hornet (Fb. N*) ][J £~J (ArbJ 3>

is zero in degrees > —u+vy because the highest degree contribution to the product
comet, from E"(Arq)'L" which is certainly zero in degrees > — u + v. D

Lemma 3.9. Let M and X be in Df(K). Then

sup{ i | H*(RHomH(AJ, Ar)) + 0 }

- inf { | HUJ ^ 0 } + sup{ i | HlN ^ 0 }.

Proof. If Jlf or Ar is isomorphic to zero, then the equation just says —do —do, so

I can suppose that neither M or X is isomorphic to zero. Then u inf{ 11 EPA/ ^
0} and c sup{ i \ WiX / 0 } are finite.

By lemma 3.3(i), pick a semi-free resolution F —> M. with

j<-u

By lemma 3.4(ii), replace Ar with a quasi-isomorphic truncation with X1 0 for
J > »¦

Since RHorrifl(A/. Ar) Hom^(F, AT) holds, what I must prove is

sup{?| ffl(KomR(F,N)) / 0} -v \ v.

Here < follows from lemma 3.8, so it remains to show

H u ]

v(RomR(F, X)) ^0. (1)

For this, note that the semi-free filtrai ion oi F in lemma 3.3 i gives a semi-split
exact sequence of DC left-ß-modules,

0-*>r"/^o) —>F—>i?'^0, (2)

with 7o 7e 0 Here the left hand term is just F(0j. and F' is the quotient F/F(0).
From the part of the semi-free filtration which continues up from F(0) follows

[F'f JJ XP(i?.^-J. (3)
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Since the sequence (2) is semi-split; applying 'HornR( —, A") gives a short exact

sequence of complexes.

0 -> HomR(F', N) —> Uomn[F, N) —> £UAP'° -> 0.

The long exact cohomology sequence of this contains

TT~J+' (UomR(F,X)) > H~"+' (JT ,\">" > IT~"+' ~' (TIoinR(F',/V))

The middle term is fF'^V""1) which is non-zero. The last term is zero because

lemma 3 8 and equation (3) imply

supf i | ff(HomR(F'. N)) ^ 0 } < -u + c

But then the first term is non-zero, proving equation (1). D

4. Auslander—Reiten triangles over a DGA

Recall R. the DGA from setup 3.1. This section gives a criterion lor the existence
of Ausländer-Raten triangles in Dc(/7) (proposition 4.3). and a formula for Aus-
lander-Reiten triangles when they exist (proposition 4.4).

Lemma 4.1. Let P he an object of DL(H) with local endoniorphism nnq. Then
there is an Ausländer Reiten triangle in Df(i?)7

S"1(Diï ®r P) —> N —*¦ P —

Proof. Lemmas 3.5(i) and 3.6 show that the theory of [10. sec. 4] applies to D(H').
The natural equivalence

D(HomD(R)(PJ -)) ~ J lomD(R)(-. DR ®R P) (4)

holds for P equal to rH, and therefore also holds for the given P because P is in
DL(R) and therefore finitely built from Ri? by lemma 3.2. Hence [10. prop. 4.2]
gives an Ausländer Reiten triangle in D(R).

}J-\DR ®R P) -^ S -^ p -^ (5)

Moreover, (5) is in Df(iï), and so is an Ausländer Reiten triangle in Dt(R): As

P is finitely built from RR, it follows that I)R®R P is finitely built from R(I)R).

But then Off <|R P is in Df(ff) because R(DR) is in Df(ß). And P is also in
Df(R) by lemma 3.6. So both end terms in (5) are in Dt(R), and the long exact
cohomology sequence then proves the same for the middle term. D

Lemma 4.2. An Ausländer Reden triangle m DC(R) is also one in Df(i?).
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Proof. Note again that lemmas 3.5(1) and 3.6 show thai the theory of [10, sec.

4] applies (o D(i?) Hence 110, km. 4.3] gives that each object in Dc(fi) is a so-

called pure-injective object of D(i?). So by [10, prop. 3.2], each Auslander Reiten
triangle in D' (R) is an Auslander Reiten triangle in D(R), and so in particular in
Df(i?). D

Proposition 4,3. The category Dr(i?) has Ausländer—Reiten triangles if and only
if R(DR) is mDc{R).

Proof. On one hand, suppose that R(J)R) is in Dc (Ä) Let P be an object of Dc (i?)
with local endomorphism ring. Lemma 4.1 gives an Ausländer Reiten triangle in
D (R) with P as right hand end term. In the present situation, I claim that the
triangle is in fact in Dc(ß), and so is an Auslander-Reiten triangle in Dc(/2).

To see this, note that as P is in Dc(/?). it is finitely built from RR by lemma

3.2 whence DE ®r P is finitely built from R(DR). But since R(BR) is in DC(R).

it follows that DR ®R P is in Dc (ß). And as both DR 2>R P and P are in Dc(fi),
so is the middle term in the distinguished triangle from lemma 4.1, so the triangle
ism Dc(fi).

On the other hand, suppose that DC(R) has Auslander-Reiten triangles. '1 he

endomorphism ring of RR is k which is local, so let

M —> X —> R —y

be an Auslander Reiten triangle in Dc(i?). By lemma 1.2 this is even an Auslander

Reiten triangle in Df(/?). Bv lemma 4.1 there is also an Auslander-Reiten
triangle in Df(fi),

\") R 6? n R v V' s. 1} 5.

and as the two Auslander Reiten triangles have the same right hand end term,
they are isomorphic by [8, prop. 3.5(1)]. In particular, the left hand end terms are
isomorphic. so

M * DR®R Rr"' R(T)R),

and here the left hand side is in Dc(i?j so R(DR) is also in Dc(iî) D

Proposition 4.4. Suppose thai DC(R) has Auslander Retten triangles.

(i) Let P be an object oj Dc (R) with local endomorphism ring. Then there is

an Auslander-Reiten triangle in Dc {R),

^r P) —*Ar —>P —> ¦

(ii) The Ausländer Reuen translation of Dc (R) is given by
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Proof, (i) The distinguished triangle here is the one from lemma 4.1, so is an
Ausländer—Reiten triangle in D (R). rFhe first part of the proof of proposition 4.3
shows that it is also an Ausländer Reiten triangle in Dc(i?) provided R(DR) is in
DL(R). And this holds by proposition 4.3 because DL(R) has Auslander Reiten
triangles.

(ii) This is immediate from part (i); cf. definition 1.2. D

5. Poincaré duality DGAs

Recall R, the DGA from setup 3.1. This section considers the situation where

R(DR) is in Dc(i?) and (DR)R is in Dc(i?op), cf. proposition 4,3. Theorem 5.1

shows that this is equivalent to Hi? having Poincaré duality.
Xote that by the proof of theorem 5.1, it is also equivalent to R being a so-called

Gorenstein DGA; cf. [5

Theorem 5.1. With d sup{ i | H'i? 7^ 0 }. the following conditions are équivalent.

(i) r(BR) is in D'(R) and (BR)R is in Dc(i?°P).
(ii) There, are isomorphisms of graded HR-modales H/j(DHi?) Hlî(S Hi?)

Proof. To facilitate the proof, here are three more conditions, each equivalent to
the ones in the theorem.

(iii) dim^ ExtR(k, R) < oo and dim^ BxtRoP(&, R) < oo.

(iv) There are isomorphisms of graded k-vector spaces Extü(fc, It) S dk and

EiARop{k.Ji) =Trdk.
(v) There are isomorphisms R(DR) R(}:dR) in D(ß) and (DB.)R ^ (EdB.)R

in D(i?°P).

(i) => (iii) Duality gives

ExtÄop(fc, II) ExtR(DR, Dfc) r= Kxtfi(D[Lk) (*). (6)

When (i) holds, lemma 3.2 implies that r(DR) is finitely built from RR, and then
Extj-t(Di?, k) is finite dimensional over k since ExtR(R, k) k is finite dimensional
over k. Equation (6) then shows that ExtRcV(k, i?) is finite dimensional over k.
This gives half of (iii). and the other half follows by symmetry.

(iii) =*- (i) Let F —> R(T)R) be a minimal semi-free resolution picked according
to lemma 3.3(i). Continuing the computation from equation (6) gives

(*) II(RlIomR(D/i>J;)) \\{\\omR{F,k)) r= UomR, (f\ kß), (7)

where the last is by minimality of F. When (iii) holds, Extjjop(k,R) is finite
dimensional over k, and equations (6) and (7) then show that HoiuR,(F^, hA) is

finite dimensional over k. This means that there are only finitely many summands
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Y,3Rb in Fb. so the semi-free filtration of F in lemma 3.3(1) must terminate after

finitely many steps So F and therefore R(D/?) is finitely built from RR. whence

r(DR) is in DC(R). This gives half of (i), and the other half follows by symmetry.

(in) => (iv) Assume (iii). The proof that (iii) implies (i) considered a minimal
semi-free resolution F —> r(DR) obtained from lemma 3.3(i), and proved that
the semi-free filtration of F in 3.3(1) terminates after finitely many steps. But then
/'" must be bounded because dinifc R < oo implies that R itself is bounded. Now.
the dual of F —> r(DR) is

Rr D(Ä(DÄ)) -^ DF,

and this is a Ä'-mjeetive resolution of Rr where DF is bounded because F is.

Also, lemma 3.3 gives that R-k has a semi-free resolution G —> nk with

(^ JJS'tl?^'3'', each 1j finite (8)

3<o

The canonical morphism

Rk —> Rlk>mR(P(Rlk>mR(jfc, R), R) (9)

is represented bv the composition of the morphisms

G —» HomjjoP(i?. DF) ®R G —> HomRoP(HomR((7, R)2 DF).

where the first is given by g t--> p J< g, and the second is canonical. The first

morphism is clearly a quasi-isomorphism. The second is easily seen even to be an

isomorphism, because D F is bounded and because G satisfies equation (8). So the
canonical morphism (9) is an isomorphism, and so.

0 sup{ i H'(RA-)^0}
sup{« HJ(RHomRop(RHomR(£\ R). R)) ^ 0 }

- inf-j 11 H'(RHomR(&, R)) ^ 0} + sup{ * | U'R ^ 0 }
—inf-j % | Hi(RHomR(lfc, it*)) ^ 0} + d.

where (a) follows from lemma 3.9. The lemma can be used because (iii) implies
that RHomÄ(fc, ß) is in Df(Bop), while RR is certainly in D^/s"313). This shows

inf{ 11 H'(RHomR(A-, R)) ^ 0} d.

On the other hand.

sup{/ | H'(RIIomR(fr, R)) / 0}

- inf { 11 Wk / 0 } [ sup{ ; | ff // / 0 }

where (b) is again by lemma 3.9.
The last two equations show that H(RHoiiir(A-, R)) is concentrated in degree

d. Lemma 3.4 now implies that RHomR(fc, it*) itself is isomorphic in D(Äop) to a
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DG right-/?-module concentrated in degree d. This DG right-//-module must have

the form S-^^0, so I get

RHomfi(A-, i?) ^ S dl/Ifi

[nserüiig this into equation (9) proves q 1, so all in all

holds. Taking cohoniology gives half of (iv). The other half follows by symmetry.

(iv) => (iii) This is clear.
So now, the equivalence of (i), (iii), and (iv) ib established. I close the proof by

establishing the equivalence of (ii), (iv), and (v).

(ii) => (iv) This is immediate from the Hilenberg-Moore spectral sequence

E%q Ext£H(ifc.Hi?)9 =» Extf, q(k, R)

as found in [5. 1.3(2)], and the corresponding spectral sequence over Äop.

(iv) => (v) Equation (6) gives that (iv) implies

ExtR{DR,k) ^-dk.

Using a minimal semi-free resolution of r(D/i*). it is easy to see that this implies
half of (v), and the other half follows by symmetry.

(v) ^ (ii) This follows by taking cohomology. D

Theorem 5.1 and proposition 4.3 combine to give the following corollary-

Corollary 5,2. With d biip{ i | \V R / 0 }, the following conditions are equivalent,

(i) Both Dc(-R) and Dr(i?op) have Ausländer Reiten triangles.
(li) There are isomorphism^ of qraded HR-modales jjr(DH1?) jj^(E Hi?)

6. Auslander—Reiten triangles over a topological space

Sections 6. 7, and 8 form the topological part of this paper. They develop the theory

of Auslander-Reiten triangles and quivers over topological spaces, and apply
(tie theory to spheres

This section proves that existence of Auslander-Reiten triangles characterizes
Poincaré dualit\' spaces (theorem 6.3), and gives a (ormula for Auslander-Reiten
triangles when they exist (proposition 6.5). Theorem 6.3 is the first main result
of this paper.
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Notation 6.1. In sections 6, 7, and 8. singular eohomologv and singular cochain
DGAs arc only considered with coefficients in the field k So when X is a topolog-
ical space. H*(A": k) and C¥(X; k) are abbreviated H*(A) and C¥(X). Moreover.
D(C*{X:k)) is abbreviated D(X), and this is combined freely with other
adornments. So for instance. Dc(X°p) stands for D°:(Cf\X;k)°P).

Remark 6.2. If X is a simply connected topological space which satisfies
dim*, II*(À') < oo, then C*(X) is equivalent by a series of quasi-isomorphisms
to a DCA. IL satisfying the conditions of setup 3.1. by the methods of [5, proof
of titun. 3.6] and [6, exam. 6, p. 146].

By [12, thm. Ill 4 2] the derived categories D(E) and D(C*(X)) D(X) are
equivalent. Hence the results of sections 3, 1, and 5 on D(i?) also apply to D(X).

Theorem 6.3. Let X be a simply connected topological space with dini^ H¥(X)
< oo. Then the following conditions are equivalent.

(i) Both D'(X) and Dc (Xop) have Ausländer Reden triangles.
(ii) X has Poincaré duality over k.

Proof. This is immediate from corollary 5.2, since condition (ii) of that corollary
applied to C*(X) just says that X has Poincaré duality over k. D

Remark 6.4. If k has characteristic zero, then C*(X) is equivalent by a series of

quasi-isomorphism to a commutative DGA by [6. cor. 10.10]. Hence Dr(A") and
Ds(Xop) have Ausländer Reiten triangles simultaneously.

Proposition 6.5. Let X be a simply connected topological space with dim/.H (X)
< oc which has Poincaré duality over k, and write d sup{? | 1I'(X) / 0).

(i) Let P he an object o/D°(X) with local endomorphism ring. Then there is
an Auslandcr-Rcitcn triangle in D( (X),

Sd XP —> N —*¦ P —;

(ii) The Auslander Reuen translation oj DC(X~) is given by

Prooj. (i) Theorem 6.3 gives that DC(A") has Ausländer Reiten triangles. Proposition

l.l(i) says that there is an Ausländer Reiten triangle in Dr(A),

f) P) —> N —>P

But it is easy to see from Poincaré duality for A over k that DC*" (A) is isomorphic
to S'f C*(A) m the derived category of DC left/right-C*(X)-modules So in fact,
the Ausländer Reiten triangle is the one given in the proposition.

(ii) This is immediate from part (i), cf. definition 12. D
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7. The Auslander—Reiten quiver over a topological space

Recall the conventions from notation 6.1. When X is a topological space, I can
consider the Auslander-Heiien quiver of Dc(yY).

Moreover; when X is simply connected with dim/, II¥(A') < oo and with
Poincaré duality over k, then Dr(X) has Auslander-Reiten triangles by theorem
6.3 so the Ausländer—Reiten quiver ol DC(JC) is a stable translation quiver by
corollary 2.4, which applies by remark 3.7.

Proposition 7.1. The Auslander-Reiten quiver of DC(A') is a weak homotopy
invariant of X,

Moreover, if X is restricted to simply connected topologiccd spaces with

dimfcH*(X) <oc
which haue Poincaré duality over k, then the Ausländer Reiten quiver of D( {X),
viewed as a stable translation quiver, is a weak homotopy invariant of X.

Proof, If X and X' have the same weak homotopy type, then Cr(X) and Cr(X')
are equivalent by a series of quasi-isomorphisms as follows from |6, fchm. 4.15].
Hence D(X) and D(X') are equivalent categories by [12, Ihm. JJJ.4.2], and so the
same holds for DL(JC) and DC(À"''). This implies both parts of the proposition. D

8. Spheres

Recall the convent ions from notation 6.1. The rf-dimensional sphere Sd has Poincaré

duality over any field, so for d > 2 the category Dc(Sd) has Auslander-Reiten
triangles by theorem 6 3.

This section determines the Auslander-Reiten triangles in Dc (Sd) for d > 2

when k has characteristic zero (theorem 8.12). As a consequence follows the
determination of the Auslander Reiten quiver of Dc(Sd) (theorem 8.13). It is
observed that the quiver is a sufficiently sensitive invariant to tell spheres of different
dimension apart (corollary 8.14). These are the paper's second main results.

To determine the Auslander Reiten triangles, I must first determine the
possible end terms, that is, the objects of Dc (Sd) with local endomorphism rings.
Lemmas 3.5(ii) and 3.6 imply that these are exactly the indecomposable objects,
and the determination of these takes up parts 8.1 to 8 1.1.

Setup 8.1. In this section, d > 2 is always assumed.
Let A be the graded algebra k\T\ with deg'f — d \ 1, and view A as a DCA

over k with vanishing differential.
Now A/A—

1 k can be viewed as a DC right-A-module, &a- ^p< F —s- k^
be a J\-projective resolution.

Let £ H.omA°p(F,F) be the endomorphism DCA of F.
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For the following lemma, note that F acquires the structure Pa,£ in a canonical
wa v.

Lemma 8.2. There are quasi-inverse équivalences oj categories.

Df(Aop) ' Dc(£).
RHom4op(F, —)

Proof, It is easy to chock that k^ is a compact object of D(Aop) (see also setup
8.3). Hence the methods of [4, sec. 2] give quasi-inverse equivalences of categories.

i

T • D(£), (10)
RHomAop(F,-)

where T is a certain full triangulated subcategorv of D(ylop) which contains k/\.
Since Ua is in T, so is every object finitely built from kA. It is easy to check that

such objects are exactly the ones in Df(/lop). Moreover, under the equivalences
(10), the object k& in T corresponds to the object

p (F2 kA) ^ RHonuop (F, F) ££

in D(£), so objects finitely built from kA correspond to objects finitely built from
g£. By lemma 3.2 these are exactly the objects of Dc (£).

So the equivalences (10) restrict to the quasi-inverse equivalences stated in the
lemma. D

To go on, it is convenient to make a specific choise ol F.

Setup 8.3. Let me construct a morphism of DG right-A-modules

that is, >]d 1k[T] —s- fe[T], by }ld 1\k[T h~* T. '1 he mapping cone is easily seen

to be a minimal K-projective resolution of k^- and from now on I will use this
mapping cone as F.

Observe

pt ~ sstf-i^ n A^ ~ Sf/^ UAi. (11)

Lemma 8.4. Suppose that k has characteristic zero. Then £ is equivalent by a

series of qaast-tsornorphtsms to G (Sd).

Proof. The sphere Sd is a so-called formal space, so since k has characteristic zero,
G*(Sd) is equivalent by a series of quasi-isomorpMsms to lfsr(5d) viewed as a DCA
with vanishing differential (see [6. exam. 1, p. 142]). Hence it is enough to see that
£ is equivalent by a series of quasi-isomorphisms to H*(.S"/) viewed as a DGA with
vanishing differential.
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H*(Sd) is a very simple DGA: H has a copy of k in degree zero, spanned by

ljj*(Sn; and another copy of h in degree d spanned by some element say S.

The cohomology of £ is

H£ H(H()m.icp(F,Fjj H(HomA=P (F.kA)) (*)

and as F is minimal, this is

0) Horn.!op(F. fc.i)b Hoiii(/1cp tiFt. fcfc)

'à
Hom(AcP)t Sd 4b U A\ kfc Y*-'1}^ 11 h*

where (a) is In equation (11) So H£ also lias copies of k in degrees 0 and d

Let c be a cjcle in 8d whose oohomologj class spans the copy of k in degree d

of H£. It is now easj' to check that there is a quasi-isomorphisiii of DGA.S

H*(5'/) —> £

given bj ln*((H(j^ >—> Ig and S^f, proving the lemma. D

Lemma 8.4 and [12, thm 111.4.2] imply the following lemma

Lemma 8.5. Suppose that k has characteristic zero Fhen then is an equivalence.

of categories

DV.) " Dc(5d)

'which leave-, the cohomology of an object -unchanged

Combining lemmas 8.2 and 8.5 gives the next lemma

Lemma 8.6. Suppose that k has characteristic zero then there is an equivalence
of categories.

Df04°P) Dc(,Sd).

Let me now determine the indecomposable objects of D (Aop).

Definition 8.7. For each m > 0 the element Tm+I geneiates a DG ideal (T"' + 1)

in .4 k[T], so there is a DG right- A-module

Lemma 8.8. Up to isomorphism, the indecomposable objects of Ihe category
0f(4°P) aft exactly the [positive and negative) suspensions

Zj l,m

with j in Z and m > 0.
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Proof. When K is a graded right-zl^-module, let 5K denote K viewed as a DG

right-/1-module with vanishing differential. I claim that

K >->¦ 8K

induces a bijective correspondence between the isomorphism classes of /s-finite
dimensional graded indecomposable right -A '•-modules and the isomorphism classes

ol indecomposable objects ol D (ylop).
For this, first note that if M is a DG right-/l-module, then the cohomology HM

is a graded right-EL4-module. But A has vanishing differential, so HA is just A*t so

HM is a graded right-.A^-module. Now in fact, I have that M and 6RAI are quasi-
isomorphic. This is easy to prove directly, it is also a well known manifestation of
A^ being graded hereditary. (This means that any graded submodule of a graded
projective module is again graded projective. The algebra A^ is graded hereditary
because it is a polynomial algebra on one generator.) So I have M /VJ SUM in

D(/l).
Also, if K is a graded right-,1^-module, then I have K 116K.
Observe that this does not set up an equivalence of categories, as the isomorphism

M '""' 6WA] is not natural. However, it does show that K i—> 8'K induces a

bijective correspondence between the isomorphism classes of graded right-A^-mo-
dules and the isomorphism classes of D(Aopj.

Xow, if M is an indecomposable object of D (Aop), then by the above I have

M SUM in Df(Aop). If HM KLUK-> were a non-trivial decomposition, then

M ^ 6 RM ^ 6{K1 UK2) 6Kr II6K2

would clearly be a non-trivial decomposition in D (Aop), a contradiction. So HM
is a A--finite dimensional graded indecomposable right-A^-module.

On the other hand, if K is a A;-finite dimensional graded indecomposable right-
-4b-module, then a similar argument shows that 6K is an indecomposable object
of D'U°P).

So K (-* 6K induces a bijective correspondence between isomorphism classes

of indécomposables as claimed.
However, the finitely generated graded indecomposable right-A^-modules are

exactly the graded cyclic right-A^-modules. This is a manifestation of ,1' being a

principal ideal domain, see [15, p 9| for the ungraded case The A;-fini te dimensional

among these modules are

with j in Z and in > 0.

By the above correspondence, up to isomorphism, the indecomposable objects
of Df(/lop) are then

with j in Z and m > 0. And these are exactly the objects Y,'Ym. D
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Transporting the objects Y.3Ym through the equivalence of lemma 8.6 gives the

indecomposable objects ol D1 (S

Definition 8.9. Suppose that k has characteristic zero. For each m > 0 let Zm
be the object of Dc(Sd) obtained by transporting Y.m through the equivalence of
lemma 8.6.

Proposition 8.10. Suppose that k has characteristic zero.

(i) Up to isomorphism, the indecomposable objects of D°(S are exactly the

(positive and negative) suspensions

T< 7Z^ Zj m

with j in Z and m > 0.

(ii) Each object ofDc(Sd) is the coproduct offinitely many uniquely determined
indecomposable objects,

(iii) I'or each m > 0 the object Zm 'in D1 (Sd) has

jTi y
{ k for t —m(d — 1) and 'i d.

m { 0 otherwise.

Proof, (i) This is clear Irom lemma 8.8 and definition 8.9.

fii) This follows from feeding lemmas 3.5 and 3.6 into [11, p. 52. thm.].

fiii) It is easy to see that there is a distinguished triangle in D(Aop)3

v(m+l)(<J-l) 4 A y f19)zj ^i > i\ irn > I1-;
It is also easy to prove

H'(RHonu<p(F./l))~ / J
JŒ' % d'

(13)v v • " [0 otherwise. v '

Applying RHom/ioP(F. —) to the distinguished triangle (12) gives a distinguished
triangle in D(£).

s(m+i)(i-i) RHom^oP(F,A) > RIIomAop(F,A) > RHomAoP(f,S'.„) >.

and the long exact eolioniology se<|uence and equation (13) then prove

i„,-du ,pv u / & for ¦! -m{d- 1) and i d3
H RHoniyicp(F,Ym)) { t-i ¦ (14)

[0 otherwise.

Now, to transport Ym through the equivalence of lemma 8.6 means first to
transport it through the equivalence of lemma 8.2, secondly to transport the
resulting object through the equivalence of lemma 8.5. The first of these steps gives
RHom/iop(F, Ym) whose cohomology is in equation (14). And the second step
leaves the eolioniologv unchanged, viewed as a graded /«-vector space This proves
the proposition's formula for H'Zm. D
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Remark 8.11. It is easy to sop that G*(Sd) itself is an indecomposable object of
D°(S By proposition 8 10, parts (i) and (iii). (he only possibility is

in Dc(Sd).

Now to the second main results of this paper, which sum up the theory in the
case of spheres. Recall from setup 8.1 the condition d > 2.

Theorem 8.12. Suppose that k has characteristic zero.

(i) In the category D'(Sd). there is an Auslander-Reiten triangle

and an Auslander—Reiten triangle
x^d 1 r/ \\rX ly tt r/ r/h An > 2j /jn-\ ilZ„_|_| » /jn >

for each n with n > 1. where the objects Z are the indecomposable
objects from definition 8.9. Each Auslander Reden Inangle is a (positive or
negative.) suspension of one of these.

(ii) The Auslander-Reiten translation of D( (Sd) is given bg

r(-) S(i"1f-)\ j ^ \ j ¦

Proof, (i) By [8, prop 3.5(1)], Ausländer Reiten triangles are determined up to
isomorphism by their right hand end terms. The right hand end terms are the
objects with local endomorphism rings. As remarked above, lemmas 3.5(ii) and
3.6 give that in the present case, these are exactly the indecomposable objects.
and proposition 8.10(1) says that these are the y?Zm with j in Z and m > 0. So to
prove part (i) of the theorem, it is clearly enough to see that the Ausländer—Reiten.

triangles with light hand end terms Zm for m > 0 are as claimed.
By proposition 6.3(i), the left hand end terms of the Auslander-Reiten triangles

are as claimed in the theorem, so let me consider the middle terms. First the
Auslander Reiten triangle ending in Zr,,

Sd lZo —* N —+Z{,-U. (15J

By definition 1.1 the morphism tt is non-zero. But by remark 8.11 t his inorphism is

C (S ——* EC (S This makes it eas\" to compute the long exact cohomolog\"
sequence of (15) to get

„,,T ^ j k for i —(d — 1 and 1 d,

[ 0 otherwise.

lint A* is the coproduct of uniquely determined indecomposable objects of D°(Sd)
bv proposition 8.10(ii), and by 8 10. parts (i) and (iii), the only possibility is
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Next the Ausländer-Reiten triangle ending in Zn,

Sd lZn -^ N -^ Zn -^, (16}

with n > 1. There can be no retraction S; C*{Sd) —> Zn, for eke Zr, would be

a direct summand in the indecomposable object E; C*'(Sd) SJZo. Hence each

moiphism }yCr(Sd) —s- Zn has -¦-, 0. Jînt this shows J Itt 0, so the long
exact eohomology sequence of (16) splits into short exact sequences. So using
proposition 8.10(111). the eohomology of N can be read off as

k fariin{-(fj I l)(t/ — 1 —rurf — ] 1, t/}.
0 otherwise.

Proposition S.lOfii) says that N is the coproduct of uniquely determined indecomposable

objects of Dc(5rf). Comparing the eohomology of N with the eohomology
of the indecomposable objects, obtained from 8.10, parts (i) and (iii). leaves only
two possibilities: IV"is either Sd lZn 1II2n+1orB(i lZnUZn.

To rule out the latter possibility, note that bv remark 3.7, the results of section.
2 apply to Dc(Sd). Now suppose by induction that the Auslander-Reiten triangle
ending in Zn-i is as claimed in the theorem, hence has a summand Zn in its middle
term. By lemma 2.2, (iii) =^ (ii), this implies that there is an irreducible morphism
Zn —* Zn_\ Hence there is an irreducible morphism T,d~lZn —> T,d 1Zn_i,
and by lemma 2.2, (i) =^ (iii), this implies that S';~1Z„ i is a direct summand of
N. So N must be Y,d~ '

Zn \YlZn\\. proving the theorem.
(ii) This is immediate from part (i), or from proposition 6.5(11}. D

As noted in the above proof, remark 3 7 says that the results of section 2 apply
to Dc(Sd). So by lemma 2.2. knowledge of the Auslander-Reiten triangles gives
full knowledge ol the Auslander-Reiten quiver, and by corollary 2.4. the
Auslander-Reiten quiver is a stable translation quiver. Applying this to the data from
theorem 8.12 gives the following

Theorem 8,13. Suppose that k has characteristic zero. Then the Auslander-R&i-
ten quiver of the category Da(S consists of d — ] components, each isomorphic
to XAoc. The component containing Zn /VJ C (Sd) is



Vol. 79 (2004) Auslander Reiten theory 181

where the unbroken arrows are the arrows of the quiver and the dotted arrows
indicate the Ausland&r—R&it&n translation.

The following corollary is clear from theorem 8.13.

Corollary 8.14. Suppose that k has characteristic zero. Then the Auslander Retten

quiver o/Dc(»S'd) is a sufficiently sensitive invariant to tell spheres of different
dimension apart.

Acknowledgement. Theorem 6.3 is inspired by Happel's result [7, thru. 3.4]
which considers a finite dimensional algebra A, and says rough!}' that DC(A) has

Auslander-Reiten triangles if and only if A is Gorenstein. This is related to
theorem 6.3 because the differential graded analogue of the Gorenstein property is

Poincaré dualitv (see section 5). I thank Henning Krause for directing my attention
to [7].

Other recent papers investigate criteria for the existence of Auslander Reiten
triangles similar to the ones above, see [2], [10], and [13].

The diagrams were typeset with Paul Taylor's diagrams.tex.
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