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1. Introduction

We analyse the existence question for essential laminations in 3-manifolds. The
purpose of the article is to prove that there are infinitely many closed hyperbolic 3-
manifolds which do not admit essential laminations. This gives a definitive negative
answer to a fundamental question posed by Gabai and Oertel when they introduced
essential laminations in [Ga-Oe], see also [Ga4], [Ga5]. The proof is obtained by
analysing certain group actions on trees and showing that certain 3-manifold groups
only have trivial actions on trees. There are corollaries concerning the existence
question for Reebless foliations and pseudo-Anosov flows.

This article deals with the topological structure of 3-manifolds. Two dimensional
manifolds are extremely well behaved in the sense that the universal cover is always
either the plane or the sphere for closed manifolds), the fundamental group
determines the manifold and many other important properties. Similarly for a 3-manifold
one asks: When is the universal cover R3? When does the fundamental group determine

the manifold? Are homotopic homeomorphisms always isotopic? An obvious
necessary condition is that themanifold be irreducible, that is, every embedded sphere
boundsa ball. As for 2-manifolds, the existence of a compact codimension one object
which is topologically good is extremely useful. A properly embedded 2-sided
surface not S2, D2 is incompressible if it injects in the fundamental group level [He]. A
compact, irreducible manifold with an incompressible surface is called Haken.
Fundamental work of Haken [Hak1], [Hak2] and Waldhausen [Wa] shows that Haken
manifolds have fantastic properties, answering in the positive the 3 questions above.

But howcommon areHaken3-manifolds, that is, howcommon are incompressible
surfaces amongst irreducible 3-manifolds? In some sense they are not very common.

*Reseach partially supported by NSF grants DMS-0296139 and DMS-0305313.
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Recall that Dehn surgery along an orientation preserving simple closed curve d is the
process of removing a tubular neighborhood N(d) a solid torus) and glueing back
by a homeomorphism of the boundary – which is a two dimensional torus T1 [Rol],
[Bu-Zi]. The surgered manifold is completely determined by which simple closed
curve in T1 becomes the new meridian, that is, which curve of T1 is glued to the null
homotopic curve in the boundary of N(d). Hence this is parametrized by a pair of
relatively prime integers q,p), corresponding to the description of simple closed
curves in T1. When viewed this way, the set of relatively prime q, p) is the Dehn
surgery space – a subset of Z2 R2. The same can be done iterating the process

doing Dehn surgery on links [He], [Rol], [Bu-Zi]. Notice that all closed, orientable
3-manifolds can be obtained from S3 by some Dehn surgery on an appropriate link in
S3 [Rol]. So one can interpret how common a property is by verifying how many of
the Dehn surgered manifolds have that property. Along these lines some of the many
results on incompressible surfaces are: If K is a two bridge knot in S3 then almost
all Dehn surgeries on K yield manifolds without incompressible surfaces [Ha-Th].
The same is true for any knot K in a manifold M so that M - K does not have

any closed incompressible surfaces [Hat1]. Notice that there are also results on the
other direction: for example Oertel [Oe] proved that for many star links in S3, then
any non trivial Dehn surgery yields a manifold with incompressible surfaces. There
are similar results for Montesinos knots [Ha-Oe]. Basically a lot of it depends on
whether the complement has closed incompressible surfaces or not. In many cases

the complement does not have such surfaces, yielding the non existence results for
most Dehn surgered manifolds.

This amongst other reasons led to the concept of an essential lamination as

introduced by Gabai and Oertel in the seminal paper [Ga-Oe] of the late 80s. A lamination
is a foliation of a closed subset of the manifold. Roughly a lamination in a closed
3-manifold is essential if it has no sphere leaves, no tori leaves bounding solid tori,
the complement of the lamination is irreducible and the leaves in the boundary of
the complement are incompressible and end incompressible in their respective
complementary components [Ga-Oe]. Gabai and Oertel proved the fundamental result
that essential laminations have far reaching and deep consequences: the manifoldM
is irreducible, its universal cover is R3, leaves of the lamination inject in the
fundamental group level, efficient closed transversals are not null homotopic; and there are
other consequences [Ga-Ka3]. In addition manifolds with genuine essential laminations

satisfy the weak hyperbolization conjecture [Ga-Ka4]: either there is a Z Z
subgroup of the fundamental group or the fundamental group is Gromov hyperbolic
[Gr], [Gh-Ha]. Genuine means that not all complementary regions are I-bundles, or
equivalently it is not just a blow up of a foliation. Brittenham also proved properties
concerning homotopy equivalences for manifolds with essential laminations [Br2].

Inaddition essential laminationsare extremelycommon: For example ifK isanon
trivial knot in S3 then off of at most two lines and a couple of points in Dehn surgery



Vol. 82 2007) Laminar free hyperbolic 3-manifolds 249

space, the surgered manifold contains an essential lamination. This is obtained as

follows: first Gabai constructed a Reebless foliation F in S3 - N(K)) which is
transverse to the boundary [Ga1], [Ga2], [Ga3]. Reebless means it does not have a

Reeb component: a foliation of the solid torus with the boundary being a leaf, all
other leaves are planes spiralling to the boundary [Re], [No]. Then results of Mosher,
Gabai [Mo2] showthat either there isan incompressible torus transverse to F or there
is an essential lamination inS3-N(K) with solid torus complementary regions. This
lamination remains essential off of at most two lines in Dehn surgery space [Mo2]
– see more on solid torus complementary regions later. Also Brittenham produced
examples of essential laminations which remain essential after all non trivial Dehn
surgeries [Br3], [Br4]. Roberts has also obtained many important existence results
concerningalternatingknots in the sphere [Ro1], [De-Ro] partly jointlywithDelman)
and punctured surface bundles [Ro2], [Ro3].

So successful was the search for essential laminations that at first one might
wonder whether all manifolds that can irreducible, with infinite fundamental group),
in fact do admit essential laminations. Given that an incompressible torus is an

essential lamination, the Geometrization conjecture [Th2] suggests that one should
only have toanalyse Seifert fibered spaces and hyperbolic manifolds [Sc], [Th2]. The
Geometrization conjecture may well have been proved at this point: after this article
was written Perelman announced a proof of this conjecture [Pe1], [Pe2] – this is being
very carefully scrutinized by the experts at this point.

The situation for Seifert fibered spaces has been completely resolved: Brittenham

produced examples of Seifert fibered spaces which are irreducible, have infinite
fundamental group, universal cover R3, but which do not have essential laminations
[Br1]. Naimi [Na], using work of Bieri, Neumann and Strebel [BNS], completely
determined which Seifert fibered manifolds admit essential laminations.

For hyperbolic 3-manifolds there were two fundamental open questions:
1) Thurston) Doesevery closedhyperbolic 3-manifoldadmit a Reebless foliation?
2) Gabai-Oertel [Ga-Oe], see also [Ga4], [Ga5]) Does every closed hyperbolic

3-manifold admit an essential lamination?
In 2001 question 1) was answered in the negative by Roberts, Shareshian and

Stein [RSS] who produced infinitely many counterexamples. The goal of this article
is to answer question 2) in the negative. We now proceed to describe the examples.

Basically one starts with a torus bundle M over the circle and then performs
Dehn surgery on a particular closed curve. Let f be the monodromy of the fibration
associated to a 2 by 2 integer matrixA, so thatAis hyperbolic. LetR be a fiber which is
a torus. There are two foliations in R which are invariant under the monodromy f, the
stable and unstable foliations. The suspension flow inM induces two foliations inM
with leavesbeingplanes, annuli and Möebius bands. Suppose there is aMöebius band

leaf. Blow up that leaf, producing a lamination with a solid torus complementary
componentwith closure asolid torus withcore d andwith somecurves removed from



250 S. R. Fenley CMH

the boundary. The curves are called the degeneracy locus of the complementary
region of the lamination [Ga-Ka1]. One can think of as lying in the boundary of

N(d), which is a two dimensional torus. Let 1, 0) be the curve in N(d) which
bounds the fiber in M -N(d). Under an appropriate choice for the curve 0, 1) of

N(d) then is represented by 1, 2). Do Dehn surgery along d. If is the new
meridian the Dehn surgery slope), then results of essential laminations [Ga-Oe],

[Ga-Ka1] show that the lamination remains essential in the Dehn surgery manifold

M. if the intersection number of and is at least 2 in absolute value. If is
described as q,p) then this is equivalent to |p- 2q| 2. Therefore the open cases

for essential laminations are |p - 2q| 1.
For simplicity of notation we omit the explicit dependence ofM on f. It is always

understood that M depends on the particular f.
In a beautiful and fundamental result, Hatcher [Hat2], showed that ifp < q then

the Dehn surgery manifold M. Mp/q has a Reebless foliation. This is done via an

explicit construction involving train tracks and branched surfaces. In 2001 Roberts,
Shareshian and Stein considered a particular type of monodromy, namely generated
by the matrix

A
m -1
1 0 m= -3.

The eigenvalues of A are negative. Consider the point 0, 0) in R2 and its
projection O to the fibering torus R. Let d be the closed orbit of the suspension flow
through O. Because the eigenvalues are negative, the leaf of the stable foliation
through O is aMöebius band. When it is blown open into an annulus the degeneracy
locus is 1, 2) as described above. In a groundbreaking work, Roberts, Shareshian
and Stein [RSS] considered Dehn surgery on these manifolds and proved a wonderful
result: if p is odd, m is odd and p q thenMp/q does not admit Reebless foliations.
In this article we consider a subclass of these manifolds and prove that they do not
admit essential laminations:

Main Theorem. LetM be a torus bundle over the circle with monodromy induced by
the matrix A above. Let d be the orbit of the suspension flow coming from the origin
and M(q,p) Mp/q be the manifold obtained by q,p) Dehn surgery on d. Here

1,0) bounds the fiber in M -N(d)) and 1, 2) is the degeneracy locus. If m -4
and |p - 2q| 1, then the manifold Mp/q does not admit essential laminations.

The manifold M - d) is atoroidal [Th4], [Bl-Ca] and fibers over the circle with
fiber a punctured torus. By Thurston’s hyperbolization theorem in the fibering case

M - d) has a complete hyperbolic structure of finite volume [Th3]. By Thurston’s
Dehn surgery theorem Mp/q is hyperbolic for almost all p/q [Th1]. Therefore:

Corollary. There are infinitely many closed, hyperbolic 3-manifolds which do not
admit essential laminations.
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Another immediate corollary is:

Corollary. If m -4 and |p - 2q| 1, then the manifolds Mp/q above do not
admit Reebless foliations.

About half of this result has already been established by Roberts, Shareshian and
Stein [RSS], namely the situation when m is odd. See more on m odd later on.
Another consequence is:

Corollary. If m -4 and |p - 2q| 1 then Mp/q does not admit pseudo-Anosov
flows.

For basicdefinitionsand properties of pseudo-Anosov flows consult [Mo1], [Mo2].
This result provides infinitely many hyperbolic manifolds without pseudo-Anosov
flows. We stress that Calegari and Dunfield [Ca-Du] previously obtained conditions
implying manifolds do not admit pseudo-Anosov flows and showed for example that
theWeeks manifold does not admit pseudo-Anosov flows.

We remark that Dehn surgery on torus bundles over the circle has been widely
studied, for example: a) Which surgered manifolds have incompressible surfaces

[Fl-Ha], [CJR]; b) virtual homology [Bk1], [Bk2]; c) geometrization [Jo], [Th1],
[Th2], [Th3], [Th4].

Finally we remark that there are algorithms to decide these existence questions.
Namely Jaco and Oertel [Ja-Oe] produced an algorithm to decide whether a 3-

manifold has an incompressible surface. Recently Agol and Li [Ag-Li] did the same

for essential laminations. These are theoretical algorithms and so far for laminations
there are no manifolds which can be shown not to have essential laminations using
the algorithm.

The proof of the main theorem is as follows: assume there is an essential lamination

inMp/q. This produces a non trivial action of the fundamental group ofMp/q in
a tree see preliminaries section). We then show that there cannot be any such action.

We stress that the results in this article provide the first and so far the only known
examples of hyperbolic manifolds without essential laminations of any kind.

The results of this article mean that the search for structures more general than
essential laminations, but still useful takes an added relevance. One idea previously
proposed by Gabai [Ga5] is that of a loosesse lamination. We will have more
comments on that in the final remarks section.

The article isorganized as follows: in the next section we describe howan essential

lamination produces a non trivial group action on a tree. We also give background
material on group actions on trees and produce an explicit presentation of the group
which will be analysed: this is the fundamental group of the Dehn surgered punctured
torus bundle. In Section 3 we present the outline of the proof of the main theorem.
The proof is done by contradiction assuming there is a non trivial action of the group
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on a tree. The analysis is done in a case by case analysis depending on how certain
individual elements of the group may act on the tree. The outline is fairly explicit
and presents clearly what is done in much more detail in Sections 4 through 7. Since
the arguments in Sections 5, 6, and 7 are extremely involved, the outline also serves
as a good reference source while one reads these later sections. In Section 4 we deal

with the case that the tree is the real line. This is very simple, but even here some

fundamental ideas come up. In Sections 5, 6 and 7 we analyse 3 cases of the proof
depending on whether certain generators of the group act freely on the tree or not. In
each case the arguments little by little produce a structure on the tree, which turns out
to be incompatible with the action. These sections complete the proof of the main
theorem. In the final section we mention recent activity in this area and also comment
on open problems for future analysis.

We are very thankful to Rachel Roberts who introduced the idea of considering
group actions in the foliations case and other ideas. We also thank the referee for
very good suggestions concerning the organization of this article.

2. Preliminaries

The proof of the main theorem is done by looking at group actions on trees. For
simplicity first consider the case of a Reebless foliation F [No]. Novikov proved
that leaves of a Reebless foliation are incompressible and transversals to the foliation
are never homotopic rel endpoints into a leaf [No]. Hence the lift to the universal
cover F is a foliation by planes or spheres and its leaf space is a simply connected

1-dimensional manifold, which may not be Hausdorff. The fundamental group of
the manifold acts on this object. Roberts et al analysed group actions on simply
connected non Hausdorff 1-manifolds and also on trees) and they ruled out the
existence of Reebless foliations [RSS] in a class of manifolds. Notice that the leaf
space of the lifted foliation F is an orientable object and it makes sense to talk about
orientation preserving homeomorphisms.

Now consider essential laminations. Let be an essential lamination on a 3-
manifold N. The results of Gabai and Oertel [Ga-Oe] imply that the lift ˜ to the
universal cover is a lamination by planes in N. We will modify if necessary to
eventually obtain a group action on a tree which is roughly the leaf space of the lifted
lamination ˜ First, if there are any leaves of which are isolated on both sides,

then blow each of them into an I-bundle of leaves – this needs to be done at most
countably many times. Now is a lamination by planes with no leaves isolated on

both sides [Ga-Oe].
Suppose L is a leaf of ˜ which is non separated from another leaf F, that is,

there are Li leaves of ˜ with Li converging to both L and F. We do not want that

L is not separated from some other leaf in the other side the one not containing F).
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If that happens, blow up L into an I -bundle of leaves. This can also be achieved

by a blow up in Since there are at most countably many leaves non separated

from some other leaf, we can get rid of leaves non separated from leaves on both
sides. If needed use blow ups so that non separated leaves of ˜ are not boundary
leaves of a complementary region of ˜ on the opposite side). After all these possible
modifications assume this is the original lamination

Now define a set T* whose elements are: closures of complementary components

of ˜ and also leaves of ˜ which are non isolated on both sides. Then T* is an order tree

[Ga-Ka2], [Ro-St2], also called a non Hausdorff tree [Fe]. The fundamental group

p1(N) naturally acts on T*. We now modify T* to produce an actual tree. If e is
any point of T* which is non separated from another point e then collapse all points
non separated from e together with e. This is not problematic since no such e is non
separated on more than one side and e also does not come from a complementary
region of ˜ The collapsed object is now an actual tree T and the action of p1(N)
on T* induces a natural action of p1(N) on T In our proof we will let N be the Dehn
surgery manifold Mp/q and we will analyse group actions of G p1(Mp/q) on an

arbitrary tree T
Since we will be looking at group actions on trees we now describe some basic

material about actions on trees. First of all let us stress that the trees here are only
topological trees. There is no well-defined metric in the tree which is invariant under
the action. The arguments are entirely topological. The reader should be aware that
the term tree in this article differs from some other sources – where a tree may mean
a simplicial tree or an R-tree both of which are metric trees and actions preserve the
metric).

Notation. In the arguments of this article, group elements act on the right.

Definition 2.1. A group action on a tree T is nontrivial if no point of T is fixed by
all elements of the group.

A lot of results on group actions on trees are to rule out non trivial group actions

[Cu-Vo].
Given point a,b on a tree T let

a, b) {c T | c separates a from b}.

If a b, then a,b) is empty, otherwise it is an open segment. Let [a, b] be the union
of a,b) and {a,b}. Then [a, b] is always a closed segment.

One fundamental concept here is the following:

Definition 2.2 bridge). If x is a point of a tree T not contained in a connected set B,
then there is a unique embedded path [x, y] from x to B. This path has x, y)nB Ø
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and either y is in B or y is an accumulation point of B. We say that [x, y] is the
bridge from x to B. Also we say that x bridges to B in y or that x bridges to y in B –
whether y is in B or not.

For example if T is the reals and B 0, 1), x 2, then the bridge from x to B is

[2, 1]. Notice that for trees, connected and pathwise connected are equivalent. One
common use of bridges will be: if x is not in a properly embedded line l for example
an axis as defined below) let [x, y] be the bridge from x to l. The crucial property of
the bridge is that given x and B, the bridge is unique. In various situations this will
force some useful equalities of points. Another fundamental concept is:

Definition 2.3 axis). Suppose that g is a homeomorphism acting freely on a tree T
Then g has an axis Ag, a properly embedded line in T invariant under g and g acts

by translations on Ag.

This is classical. Herey is inAg if and only ifyg is in y,yg2), that isyg separates

y from yg2. Then it is easy to see that the axis mustbe the union of [ygi, ygi+1
] where

i Z [Ba1], [Fe]. To obtain an element in Ag consider any x T If xg x,xg2)
we are done. Else there is a unique

y [x, xg] n [x,xg2
] n [xg, xg2

].

y is the basis of the tripod with corners x, xg,xg2 [Gr], [Gh-Ha]. A simple analysis
of cases using free action yields y is in the axis of g.

Another simple but fundamental concept for us is:

Definition 2.4 local axis). Suppose l is a line in a tree T where a homeomorphism
g acts by translation. Then l is a local axis for g and is denoted by LAg. The local
axis may not be unique, the context specifies which one we refer to.

For example if g acts in R by xg 2x, then R+, R- are both local axes of g
with accumulation point x 0. Another characterization of local axis: x is in a local
axis of g if and only if xg separates x from xg2 same definition as for axis except
requiring that g acts freely in that case). Another characterization: suppose xg is not

x and let U be the component of T - {x} containing xg. Then x is in a local axis of

g if and only if Ug U.
Let x be a point in a tree T. A prong at x is a non degenerate segment I of T

so that x is one of the endpoints of I Two prongs at x are equivalent if they share
a subprong at x. Associated to a subprong I at x there is a unique component U of

T - {x} containing I - {x}.

Notation. If x, y,z are elements in a tree we will write x y z if y separates

x from z, or y is in x, z). We say that x, y, z in this order) are aligned. Also
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x y z if one also allows y z and so on. Notice that this is invariant under
homeomorphism of the tree.

The following simple results will be very useful:

Lemma 2.5. Let x be a point in a tree T Then two prongs I1, I2 at x are equivalent
if and only if the associated complementary components U1, U2 are the same.

Proof. If I1, I2 are equivalent, there is y in I1- {x} also in I2. Then clearly y U1
and y U2, so U1 U2. Conversely suppose U1 U2. If I1 is not equivalent
to I2, then I1 n I2 {x} because T is a tree and it also follows that x separates I1
from I2. This would imply U1, U2 disjoint, contradiction.

Lemma 2.6. Let T be a tree and a homeomorphism so that there are two points

x, y of T so that x x. y y. or x y x. y.. Then x and y are in a

local axis of

Proof. We do the proof for the first situation, the other being very similar. Let U
be the component of T - {x} containing x.. Using x x. y this is also the
component of T - {x} containing y. Apply then U is taken to the component of

T - {x.} containing y.. Then U. is contained in U and x is in a local axis. Apply

.-1 to y to get y is in a local axis as well. We stress the two local axes produced in
this way a priori may not be the same: there may be a fixed point of in x, y).

Global fixed points. Here we consider the case that an essential lamination on N
would produce a trivial group action on a tree T

Recall the notion of efficient transversal to a lamination: let be a transversal to a

lamination Then is efficient [Ga-Oe] if for any subarc .0 with both endpoints in
leaves of and interior disjoint from then .0 is not homotopic rel endpoints into a

leaf of Gabai and Oertel showed that if is essential then any efficient transversal
cannot be homotoped rel endpoints into a leaf of Also closed efficient transversals
are not null homotopic.

Lemma 2.7. If is an essential lamination in N then the associated group action of

p1(N) on a tree T as described above has no global fixed point and therefore is non
trivial.

Proof. Suppose on the contrary that a point x of T is left invariant by the whole
group. Look at the preimage of x in the possibly non Hausdorff tree T*. There are 3
options:

1. x comes from a non singular, Hausdorff leaf E of ˜ Then E is left invariant
by the whole group p1(N).
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2. x comes from the closure R of a complementary region of ˜ in the universal
cover. Then R is left invariant by the whole group. In this case let E be a boundary
leaf of R.

3. Finally x may come from a non Hausdorff leaf E. Then the orbit of E under

p1(N) consists only of the non separated leaves from E.
By construction of the tree T above, these 3 cases are mutually exclusive. It

follows that in any of the 3 options there is at least one component B of N-E which
does not contain any translate of E. In option 1) any component will do, in option 2)
choose the component not containing R -E and in option 3) choose the component
not containing leaves non separated from E.

Let A p(E) where p : N N is the universal covering map. Suppose first
that A is not compact. Then it limits on some leaves of and there is a laminated box
where A intersects it in at least 3 leaves and the box intersects an efficient transversal
to Lifting to N so that the middle leaf isE then the other 2 leaves arenotE efficient
transversal) and one of them is contained in B producing a covering translate of E
in B, contradiction. The same is of course true if A intersects an efficient closed
transversal.

Now A is compact. If A is non separating, then it intersects a closed transversal
transverse to A, not necessarily to associated to g in p1(N) only once. Same

proof yields either Eg or Eg-1 in B, done.

Finally suppose that A is separating. Then C p(B E) is a compact submanifold

of N which has A as its unique boundary component. For any g in p1(C) then

Eg is contained in B E, so by hypothesis it must be E and therefore p1(A) surjects
in p1(C). As is essential then p1(A) also injects in p1(C) [Ga-Oe], so p1(A) is
isomorphic to p1(C). As C is irreducible [Ga-Oe], then Theorem 10.5 of Hempel

[He] implies that C is homeomorphic to A × I with A corresponding to A × {0}.
This contradicts the fact that A is the only boundary component of C. This finishes
the proof of the lemma.

Remark. Notice that leaves of essential laminations may not intersect a closed
transversal. For example this occurs for separating incompressible surfaces. It also
occurs for leaves of Reebless foliations which have a separating leaf which necessarily

must be a torus or Klein bottle) – there are many examples of these. So Reebless

foliations which are also essential laminations need not be taut foliations!

The group. We now produce an explicit presentation of the group which will be
analysed. The group is the fundamental group of the Dehn surgery manifold Mp/q.

Start with M the torus bundle over the circle with monodromy induced by

A m -1
1 0

where m -3.
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For notational simplicity the dependence of M on A is omitted. The original
fibering torus is denoted by T 2. The eigenvalues of A are

m ± vm2 - 4
2

which are both negative and the matrix is hyperbolic. The eigenvector directions
produce two linear foliations in R2 with irrational slope which are invariant under A.
They induce two foliations in the torus T 2. Since A is integral it induces a
homeomorphism f of T 2, which leaves the foliations invariant. Let O in T 2 be the image of
the origin of R2. Let M be the suspension of f and let F be say) the suspension of
the stable foliation of T 2. Then F has leaves which are planes, annuli and Möebius
bands. Identify T 2 with a fiber in M and let d be the orbit through O, which is a

closed orbit intersecting T 2 once. Since the eigenvalues of A are negative, the stable
leaf containing d is aMöbius band. We do Dehn surgery on d. We first determine the
fundamental group of M -N(d). To do that let

D N(d) n T
2 a disk), V T

2 -D a punctured torus).

Choose a basis for the homology of N(d) T1, which is also a torus. Let 1, 0) be

the curve in T1 bounding the fiber V of M -N(d). Blow up the leaf of F through d.

It blows to a single annulus and the complementary region is a solid torus with core d.

The completion of the complementary region is a solid torus with a closed curve in the
boundary removed. The removed curve is the degeneracy locusof the complementary
component [Ga-Ka1]. Since the leaf of F was a Möbius band, the degeneracy locus
intersects the curve 1,0) twice. Choose the curve 0,1) so that the degeneracy
locus is the curve 1, 2) in this basis. After the blow up, the foliation F becomes a

lamination with a single complementary region, which is a solid torus.
Let now Mp/q be the manifold obtained from M by doing q, p) Dehn surgery

on d. By results about essential laminations, the lamination remains essential in
Mp/q if |p - 2q| 2 [Ga-Oe], [Ga-Ka1]. Let be the curve 1, 0) in T1 and t be
the curve 0, 1). The degeneracy locus is a curve associated to t2. Notice there
are two tori here: one which is a fiber of the original fibration here denoted by T 2),

another which is the boundary of N(d) here denoted by T1). The Dehn surgery
coefficients refer to T1.

Suppose the disk D above is a round disk of radius e sufficiently small. The
universal abelian cover of T 2 - D is the plane with disks of radius e around integer
lattice points removed. Let E be the one around the origin. We pick 4 points in E:

a (-e, 0), b 0,-e), c e,0) and d 0, e),

see Figure 1 a). Let a be the image of a under A, etc., see Figure 1 b).
The image of E under A is an ellipse which can be deformed back to E, see

Figure 1 b). Notice b d are in the x axis and d a.
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Let the image of a in T 2 - D be the basepoint of the fundamental group of

M - N(d) for simplicity still denoted by a and likewise for b, c, d. Let l be an arc
along the image of E under A, going counterclockwise from d to a

a

b

c

d

c)

b

d

c

a)

a
b)

t-1at

a

ß

t-1ßt

Figure 1. Computing the fundamental group of M -N(d).

We pick a basis for p1(T 2 -D): Let a ac * l1 see Figure 1 c) where the
arc ac E is traversed in the counterclockwise direction and l1 is parametrized as

{(t, 0) | e t 1- e}. Here * denotes concatenation of arcs, where ac is traversed

first and then l1. Let also

ß adclo * l2 * baclo,

where l2 is parametrized as {(0,t) | e t 1 - e}, and the subscript “clo” means
the arcs are traversed clockwise in E. We identify a and ß with their images in
T2 -D, so they generate the fundamental group of T2 - D. It is easy to see that the
curve

[a, ß] a * ß * a-1
* ß-1

is just a counterclockwise turn around E. Then

t-1at l * a c * l1 * l-1

where l was defined above. The composition l * a c is roughlyonecounterclockwise
turn around E so it is the curve The straight arc l1 goes from c me, e) to

m(1-e), 1- e) - roughly going one step up and |m| steps to the left. This together

with l-1 can be isotoped to ßam where we are identifying a, ß with the appropriate
covering translates). We conclude that t-1at .ßam. Similarly

t-1ßt l * a d clo * l2 * b a clo * l-1

Here l2 is a straight path from e,0) to 1 - e, 0). So in the same way it is easy to
see that t-1ßt a-1. Notice that a, t generate p1(M -N(d)). Hence

p1(M -N(d)) {a, t | t-1at .ßam t-1ßt a-1
[a,ß]}.
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After q, p) Dehn surgery on d we obtain q. + pt is the new meridian or t p.q 1.
Hence we obtain

The Group:

G p1(Mp/q) {a, t | t-1at .ßam t-1ßt a-1
[a, ß], tp q

1}.

This group G with this presentation will be fixed throughout the proof. In the
proof we will use the relations above and the following variations of these relations
extensively:

t-1ßt a-1 tat-1 ß-1

t-1at .ßam aßam-1 ata-1t-1am-1

at t.ßam taßam-1

aß .ßa, or ata-1t-1 t.a-1t-1a.

From the above it follows that am-1 t-1ß1-mt hence t-1at aßam-1

aßt-1ß1-m. This is equivalent to a-1t-1aßm-1 ßt-1 and therefore we have

ta-1t-1aßm-1 tßt-1 or

tßt-1 ßaßm-1 -1aßm

These and circular variations of these will be used throughout the article.
Since q, p are relatively prime there are e, f in Z with ep + fq 1. Let

tf -e. Then is a generator of the Z subgroup of G generated by t and

t .q .-p.

3. Outline of the proof

As described above, the fundamental group ofMp/q with presentation G is generated
by two elements a and t Actions of a homeomorphism on a tree are easy to understand:

either there is a fixed point or in the free case there is an invariant axis. The
proof of the main theorem is split into cases as to whether the generators above act

freely. There are 3 main cases to consider when t acts freely it does not matter the
behavior of a). The proof subdivides into various subcases. Invariably the analysis
goes like this: apply a certain relation in the group to a well chosen point. One

side of the relation implies the image of the point is in a certain region of the tree

while the other side of the relation implies it is in a different region – contradiction!
Homeomorphisms with fixed points may have local axes. This is extremely useful in
a variety of cases.

A crucial difference from the case of foliations is that in the case of laminations
the tree does not have a group invariant orientation in general. Hence orientation
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dependent arguments cannot be used. This was very important and widely used in
[RSS]. In order to stay in the orientation preserving world they restricted to p, m
odd, which ensures the orientation hypothesis. Under these conditions on p, q with
p q also) they ruled out the existence of Reebless foliations [RSS].

Since we do not have an orientation here, the conditionmodd does not play a role,
which allows us to consider m even as well. In addition if |p- 2q| 2 there is an

essential lamination in the surgered manifold, so the exact condition |p-2q| 1 has

to appear in the analysis of the laminations case. Notice that |p - 2q| 1 obviously
implies that p is odd.

On the other hand there are many examples with p even so that Mp/q has a

Reebless foliation – for example p 4, q 1 or p 8, q 3 this has p > q!).
So when p is even, then to rule out Reebless foliations, some further conditions on

p, q are necessary.

Except for ruling out trivial actions, the proof here is done entirely in the tree –
we never go back to the original non Hausdorff tree. For the sake of completeness
we state this result from which the main theorem is an easy corollary:

Theorem. Let Mp/q be the manifold described above. If m -4 and |p- 2q| 1,
then every action of p1(Mp/q) on a tree is trivial.

Given the presentation of G above, the proof of the main theorem is broken into
four cases:

• Case R. R-covered case.

• Case A. t acts freely.

• Case B. a acts freely, t has a fixed point.

• Case C. a and t have fixed points.

If a homeomorphism µ acts freely on a tree, let Aµ be its axis. If µ has a local
axis, we denote it by LAµ. Unlike a true axis, a homeomorphism may have more
than one local axis. The context will make it clear which one is being considered.
Assume by way of contradiction that G acts non trivially on a tree T

Case R. The R-covered case is simple. Given that p is odd, this implies that t is
orientation preserving in R. The case a orientation preserving is simple. The other
case which implies m is even) leads to p > 3q which for our purposes is enough.
It also leads us to move away from orientation preserving arguments. Orientation
preservingargumentswere fundamental in the foliationsanalysis but in generalcannot
be used in the laminations case. We note that there is an easy non trivial linear action
on R when p 4, q 1. Notice that in this case p is even.

Case A. This implies that tf -e also acts freely andA. At We analyse how

A. intersects A.a and other translates here A.a is the image of A. under a). Let
u aß. One uses the relation aß .ßa to analyse how A. intersects A.u which
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breaks down into various cases as to whether this intersection is empty, a single point
or a segment. One particularly tricky case needs the condition m -3.

Case B. Let z be a fixed point of t First suppose that z is not in the axis Aa of a.
Suppose there is no fixed point of t between z and Aa. Here letUbe the component
of T - {z} containing Aa. The case Ut U is easy to deal with. It follows that

Ut Uproducing a local axis LAt of t which is contained inUand has one limit
point in z. The proof breaks down as to whether LAt intersects Aa or not. Empty
intersections are easy to deal with, the other case being trickier.

Then suppose z is in Aa. We remark this is a crucial case, because this is likely
what happens for the essential laminations we know to exist when |p - 2q| 2.
These come from the original stable lamination on the fibering manifold a torus
bundle over S1). In that manifold, a acted freely and t had a fixed point in Aa. After
the surgery a would still have at least a local axis, which contains a fixed point of t
So one knows the exact condition |p - 2q| 1 will have to be used here!

In this case consider U1 the component of T - {z} containing za and U2 the
one containing za-1. It is easy to show that U1t is not U1 and that U1t is in fact
equal to U2. When U1t-1 U2 then one produces a contradiction just using that

p is odd. The case U1t-1 U2 or U2t U1 is much more interesting. Here the
exact condition |p - 2q| 1 is used to show it would imply U1t U1 which was

disallowed at the beginning. This actually has connections with the topology of the
situation, see detailed explanation in Section 6. This is a crucial part of the proof.
One very tricky issue is that a priori z is only a fixed point of t and not of – part of
the proof is ruling this out.

Case C. Generally an axis is good because it gives information about where points
go. The case of fixed points is trickier and one many times searches for a local axis.

Here let s be a fixed point of and w a fixed point of a so that there is no fixed
point of either in s,w). Notice there may be fixed points of t in s,w)! LetW be the
component of T - {s} containing w and V the component of T - {w} containing s.
The first part of the proof shows that Wt W and Va V. This situation has

moderately involved arguments. This immediately produces a local axis LAa of a
contained in V and with one limit point w. One does not have yet a local axis for t
because we do not know a priori that t has no fixed points in s, w). Some technical
complications ensue.

One then shows that sa,sa-1 are in W. Let z be the fixed point of t in [s,w)
which is closest to w – z could be s. Using the previous results, we show that the
component U of T - {z} containing w is invariant under t Now this produces a

local axis LAt of t in U with ideal point z and some further properties. One then
shows that w is not in LAt and z is not in LAa.

We are now in familiar ground. If LAa n LAt has at most one point, then it is
easy. WhenLAa nLAt has more than one point we use arguments done in case B –
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this part of the arguments in case B is done in more generality using local axis rather
than axis as needed in case B) and can be used in case C as well. This finishes the
proof of case C. This finally yields the proof of the main theorem.

The arguments in this article are very involved. One possibility to read the article
and get a quick grasp of the proof is to first analyse the R-covered proof. Then go
to the proof of case B.2 – a acts freely and t has a fixed point in the axis of a – this
case admits essential laminations if |p - 2q| 2 and the topology can be detected.
Then read the proof of t acts freely and the other proofs.

We note that Z actions on non Hausdorff trees had been previously analysed in
[Fe] and [Ro-St1], [Ro-St2], with consequences for pseudo-Anosov flows [Fe] and

Seifert fibered spaces [Ro-St1], [Ro-St2].
There is a large literature of group actions on trees which were brought to the

forefront by Serre’s fundamental monograph [Se]. The analysis usually involves a

metric which is invariant under the actions [Mo-Sh1], [Mo-Sh2], [Mo-Sh3] or actions
on simplicial trees [Se]. We stress that the tree involved in here is not simplicial and

it is not presented in general with a group invariant metric – unless there is a holonomy

invariant transverse measure of full support in the lamination, e.g when there
is an incompressible surface. So the proof is entirely topological and in that sense

elementary. The topology of the manifold, particularly the condition |p - 2q| 1
plays a crucial role. Notice that in the foliations case there is a pseudo-metric
lying in the background which is used from time to time to deal with some critical
cases in [RSS]. The pseudometric distance between two points measures how many
jumps between non separated points are necessary to go from one point to the other.

This pseudometric was analysed and used previously by Barbot in [Ba1], [Ba2] with
consequences for foliations. In the laminations case, such a pseudo-metric does not
seem to give useful information, because in some sense the singularities or prongs
also allows one to “change” direction – there is much more flexibility.

4. Case R: the R-covered case

For the remainder of the article we consider the manifold Mp/q as described in
Section 2 with fundamental group G. The goal is to showit does not admit an essential
lamination. Suppose then on the contrary that there is an essential lamination on

Mp/q. Let T be the associated tree with non trivial action of G on it. Notice that since

a,t generate G, no point of T is fixed by both a and t
The conditions on the parameters are |p- 2q| 1 and m -4. They will not

be used in full force for all the arguments. Many times all we need is p q or p odd
or m negative or none of these. The proof is done by subdividing into subcases and

showing each subcase is impossible leading to various contradictions.
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In this section we assume that T is homeomorphic to the real numbers and study
non trivial actions of G in R. Notice that since is a commutator, it is an orientation
preserving homeomorphism of R. As tp. q id, t p is also orientation preserving.

We use the relations from the group presentation of G or variations thereof.
Suppose first the action is orientation preserving on R:

Case R.1. a, t are orientation preserving.
As ß tat-1 then ß also is orientation preserving and so is the whole group G.

We subdivide into subcases:

Case R.1.1. t has a fixed point x.
Then xa is not x. Orient R so that xa > x. As is orientation preserving then

x. x. Then applying tßam at to x:

x. tßam xat >xt x

which uses t orientation preserving. Hence xßam > x or xß > xa-m > x as

-m > 0). Hence xß-1 < x. But also

xß-1 xtat-1 xat-1 > xt-1 x.

This is a contradiction, ruling out this case.

Case R.1.2. t acts freely, a has a fixed point x.
Assume t is increasing in R. As t .q and q is always) positive then is

increasing. Here use xat xt x.tßam. Hence xta-m x. tß. As xt > x
then xta-m > x. Hence x.t > xß-1. Use .-p and t .q-p. As q p
then q - p 0 and t is monotone decreasing or constant. Hence

xß-1 < x.t x.

One fact that will be used in a lot of arguments is that under the condition p q when

t act freelyandxt > x thenx. xt-1. Notice that xt-1ß xa-1t-1 xt-1.

On the other hand

xß xaß x.ßa xt-1ßa xt-1a < xa x,

leading to the contradiction that both xß and xß-1 are < x.
Notice a lot of these argumentsare usingorientation preserving homeomorphisms.

Case R.1.3. t acts freely increasing in R and a acts freely, also increasing in R.
Take any x in R. Then xat > x so x. tßam > x. So x. tß > xa-m > x. Since

x. t x this implies xß > x. On the other hand,

xß xta-1t-1 < xtt-1 x,

contradiction.
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Case R.1.4. t acts freely and increasing in R, a acts freely and decreasing in R.
This implies za-1 > z for all z in R. For any x in R, xß xta-1t-1 >

xtt-1 x. Also xt-1at < x for all x. Hence

xaßam-1 xt-1at < x,

for all x. Hence xaß < xaa-m < xa for all x (-m > 0). But this contradicts

xa)ß > xa because ß is increasing everywhere as proved above.
This finishes the analysis of T homeomorphic to R and orientation preserving

action.

We now deal with orientation reversing cases. The general case of t orientation
reversing is hard, so we use one of the hypothesis to discard it as follows: tp -q

is orientation preserving as always is. We are mainly interested in |p - 2q| 1,
which implies p odd and if p is odd and tp orientation preserving then t is also
orientation preserving. We now deal with the case a orientation reversing.

Case R.2. a orientation reversing, t orientation preserving.
Let x be the unique fixed point of a. As xt x, assume xt > x. As a is

conjugate to ß, then ß also reverses orientation. Then t-1at .ßam implies that
am is orientation preserving. Equivalently, m is even.

As t .q and q > 0, this implies is increasing in x. Notice that xt-1 is the
unique fixed point of ß. The subcases depend on the relative position of xta and

xt-1. Notice that xt > x, so xta < xa x.

Case R.2.1. xta < xt-1.

Then xtat-1 xß-1 < xt-2. Notice

xt.ßam xat xt > x

so xt.ß >xa-m x. This is because a-m is orientation preserving. As ß reverses

orientation, then

xt. < xß-1 < xt-2

or xt3. < x. As t3 .3q and .-q then x.3q-p < x. As is increasing in x
then 3q -p < 0 orp > 3q. Arguments such as this will be used in various parts of
the proof. Since in the end we want p 2q ± 1 we can discard this case.

Remark. What we really wanted was to rule out this case without using p 2q ±1,
but we were unable to do that. Our partial results without using p 2q ± 1) show
that xta3 > xta so x < xta2 < xt. Also there is a fixed point of a2 between xt
and xt2 and a2 acts expandingly away from x) in some point. Something similar is
also true in the following case.

Case R.2.2. xta > xt-1.
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First notice that xß-1 < xt-1. Use

xt)t.ßam xt at > xt-1t x

so xt2.ß > xa-m x m even) and

xt2 < xß-1 < xt-1

We conclude as in the previous case that xt3. < x orp > 3q, also disallowed.
The reader may think we just got lucky to get p > 3q as we have the hypothesis

p 2q ± 1. The remaining case explains why this has happened.

Case R.2.3. xta xt-1.

This case is much more interesting. First

xat xtaßam-1

Since xta xt-1 this is left invariant by ß, so the right side is xtaam-1 xtam
equal to xt. Since m is even, am preserves orientation, therefore xta2 xt. Also

xta xta-1 xt-1. Now notice that

xt.ßam xat xt, so xt. xta-mß-1

or xt. xtß-1. Now we show that xt2a xt-2. To show this use xß-1t
xta xt-1, hence xß-1 xt-2. Use

t-2ßt2 t-1a-1t a1-mß-1a-1

applied to x:
xt-2ßt2 xa1-mß-1a-1

or xß-1ßt2 xß-1a-1 so

xt2 xt-2a-1

Then
xt-2 xt2a xt)ta xtß-1t xt. t

or

x. t4 x.
As seen before this implies p 4q or p 4, q 1. This is disallowed by p being
odd.

We remark that in this case the group in fact acts non trivially in R. For instance

let
xa -x, xt x + 1.

It is easy to check they satisfy the equations if m is even!
It may be true that this is the only possibility and when xta xt-1 we get a

perturbation of this, namely that p is close to 4q and in factp > 3q.
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5. Case A: t acts freely

In this section we consider the case that t acts freely in T This implies that .q acts

freely in the tree, and therefore itself acts freely. In addition the axes are the same

A. At Here we will use the relation aß .ßa in the following form, defining
an element u of G:

u aß ata-1t-1 .ßa ta-1t-1a.

We will consider the intersections A. n A.a and A. n A.u. The axis A. is
homeomorphic to the real numbers. Put an order < in A. so thatx < xt for any x in A.
This induces an order <a in A.a so that x < y in A. if and only if xa <a ya in

A.a and similarly put order <u in A.u so thatx < y in A. if and only if xu <u yu
in A.u.

Case A.1. A.a n A. has at most one point.
If the intersection is a single point x, let y x as well.
If they are disjoint, there is a single point x in A. bridging to A.a. For instance

x is the unique point so that there is a path from x to A.a intersecting A. only in x.
Another way to characterize x, it is the only point so that x separates the rest of A.
from A.a. In other words the components of T - {x} containing A.a and the rest
of A. are all disjoint. In the same way there is a single y in A.a which is the closest
to A. Then [x, y] is a path from A. to A.a so that x, y) does not intersect either

A. or A.a – this is an equivalent way to get the segment [x, y]. This path [x, y] is
called the bridge from A. to A.a. This extended notion of bridges will also be used

in the article. It is invariant by homeomorphisms of the tree. The bridge between
connected sets is also unique.

We now use the relation above. The proof is very similar to ping pong lemma
arguments. Since A. is invariant under and t the right side says that A.u
A.a-1t-1a.

The bridge from A. to A.a is [x, y] - degenerate [x,x] when they intersect in
a point. Therefore the bridge from A.a-1 to A. is [xa-1, ya-1

], see Figure 2 a).
Then the bridge from A.a-1t-1 to A. is [xa-1t-1, ya-1t-1

]. This implies that

the bridge from A.a-1t-1a to A.a is [xa-1t-1a, ya-1t-1
a].

Notice that ya-1t-1 is not ya-1. Therefore ya-1t-1a is not y, but ya-1t-1a is
in A.a as ya-1t-1 is in A. It now follows that

the bridge from A.u A.a-1t-1a to A. is [xa-1t-1a, x].

On the other hand use that A.u A.ata-1t-1. The bridge from A.at to A. is

[yt, xt], see Figure 2 b). The bridge from A.ata-1 to A.a-1 is [yta-1, xta-1
]
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x
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y
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A.

xa-1

xa-1 A.a

A.a A.a-1t-1a

xa-1t-1a

ya-1t-1a
A.a-1

A.a-1

xa-1t-1

A.a-1t-1

ya-1

ya-1t-1

a) b)

xt

yta-1

xta-1

A.ata-1

A.at

yt

ya-1

A.a-1t-1

ya-1t-1 xa-1t-1

xta-1t-1
yta-1t-1

A.ata-1t-1

Figure 2. The case A. n A.a Ø. The same arguments can be used for intersection a single
point. a) Using A.u A.a-1t-1a. b) Using A.u A.ata-1t-1.

and the bridge fromA.a-1 toA. is [xa-1, ya-1
]. Since xa-1 is notequal to xta-1

then the bridge from A.ata-1 to A. is [yta-1, ya-1
]. Finally

the bridge from A.u to A. is [yta-1t-1, ya-1t-1
].

Since the bridge from A.u to A. is uniquely defined this implies

ya-1t-1 x, yta-1t-1 xa-1t-1a.

So y xta and

xa-1t-1a xtata-1t-1 or xa-1t-1ata xtat.
Use t-1at aßam-1, so

a-1t-1ata a-1aßam-1a ßam -1t-1at,

so x. -1t-1at xtat, or x.-1t-1 xt. This implies x. t2 x and as seen

before implies p 2q. This is disallowed by p odd.

We now consider intersections with more than one point.

Case A.2. A. n A.a [x, y]. Here x is not equal to y and x < y in A.. We

include some ideal point cases: x could -8 and y could be +8, in which case

the intersection is a ray in A. On the other hand we can never have A. A.a.
Otherwise a,t leaveA. invariant,so the wholegroup does. ButA. ishomeomorphic
to R – this was disallowed by no actions on R.
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Since the intersection is a non trivial interval one considers separately whether
the orders <, <a agree on the intersection.

Case A.2.1. The orders < and <a agree on A. n A.a.
It is easy to check that this is equivalent to xa-1 < ya-1 in A. by applying a

to the pair xa-1, ya-1 both of which are in A.
We now consider A.u with u aß as in case A.1). We first use A.u

A.a-1t-1a see case A.1). Notice that

A. n A.a-1
[xa-1,ya-1

] so A.a-1t-1
n A. [xa-1t-1, ya-1t-1

],

in the correct order. Hence

A.u n A.a [xa-1t-1a, ya-1t-1
a].

In addition xa-1t-1a <a ya-1t-1a.

Notice that xa-1t-1 < xa-1 in A. hence xa-1t-1a <a x in A.a. Also
ya-1t-1a <a y in A.a. Given this there are 3 options:

1) If ya-1t-1a <a x in A.a then A.u n A. Ø and the bridge from A. to

A.u is [x, ya-1t-1a], Figure 3 a).

2) If ya-1t-1a >a x in A.a then ya-1t-1a is in x, y) and A.u n A.
[x, ya-1t-1a]. In addition theorders< and<u agree onA. nA.a, see Figure 3 b).

3) If ya-1t-1a x, then A.u n A. [z,x]. In addition if z is not x then the
orders < and <u disagree on A. n A.u, see Figure 3 c). In this case both x and y
are finite. The last option can occur because A.u can enter A. in x but rather than
going up, it will go into the opposite direction – the one containing xt-1.

Notice that the 3 options are mutually exclusive. We now consider A.u
A.ata-1t-1. Use

A.u n A. A.at n A.a)a-1t-1

Here A.at n A. [xt,yt]. So whether A.ata-1 and A. intersect, depends on

the relative positions of xt and y. Notice that xt > x in A.
1 If xt > y in A. then A.at n A.a Ø, so A.ata-1

n A. Ø. Therefore

A.u n A. Ø and the bridge from A. to A.u is [ya-1t-1, xta-1t-1
], see Figure

4 a). Notice the bridge from A.at to A.a is [xt, y], so bridge from A.ata-1

to A. is [xta-1, ya-1
]. Here x,y finite.

2 If xt < y in A. then A.at nA.a [xt, y], then A. n A.u is [xta-1t-1,

ya-1t-1
] the first term smaller inA. and the orders< and<u agree onA. nA.u,

see Figure 4 b).
3 If xt y, then A.at n A.a [y, v]. Notice we may have v y. So

A.u n A. [ya-1t-1, w], where w va-1t-1. Here x and y are finite and

if w is not equal to xta-1t-1, then the orders < and <u disagree on A. n A.u.
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A.

A.A.

y

yy

A.a

A.a

A.a

A.a

A.a
A.a

A.u
A.u

A.u A.u A.u
A.u

ya-1t-1a

ya-1t-1a

ya-1t-1a x

xa-1t-1a

xa-1t-1a

xa-1t-1a

a)
b)

c)

x
x

z

Figure 3. Evaluating A.u n A. using A.u A.a-1t-1a, a) ya-1t-1a <a x,
b) ya-1t-1a >a x, c) ya-1t-1a x.

Notice that order in A.at goes from v to y, so the increasing order <u in A.u from
w va-1t-1 to ya-1t-1, see Figure 4 c).

Notice that again all 3 cases are mutually exclusive. Therefore we can match the
2 pairs of 3 possibilities to get 3 mutually exclusive cases:

I. ya-1t-1a <a x in A.a or xt > y in A. and A. n A.u Ø. In this case

[x,ya-1t-1
a] [ya-1t-1 xta-1t-1

].
II. ya-1t-1a >a x in A.a or xt < y in A. and

A. n A.u [x, ya-1t-1
a] [xta-1t-1 ya-1t-1

].

III. ya-1t-1a x or xt y. Then

A. n A.u [z,x] [ya-1t-1
w].

If z is not x then the orders < and <u disagree on A. n A.u.
We now deal with each situation separately.

Situation II. Here xta xt and xt is in x,y). Let U1 respectively U2) be the
component of T - {xt} containing y respectively x). Here [x,y] A. n A.a,
xt is in the interior of [x, y] and then the orders <, <a agree on [x, y]. Notice that

ya >a xta xt and ya is inA.a so ya is inU1. It follows that the prongs [xt, y],
[xt, ya] are equivalent. By Lemma 2.5, U1a U1. In the same way xa-1 is inU2
and U2a U2. This situation is disallowed by the following lemma.



270 S. R. Fenley CMH

A. A. A.A.at A.at A.at

A.a
A.at

A.at

A.a

A.a

A.a

A.a

A.u

A.u

A.u

A.a-1yta-1

A.ata-1

A.u

yt ytyt

xt

xt xt y

x

x
x

y

y

ya-1t-1

v

ya-1t-1

ya-1t-1
xa-1t-1

xa-1t-1

xa-1t-1

yta-1t-1

yta-1t-1

xta-1

xta-1t-1

xta-1t-1

ya-1

xa-1

A.a-1t-1

A.a-1t-1

A.a-1t-1

w va-1t-1

a) b) c)

Figure 4. Using A.u A.ata-1t-1, a) xt > y, b) xt < y, c) xt y.

Lemma 5.1. Suppose that L is a local axis for and r is a point in L with ra r.
Suppose thatU1 U2 respectively) is the component of T -{r} containing rt rt-1

respectively). Then at least one of U1 or U2 is not invariant under a.

Proof. On the contrary suppose that Uia Ui for i 1, 2. We will arrive at a

contradiction. Let Vi Uit-1. Then the conjugation of ß with a-1 by t implies
that Viß Vi i 1,2. Use

rt-1at r.ßam

Since p q, then r. rt-1 in L with t increasing in L) and so r.ß is in
V2 {rt-1

} contained in U2. Therefore r.ßam is in U2. Consequently

rt-1at U2 and rt-1a U2t-1 V2. (*)
On the other hand r. V2 {rt-1

}, so

rßa-1 r.ß V2 {rt-1
},

so rt-1 is in [rßa-1, r). Apply a to obtain

rt-1a [rß, r). (**)
Now

rß rta-1t-1 and rt U1 rta-1 U1 rß rta-1t-1 V1.
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As r is also in V1, it follows from (**) that rt-1a is also in V1. This contradicts (*)
above and finishes the proof of the lemma.

Remark. Later on, in the proof of Lemma 7.3 we prove that this is actually true if
L is only a local axis for t as opposed to being a local axis for The proof is more
involved and the stronger result is needed for case C.

Situation III. Here A.u n A. [z,x] with z x in A. Then

A.ut n A. A.ata-1
n A. [zt, xt] [zt, y].

Hence A.at n A.a [zta, ya] and y zta a ya in A.a – this is the crucial
fact, see Figure 5. Now

x. -1a xßaß-1 xta-1t-1aß-1

ya-1t-1aß-1 xß-1 xtat-1 yat-1

Here the bridge of ya to A. is [ya,y] which a priori could be the single point y).
So the bridge from yat-1 to A. is [yat-1, yt-1

] [yat-1, x]. On the other hand

y x. -1 in A. using p q), so ya a x. -1a in A.a. It follows that the bridge
from x.-1a to A. is [x.-1a,y]. By the above formulas, x. -1 yat-1, so this
would imply x y, contradiction.

A.at

A.u

A.u

A.a

A.a

A.atA.

yt

xt y
ya

yat-1

x.-1a

x

z

Figure 5. Situation III leading to a contradiction.

Situation I. Surprisingly this is the most difficult case. Here

ya-1t-1a <a x in A.a, xt > y in A.
x ya-1t-1 ya-1t-1a xta-1t-1
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As ya-1t-1a <a x in A.a then ya-1t-1a is not in A. Also

xa ya-1t-1 a xta-1t-1 xß,

so xa xß – this is a crucial fact in this proof. The bridge from xa to A. is [xa, x].
Notice also that

xa-1t-1a <a ya-1t-1a <a x in A.a,

so the bridge from xa-1t-1a to A. is [xa-1t-1a, x]. It follows that

the bridge from xat-1at to A. is [xa-1t-1at, xt] [xa-1t-1at, ya-1
].

Now
xa-1t-1at xa-1 aßam-1 xßam-1 xaam-1 xam

Here xa x y ya-1 – they are aligned. It follows from Lemma 2.6 that x, xa
are in a local axisLAa for a, similarly y is also in a local axis. Since y is in [xam, x],
then also y, ya-1 are in LAa. In the same way LAa)t-1 LAß is a local axis
for ß and xß, x, xt-1 are in LAß. Now

xß xta-1t-1 xa, so xat xta-1 ya-2.

Apply aßam-1 t-1at to ya-1:

ya-1 aßam-1 yßam-1 ya-1 t-1at xt t-1at xat ya-2

The conclusion is yß ya-m-1 and it is inLAa. Nowy is not inLAß and thebridge
from y toLAß is [y, x], so the bridge from yß toLAß is [yß, xß] [ya-m-1, xa].
Therefore LAa and LAß split away from each other in xa xß, or

LAa n LAß [x, xa] [x, xß].

The homeomorphism t conjugates the action of a-1 in LAa to the action of ß in
LAß see Figure 6). Now apply ata-m t.ß to x:

xat a-m ya-2 a-m ya-2-m xt.ß.
As xa is in LAß, then xat is in LAa and it follows that xt.ß is in LAa. If
xt. xt-1 in A. then the bridge from xt. to LAß is [xt.,xt-1

] and so the
bridge from xt.ß to LAß is [xt.ß,xt-1ß]. But xt-1ß xa-1t-1 and

xa-1t-1 < ya-1t-1 x in A.
This would imply xt.ß is not in LAa, contradiction. Hence x. t xt-1 in A.
Notice

xß-1 xtat-1 yt-1 xt-1 x).
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LAa

LAß

LAß

LAa

A.a

xa-1t-1at xam

A.

xt ya-1

y

x

xt-1

ß

ya-m-1

xa-1t-1a

ya-1t-1a

xa xß

a-1

Figure 6. Situation I, the hard case.

If xt. is in [xt-1,xß-1) then xt.ß is in [xt-1ß, x) and not in LAa either,
contradiction again. Therefore xt. is in [xß-1, x]. The case xt. x can only occur
when p q 1. This case can also be ruled out by a further argument, but as we
are mainly interested in |p - 2q| 1 we assume here that p > q. Then xt. is in

[xß-1,x) and xt.ß is in [x,xß). We conclude that

ya-2-m
[x, xa).

Claim. yt.ß is in LAa.
If yt. x in A. then x yt. y in A.. So yt.ß is in [xß, yß] or

yt.ß [xa, ya-m-1
] LAa.

Notice xt.ß LAa. If on the other hand yt. < x in A. then xt. < yt. < x
in A. and

yt.ß xt.ß, xß) xt.ß, xa) LAa
and again yt.ß is in LAa.

Therefore the claim is proved.

It now follows that yt.ßam yat is in LAa. Here ya is in LAa and ya <a y
in LAa. If ya >a x in LAa, then ya is in A. and ya > x in A. as well. Then

yat > xt ya-1 in A. and yat is not in LAa contradiction.
Therefore ya a x in LAa and so ya is in [x, xa). But ya-2-m

[x,xa).
Since y is in a local axis for a it follows that

ya ya-2-m or m -3.
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Since we are assumingm <-3 this rules out this case as well.
This finishes the analysis of situation I and completes the analysis of the situation

that orders < and <a agree on A. n A.a. This ends case A.2.1.

Case A.2.2. The orders < and <a disagree on A. n A.a.
Notice this is equivalent to ya-1 < xa-1 in A. Again use u ata-1t-1

ta-1t-1a. Then

A.u n A. A.ata-1
n A. t-1 A.at n A.a)a-1t-1

There are the following possibilities:
1) If xt > y in A. then A.at n A.a is empty and the bridge from A.at

to A.a is [xt,y]. Therefore A.u n A. Ø and the bridge from A.u to A. is

[xta-1t-1,ya-1t-1
], see Figure 7 a). Notice that

A.a-1t-1
n A.u A. n A.at)a-1t-1

[xt, yt]a-1t-1

A.a-1t-1

A.a-1t-1 A.atA. A. A.

xa-1t-1

xa-1t-1

ya-1t-1
ya-1t-1

A.u

A.u
A.u xta-1t-1

xta-1t-1

yta-1t-1

yta-1t-1

A.a-1t-1

A.at

A.a

A.a

yt

y xt

x

v

a) b) c)

Figure 7. The orientation reversing situation, a) xt > y, b) xt < y, c) xt y.

2) If xt < y in A. then A.at n A.a [xt, y]. Hence

A.ata-1
n A. [ya-1 xta-1

],
where the first endpoint is smaller than the second in A. Finally

A.u n A. [ya-1t-1 xta-1t-1
]

and the orders <, <u agree on A.u n A. see Figure 7 b), because ya-1 < xa-1

in A. and their images under u satisfy yta-1t-1 <u xta-1t-1 in A.u.
3)Finally ifxt y,thenA.atnA.a [y, v],where v a y inA.a. It follows

that the intersection A.ata-1
n A. [va-1,ya-1

], the first point precedes in A.
And then

A.u n A. [va-1t-1 ya-1t-1
] [t, ya-1t-1

].
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Here if t is not ya-1t-1 then < and <u disagree on A.un A. because yt-1a-1

vt-1a-1 in A.
Now use A.u n A. A.a-1t-1

n A.a-1)a. Here A.a-1
n A.

[ya-1, xa-1
] the first term precedes in A. Again there are 3 possibilities

1 If xa-1t-1 < ya-1 inA. thenA.a-1t-1
nA.a-1

Ø and the bridge from
A.a-1t-1 to A.a-1 is [xa-1t-1, ya-1

]. Hence A.u n A. Ø and the bridge
from A.u to A. is [xa-1t-1a,y], see Figure 8 a).

2 If xa-1t-1 > ya-1 in A. then A.a-1t-1
n A.a-1

[ya-1, xa-1t-1
]

and hence

A.u n A. [xa-1t-1a, y]
and the orders< and<u agree onA. nA.u, becausex < y inA. and xa-1t-1a <u
ya-1t-1a in A.u, see Figure 8 b).

3 If xa-1t-1 ya-1, thenA.a-1t-1
nA.a-1

[c, ya-1
] andA.unA.

[y, z] where z ca. If z is not equal to y, then the orders < and <u disagree on

A.u n A.

xa-1t-1

x

x

y

y

A.

A.A.a-1t-1

A.u

A.u
A.u

A.a

A.a

A.a

A.a

A.a-1

A.a-1

A.a-1

A.a-1

A.a-1t-1

A.a-1t-1

A.a-1t-1

xa-1

xa-1

ya-1

xa-1t-1a

xa-1t-1a

ya-1t-1a

ya-1t-1a

ya-1t-1

ya-1t-1 xa-1t-1

ya-1

a)

b)

c)

v

Figure 8. Using A.u A.ata-1t-1: a) xa-1t-1 < ya-1, b) xa-1t-1 > ya-1,

c) xa-1t-1 ya-1.

Notice that both pairs of the three alternatives are all mutually exclusive. We

match them and obtain three possible situations:

I. xt > y in A. xa-1t-1 < ya-1 in A. and

A.u n A. Ø, [ya-1t-1 xta-1t-1
] [y, xa-1t-1

a].
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II. xt < y in A. xa-1t-1 > ya-1 in A.

A.u n A. [ya-1t-1 xta-1t-1
] [xa-1t-1a,y]

and the orders < and <u agree on A.u n A.
III. xt y, xa-1t-1 ya-1 and

A.u n A. [y, z] [t, ya-1t-1
].

If z is not y then the orders <, <u disagree on A.u n A.
We analyse each case in turn:

Situation II. Here xt < y, xa-1t-1 > ya-1 and

y xta-1t-1 ya-1t-1 xa-1t-1
a.

Suppose first that [ya-1,xa-1
]n[x,y] Ø. Since yt xta-1, then [ya-1, xa-1

]
is contained in the set of points > y in A.

In addition ya is inA.a-A. andy <a ya. Hencey is in ya-1, ya), producing
a local axisLAa of a which contains y. Now use t-1at ata-1t-1am-1 applied
to xa-1:

xa-1t-1at xa-1ata-1t-1am-1 xta-1t-1am-1

Substitute xta-1t-1 y in the last term and xa-1t-1a ya-1t-1 in the first
term to get

ya-1t-1 t ya-1 yam-1

or y yam. This is impossible because y is in a local axis of a and m is not zero.

From now on in situation II suppose that [ya-1, xa-1
] n [x, y] is not empty.

Since xta-1 yt > y in A. then xa-1 > xta-1 > y in A. It follows that
ya-1 y in A.

Suppose first that ya-1 < y in A. Here x, ya-1, y, xa-1 are all in A. which
is a line. In addition [x, y]a-1 is a subset of A. and ya-1 < y < xa-1 in A. and

x < y in A. It follows that there is r in [ya-1,y] n [x,y] which is fixed by a.
Either r is equal to y orr < y in A. Let U1 respectively U2) be the component of
T - {r} containing rt respectively rt-1). Since

xa-1
U1, x U2 then U1a U2.

If r < y in A. then also we have U2a U1. Otherwise U2a U3 which is
another component of T - {r} which is not U1, U2. We will rule out this case, but
the result will be used later on as well, so we state it in more generality:
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Lemma 5.2. Let LAt be a local axis for Let r in LAt which is fixed by a. Let

U1 respectivelyU2) be the component of T -{r} containing rt respectively rt-1).
Then U1a is not U2 and U2a is not U1.

Proof. The proof is as follows: suppose that either U1a U2 or U2a U1 and

arrive at a contradiction.
First assume that U1a U2. Either U2a U1 or U2a is another component

U3 of T - {u}.
Let Vi Uit-1. Since V1ß V1ta-1t-1 U1a-1t-1 V1, we have that

V1ß is contained in U2. Therefore rß is in U2 and rßam-1 is in U2am-1. Also

rt-1at raßam-1 rßam-1

As rt-1 U2 then rt-1a is in U2a, which is either U1 or U3. Therefore rt-1at
is either inU1t U1 or inU3t again a subset ofU1. Sort-1at U1. Therefore
U2am-1

n U1 Ø. But both are components of T - {r}, because ra r, so it
follows that they are equal. As U2 U1a then

U1aam-1 U1, or U1am U1, U2am U2, U3am U3 if needed.

In case r y this immediately implies m even.

Now use rt.ßam rat rt U1. Therefore rt.ß U1am U1. It
follows that

rt-1 r rt.ß;
recall this means r separates rt-1 from rt.ß. Applying ß-1 one gets

rt-1 rß-1 rt.. (*)

Use rß-1 rtat-1:

rt U1 rta U2, rß-1 rta-1t-1 V2.

As rt-1 is an accumulation point of V2, equation (*) above implies that rt. is in
V2 or rt. < rt-1 in A. which immediately impliesp > 2q.

As in the R-covered case, look at rta. If rta is not in V2, then rtat U2, and
hence

rtat rt2 t-1at rt2 .ßam U2 and rt.ß U2.

So rt-1 r rt2.ß and rt2. rß-1 rt-1. As rß-1 rtat-1 V2, then

rt2 V2, so rt2 < rt-1 in A.

As seen before this impliesp > 3q, which is disallowed and finishes this case.
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If rta V2 then rß-1 V2t-1. By (*) rt-1 rß-1 rt. so

rt. V2t-1 rt. < rt-2 in A.

As seen before this also impliesp > 3q, contradiction.
This finishes the analysis of the case U1a U2.

Now suppose that U2a U1. If U1a U2, then this is taken care by the
previous situation. So now assume U1a U3 which is not U1 or U2. As before
assume Vi Uit-1.

Here use rt-1at raßam-1 rta-1t-1am-1. First

rt-1 U2 rt-1a U2a U1 rt-1at U1.

On the other hand

rt U1 rta-1 U1a-1 U2 rta-1t-1 U2t-1 U2

rta-1t-1am-1 U2am-1

From which we conclude that U2am-1 U1 U2a.
Now use rt-1at r.ßam. The left side is in U1 U2a. Then

r.ß U1a-m U2a-1 U3 V1.

So r. V1ß-1 U1t-1ß-1 U1at V3.
The fact thatU2a-1 is notU1 implies that V2ß is not V1, hence V2ß is contained

in U2. We know that r. is rt-1 in LAt so it is either in V2 or is equal to rt-1.

Hence r.ß is either rt-1 or is in V2ß – in either case it is in U2. Finally r.ßam is
in U2am which must be U1. But then U2am U2am-1, contradiction.

This finishes the analysis of the case U2a U1 and so finishes the proof of
Lemma 5.2.

This finishes the analysis of situation II.

Situation I. In this case xa-1t-1 < ya-1 in A. and y < xt in A. In addition

yt ya-1 xa-1t-1a xta-1t-1
(*)

Here xa-1 > ya-1 yt inA. orientation reversing case) so xa-1t-1 > y inA.
Therefore xa-1t-1 y,ya-1). Also xt < yt ya-1 in A. so one concludes

xa-1t-1 xt. y, ya-1

On the other hand since ya-1 yt, one has y ya-1 xa-1, so ya y x
and ya is in A.a-A. It follows that ya-1 y ya and y is in a local axis LAa
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for a. This implies that the translates [yai, yai+1) are all disjoint as i varies in Z).
Use the relation t-1at ata-1t-1am-1 in the form

a-1t-1ata1-m ta-1t-1

applied to x to get

xa-1t-1a)ta1-m xta-1t-1
(**)

Now apply the second equality of (*) to both sides of (**) to get

xta-1t-1 ta1-m xa-1t-1a or xt a-m xa-1t-1 a.

But xt y, ya-1), so xta-m y, ya-1)a-m. Similarly xa-1t-1a is in
y, ya-1)a. Since they are equal then -m 1 or m -1, impossible.

Situation III. Here xt y, xa-1t-1 ya-1 and

A.u n A. [y, z] [t, ya-1t-1
]

and if t y, then <, <u disagree on A.u n A.
Notice that y z ya-1t-1 so y < ya-1 in A. and ya-1 is in A. -A.a.

Also yt ya-1 in A.. Now

y ya-1 xa-1 x y ya, all points in A.a.

Hence ya <a y in A.a and ya is in A.a - A. Hence y is in ya-1,ya) and
there is a local axis LAa of a with y in LAa. Consider the relation t-1at
aßam-1. Substitute ß ta-1t-1 and rearrange the terms to get a-1t-1a

ta-1t-1am-1t-1. Now apply it to x:

y xa-1t-1a xta-1t-1am-1t-1

or yta1-m ya-1t-1. Nowyt [y, ya-1
], so yt is in LAa and

yta1-m [ya1-m ya-m
],

so yta1-m is not in A. But ya-1t-1 is in A. contradiction.
This finishes the analysis ofA.unA. [x,y] with x not equal y. Consequently

this finishes the analysisof CaseA,t acts freely,which we nowprovedcannot happen.

6. Case B: t has a fixed point, a acts freely

Here a has an actual) axis Aa and so does ß with axis Aß Aat-1. Let Fix(t be

the set of fixed points of t As usual there are various possibilities. This case is very
interesting because the topology of the manifold Mp/q will play a key role.
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Recall that if x is a point not in a connected set B of the tree T then the segment

[x, u] is the bridge from x to B if the subsegment [x, u) does not intersect B and if
u is either in B or is an accumulation point of B. Again the important fact is that the
bridge from x to B is unique: it is the only embedded path from x to B because T is
a tree. As in case A this will be explored here. If u is in B we say that x bridges to u
in B.

We say that a point a is an ideal point of a local axis l if a is not in l but is an

accumulation point of l. Obviously this implies that l is not properly embedded in T

in the side accumulating to a.
There are two main cases depending on whether Fix(t intersects Aa or not.

Case B.1. Fix(t n Aa Ø.
Then also has a fixed point s. Choose s with s. s and s closest to Aa, that

is, the bridge [s, c] from s to Aa has no other fixed point of Let z in [s, c] fixed by

t and closest to Aa, that is, the bridge [z, c] from z to Aa has no other fixed point
of t besides z. A priori we do not know whether z is equal to s or not. Let U be the
component of T - {z} containing Aa.

Then Aß is a subset of Ut and z bridges to ct-1 in Aß.

Case B.1.1. Suppose Ut U.
Then Ut-1 U as well. Apply at taßam-1 to z: the point z bridges to c in

Aa, so za bridges to ca in Aa. As ca is not c then za is in U, so zat is in Ut see

Figure 9 a). On the other hand zta za is in U and hence z separates it from Aß.
It follows that za also bridges to ct-1 in Aß. Then

zaß ztaß bridges to ct-1ß in Aß and ct-1ß ct-1, so ztaß Ut-1.

Therefore ztaß bridges to c in Aa, so ztaßam-1 bridges to cam-1 in Aa. This
implies ztaßam-1 is in U, impossible since it is equal to zat Ut

We conclude that Ut U, which will be assumed from now on in this proof.
Choose a prong at z which is a subset of [z, c]. This prong is associated to the

component U of T - {z}, hence the prong .t also is associated to the component

U Ut and n .t is not just z. Let e be another point in the intersection. Then

et-1, e are both in and et-1 is not equal e – by choice of z as the fixed point of

t in [z, c] closest to Aa. So either e is in [z, et or et is in [z,e). In the first case

say) apply t to get et is in [z, et2) and it now follows that e et et2. The same

alignment of points happens in the second case. We conclude that there is a local axis

LAt for t with e in the local axis.
This construction of a local axis is crucial in case B and also in case C of the

proof.

Conclusion. If Ut U and there is no fixed point of t in z, w], then there is a

local axis LAt of t contained in U with one ideal point z.
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Figure 9. a) The case Ut U, b) the case LAt n Aa Ø.

Case B.1.2. Suppose that LAt n Aa is at most one point.
Let [d, c] be the bridge from LAt to Aa – here d c if LAt n Aa is a single

point. We do the proof forLAt nAa Ø, the case of single point intersection being
entirely similar. Once more we use

zt-1at zat zaßam-1

Here za bridges to ca in Aa and bridges to ct-1 in Aß, see Figure 9 b). Therefore

zaß brides to ct-1ß in Aß and so zaß bridges to c in Aa. Therefore zaßam-1

bridges to cam-1 in Aa.
On the other hand notice that za bridges to d in LAt and so zat bridges to dt in

LAt and consequently zat bridges to c in Aa. This contradicts the equality above.
This finishes the proof of case B.1.2.

We conclude that LAt n Aa is more than one point. Since Aa is properly
embedded in T and z is not in Aa then there is a in LAt n Aa closest to z. From
now on in case B.1 let LAt n Aa [a, b], with a z and a closest to z. By an

abuse of notation b can be +8, meaning the intersection is a ray in LAt Put an
order < in LAt so thata < b in LAt Also let <a be the order in Aa witha <a b.

From now on in case B.1 the proof will depend on whether U. is equal to U
or not. The arguments here are also very similar to what will be needed for case C,

therefore we will make the arguments in more generality so that they can be used in
case C, namely when a has a fixed point but has a local axis with certain properties.
We first specify the conditions under which the analysis works.

Conditions. Consider two conditions:

Condition F. t has a fixed point z, a acts freely and z is not in the axis Aa. Let Aa
be in the component U of T - {z}. There is a fixed point s of so that s is either z
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or z separates s from Aa. Let [s, c] be the bridge from s to Aa. Then s,c] has no

fixed point of and z, c] has no fixed point of t Also Ut U and there is a local
axis LAt of t inUwith ideal point z. Finally LAt nAa [a,b] where a z and

a is in z, b).

Notation. Given u, v distinct in T let Tu(v) be the component of T -{u} containing v.

Condition N. t has a fixed point z; has a fixed point s and a has a fixed point w so

that s,w) has no fixed point of either or a. In addition either z s or z s,w)
and z, w) has no fixed point of t In addition let U be Tz(w) and V be Tw(z). Then

Ut U and Va V. There is a local axis LAt of t in U with one ideal point
z and a local axis LAa of a in V with ideal point w. The intersection of LAa and

LAt is [a, b] where a is the closest point to z and b can be +8 in LAt
Here condition F is for free action of a which is used here) and condition N is for

non free action of a which is used in Case C). In either case the order <a in LAa
corresponds to a <a b. This implies the orders <,<a coincide in the intersection.
Beware that here the order <a here is in LAa and not in At a as in case A.

Caution. An axis is also a local axis. For the sake of simplicity and to use it for case

C, we will use the notation LAa even in the case of a acting freely for the rest of the
proof of case B.1. In case B.2, we will return to use the notation Aa for the axis of a.

Case B.1.3. U. U.

Claim. Under these conditions U. n U is empty.
Recall that U z and zt z. Notice we do not know a priori that z. z.

If z. z then permutes the components of T - {z} so one has U. n U Ø.
Suppose then that z. is not z. Recall that there is a fixed point s of with z [s, w]
– maybe s z. If z. z, then

[s, z] n [s, z.] [s, t ] with t [s,z), hence t z,z.
In particular z is not equal to s. Notice t may be equal to s. Here z separates U from
s, hence z separatesUfrom t Also z. separatesU. from s, hence z. separatesU.
from t It follows that t separates U from U. and U n U. Ø. Also z separates

U from U. and so does z. This proves the claim.

Situation I. Suppose aa <a a in LAa.

Situation I.1. Suppose aa-1 >a b in LAa, see Figure 10 a).
This implies that aa is not in LAt see Figure 10 a). This also implies b is finite.

Notice that

zt-1a-1t za-mß-1 -1 za-mtat-1 -1

The point z bridges to LAa in a. Hence zt-1a-1 za-1 bridges to LAa in
aa-1, so za-1 is in U and za-1t is also in U, which is invariant under t Since
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Figure 10. The case LAa n LAt [a,b]: a) Case aa <a a, b <a aa-1, b) Case

b at aa-1, c) Case at > b.

U. n U Ø, then

za-mta U and it bridges to LAa in a za-mt bridges to LAa in aa-1

and hence bridges to LAt in b. But za-m bridges to LAa in aa-m so bridges to

LAt in a. So za-mt bridges to LAt in at. This implies at b and also that t is
increasing in LAt,<).

In addition

LAß LAa)t-1 so LAß n LAt [at-1
a] [at-1 bt-1

]
and aß-1 bat-1 is not inLAt and bridges toLAt in at-1. So this point bridges
to LAa in a and aß-1a-1 bridges to LAa in aa-1. As a result aß-1a-1 is in U.

Also aa-1 bridges to LAt in b at. Hence it bridges to LAß in a. This
implies that aa-1ß-1 bridges to LAß in aß-1 so again aa-1ß-1 is in U. Now
aß-1a-1) aa-1ß-1. Which implies U. n U is not empty. This contradicts

the above claim.
Situation I.1 cannot happen.

Situation I.2. Suppose aa-1
a b in LAa.

Similarly to the arguments in situation I.1, za-1t is in U, so za-mta is not in
U so

za-mta bridges to LAa in a, za-mt bridges to LAa in aa-1.

Also aa-1
a b in LAa, hence aa-1 is in LAt and aa-1 b in LAt as well. On

the other hand za-m bridges to LAt in a so za-mt bridges to LAt in at. From
this it follows that at aa-1 in LAt In particular t is increasing in LAt,<).
There are two possibilities:
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The first possibility is that aa-1 b. In this case za-mt bridges to LAa in
aa-1 which is in the interior of [a, b], hence this point also bridges to LAt in aa-1.

It follows that

at aa-1 aß-1 at-1 bridges to LAa in a.

Then aß-1a-1 bridges to LAa in aa-1 so is in U. As before consider aa-1ß-1.

Here aa-1 is either in LAß or bridges to LAß in bt-1 the top intersection of

LAß with LAt If aa-1 is in LAß then aa-1ß-1 is in LAß so in U, as above

contradiction. If it bridges to LAß in bt-1 then aa-1ß-1 bridges to LAß in
bt-1ß-1 bat-1. Since in this case

ba > a in LAt then bat-1 > at-1 in LAt aa-1ß-1 U,

again a contradiction.

The second possibility is that aa-1 b. Here we have to split further into two
options:

Recall that at aa-1 in LAt First consider the case that at aa-1, see

Figure 10 b). We have the equalities aß-1 atat-1 at-1. Use

aam t-1a-1t aama-mß-1 -1 aß-1 -1 at-1 -1 U.

Hence aamt-1a-1 is not in U and bridges to LAa in a, aamt-1 bridges to LAa
in aa. But

aam LAa aamt-1 LAß LAa n LAß [a, aa],

see Figure 10 b). Now evaluate -1 ßaß-1a-1 on at-1:

at-1 -1 aß-1 ßaß-1a-1 aaß-1a-1

Notice that aa is in LAß so aaß-1 is in LAß. Either aaß-1 is in LAa and then

aaßa-1 is in LAa U contradiction) or

aaß-1 LAa so bridges to LAa in a and aaßa-1 bridges to LAa in aa-1

and again this point is in U. In either case U. n U Ø, contradiction.
The last option of the second possibility aa-1 b is that at > b aa-1 in

LAt Then

bt-1 at-1
ß < a in LAt LAa n LAß Ø,

see Figure 10 c). Here use at taßam-1 applied to z: The point za bridges to a in

LAt and zat bridges to at in LAt Since at > b, then zat bridges to b aa-1

in LAa.
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On the other hand za bridges to bt-1 in LAß hence zaß bridges to bt-1ß in
LAß, hence to a in LAa. Finally zaßam-1 bridges to aam-1 in LAa. Since m is
not 0 this is a contradiction.

We conclude that situation I cannot happen.

Situation II. aa-1 <a a in LAa.
Situation II.1. aa-m is not in LAt Here use

za-1t zt-1a-1t za-mtat-1 -1

is in U, so za-mta is not in U. It bridges to LAa in a, hence za-mt bridges to

LAa in aa-1 and hence bridges to LAt in a. On the other hand za-m bridges to

LAa in aa-m, so bridges to LAt in b. It follows that za-mt bridges to LAt in bt
which then must be a. So a < at-1 in LAt and t is decreasing in LAt,<).

NoticeLAßnLAt is equal to [at-1, bt-1
]and this intersectsLAa in at-1 b.

Suppose first that aa is not at-1 b. Here

aß-1 bridges to LAß in at-1ß-1, so bridges to LAa in at-1.

Then aß-1a-1 bridges to LAa in at-1a-1 a. It follows that aß-1a-1 is in U.
On the other hand aa-1 bridges to LAß in at-1 b, so aa-1ß-1 bridges to

LAß in bß-1 which is not b and it follows that aa-1ß-1 is also inU. As seen before
this implies U. n U is not empty, contradiction.

The second option in situation II.1 is that aa at-1, see Figure 11 a).

LAt
LAt

LAß

LAß

LAß

LAa

LAa

LAa

LAa

a a

a

ß-1

a

za

b at-1 aa

zat

zaß
aamt-1

aa-1

aam

za-mt

z

z
at-2a-1

bt-1 at-1ß-1

at-1

aa-m

aa

at-1ß

aaß

za-mt

a)
b)

v

Figure 11. Case aa-1 <a a in LAa: a) Picture when aa-m LAt aa at-1. b) Picture
when aa-m LAt at-1ß LAa.

Apply a-mß-1.-1 t-1a-1t to aam. The left side becomes aß-1. -1. Here

aß-1 U aß-1 -1 U aamt-1a-1 U
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and bridges toLAa in a. It follows that aamt-1 bridges toLAa in aa at-1 b.
But aam is inLAa, so aamt-1 is inLAß. ConsequentlyLAanLAß at-1 b,
see Figure 11 a).

The point aß-1 is in U, hence

aß-1 -1 aaß-1a-1 at-1ß-1a-1 at-2a-1

is not in U. Moreover, also aß-1. -1 is not equal to z, since otherwise some point
near aß-1 in U will have image under in U, which is disallowed. Then

z a, at-2a-1 za aa,at-2 at-1 at-2 zat a, at-1

In particular zat is in LAa and zata1-m is in LAa as well. This point is equal to
zaß.

On the other hand

za at-1 at-2 at-1 at-1ß-1 zaß at-1 at-1ß).

But then zaß is not in LAa, contradiction.
This finishes the analysis of situation II.1, aa-m is not in LAt

Situation II.2. aa-m is in LAt
In particular aa is in a,b]. Here za-mß-1.-1 zt-1a-1t is in U. As usual

this implies za-mta is not inUand bridges toLAa in a and za-mt bridges toLAa
in aa-1, see Figure 11 b); so za-mt bridges to LAt in a. So

za-m bridges to LAt in at-1 at-1 > a in LAt

and again t is decreasing in LAt,<). Notice za-m bridges to LAa in aa-m. If
aa-m <a b in LAa, then za-m also bridges to LAt in aa-m and aa-m at-1.

If
aa-m b then za-m bridges to LAt in a point aa-m,

that is, at-1 aa-m in LAt In any case aa-m at-1 in LAt and aa < at-1

in LAt
Now compute a. aaßa-1ß-1. Here aa is in [a,at-1

] and bridges to LAß
in at-1. Hence aaß bridges to LAß in at-1ß. There are two options: First if
at-1ß is not in LAa, then aaß bridges to a point v in LAa and v a, at-1ß) –
see Figure 11 b). Here v could be in LAt Also v aa-m in LAa. Then

aaßa-1 bridges to a point va-1 in LAa it bridges a point c in LAß,

where at-1ß does not separate c from LAt It follows that a. aaßa-1ß-1

bridges to a point in LAß which is not at-1, hence a. is in U, contradiction.
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Figure 12. Analysingza-1 K: a) Picturewhenat [z, a). b)Picturewhenat-1
[z,a).

The second option here is that at-1ß is in LAa. Here at-1 is in LAa. Then
consider at-1a-1 which is in LAa and hence in U. Then

at-1a-1 aßa-1 at-1ßa-1

is in LAa and at-1ßa-1 <a at-1ß in LAa. Therefore

at-1ßa-1 bridges to a point in LAß contained in bt-1,at-1ß).

Apply ß-1 – the resulting point bridges to a point in LAß which is not at-1, hence

at-1a-1) is in U, again a contradiction.
This finishes the analysis of situation II. Hence this finishes the analysis of case

B.1.3, U. is not equal to U.

Case B.1.4. Suppose U. U.
Since the boundary U in T is the point z this implies that z. z. Since LAt

is a prong at z it follows that LAt n LAt is not empty. Choose c. in this
intersection. So c, c. are disjoint and in LAt It follows that z, c, c. are aligned
the particular order is not important) and c is in a local axis of But c.-q ct p

is also in LAt and it follows easily that the local axis is contained in and therefore
equal to the local axis LAt of t so t and hence leave LAt invariant. This sort
of argument will be used from time to time from now on.

Here the ideal would be to apply the proof of caseA, where t acted freely andAt
was invariant by and t We already have LAt invariant under and t however

LAt is not properly embedded in T - at least in the z direction. In order to apply the
proof of case A, we analyse the relative positions of LAt a, LAt at and so on.
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In particular for that analysis to work we must have LAt a contained in U and so

on. So first we do preparation work, showing all images of the local axis are in U
and then we can apply the proof of case A.

For simplicity of notation in case B.1.4 we do the following: K will denote the
local axis LAt which is contained in U and has an ideal point z. Again as we want
to use this in section C as well, we will consider a local axis LAa for a. The key
result is the following:

Lemma 6.1. We have Ka U, Ka-1 U and Kata-1 U.

Proof. The proof will be done considering each problem in turn. When the problems
do not occur we show after the lemma that we can use the proof of case A to deal

with case B.1.4. We treat each problem in turn:

Problem 1. Is Ka U?
Suppose not. Then as aa is in LAa contained in U there is t in K with ta z

or za-1 is in K, see Figure 13 a). Here z bridges to a in LAa so za-1 bridges to

aa-1 in LAa. So za-1 can only be in K if b is in z, za-1) and aa-1 b. In
particular aa <a a in LAa.

There are two possibilities depending on whether t is expanding away from z or
not:

First suppose at is in [z,a), see Figure 12 a). As za bridges to a in K then zat
bridges to at in K and bridges to a in LAa. Then zata-m bridges to aa-m in
LAa. The point zata-m is equal to zß because z. z) and bridges to a in K so

bridges to at-1 in LAß. But z also bridges to at-1 in LAß, contradiction.
The second option is at > a in K, see Figure 12 b). Here zß-1 bridges to

at-1ß-1 in LAß and so to a in LAa. Hence

zß-1a-1 bridges to aa-1 in LAa zß-1a-1 U.

On the other hand za-1ß-1 za-1tat-1. Here

za-1t K za-1 z, za-1t) za-1ta U za-1ß-1 U.

But zß-1a-1. za-1ß-1, leading to U. U, contradiction to case B.1.3.

So we obtain za-1 U is impossible. Hence Ka U. This shows that
Problem 1 does not occur.

If Ka intersects K in at most one point we can use the analysis of Case A.1 to
disallow it. To use that notice that K is a local axis for and Ka has to bridge to a

point x in K and not to z.
So assume from now on in case B.1.4 that K n Ka is more than one point.
Supposeforamoment thatKa is contained inK. Applyt-1ata-m ta-1t-1

to K. If Ka is not equal to K then the right side is strictly contained in K and the
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left side strictly contains it. Impossible. So the only possibility is thatKa K. But
that implies thatK is left invariant by the whole groupand this reduces to case R – the
tree is R. We conclude that Ka K cannot happen. In the same way Ka-1 K
cannot happen either.

Consider first the situation that

K n Ka z, t ]; then TK, Ka share a ray.

As before t could be +8 in LAt The orientations in K and Ka may agree or

not. If the orientations agree then za z. This implies that z is a global fixed point,
impossible by non trivial action.

Suppose then that the orientations in K and Ka disagree. If z, t) LAt then
there is a fixed point r of a inLAt K. LetU1 respectivelyU2) be thecomponent
of T -{r} containing rt respectively rt-1). The conditionKanK z, t) implies
that U1a U2. This is now disallowed by Lemma 5.2, notice that LAt is a local
axis for

Finally suppose that t is finite. Notice that Ka K is disallowed. If ta is
in LAt then the orientation hypothesis produces a fixed point r of a in z, t ]. In
addition withU1,U2 defined above thenU1a U2 and this is again disallowed by
Lemma 5.2. The remaining case to be analysed here is that ta is not in LAt. In any
case since there is a ray in LAt not limiting on z whose image under a limits on z,

it follows that LAt has another limit point v. Then va z. Also v. v.
Now compute vt-1at vaßam-1. The left side is vt-1at vat zt z.

The right side is

vaßam-1 vata-1t-1am za-1t-1am-1 vam-1

or z zam-2. But this case implies that z bridges to t in LAa and so this cannot
happen. That is, we cannot have Ka n K z, t].

Suppose now that K has a ray l not limiting to z) so that la LAt and the
orientations disagreeing. Then LAt has another limit point v with v. v) and va
is in z, t) the difference here is that we are assuming va is not z). As above we have

ta is not in K and a has a local axis with t in it. Also ta-1 is in K and closer to v
than t is. Use

vt-1ata-m v. ta-1t-1

The left side is vata-m and the right side is va-1t-1. This shows that t expands

from z to v inK and ta-1t-1 t Now use tt-1a-1t-1at ta-1t-1am-1. The
right side is tam-1. We analyse the left side. Then tt-1 is in z, t) and tt-1a-1 is in
ta-1,z) which is a subset of K). Apply t-1 to get a point in K which is in t, v).

Then apply a to get a point that bridges toK in a point o in z, t ]. Finally apply t to
get a point that is contained in z, va-1). This cannot be tam-1.



290 S. R. Fenley CMH

We conclude this cannot happen. This analysis shows that LAa n LAt has a

point t which is the closest to z.
Given these facts we now consider the general situation that K has another limit

point v. As seen above v. v. Suppose first that v is in LAa. Here we split into
cases: if a acts freely then v is a fixed point of t in the axis of a and this falls under
case B.2 which we will consider latter. Consider then the case that a does not act

freely. Let w be a fixed point of a which is a limit point of Aa. Choose w so that

w,v) has no fixed point of a as v is in LAa) and also no fixed point of t or

Also Tw(v) is invariant under a and Tv(w) is invariant under t Then v in LAa is
disallowed by Lemma 7.4 notice we do not need to use Lemma 7.2, because in this
situation we have v. v).

It follows that v has the same properties as z. In any case one obtains that

Ka n K [t, r], t r, t closest to z

and if K is not properly embedded in the other direction then r is an actual point
in K. Then Kat n K [tt,rt]. So the intersections are the same as occurred in
case A so far.

Problem 2. Is Ka-1 U?
This is similar to problem 1. As before if Ka-1 not contained in U, then z

Ka-1 and za K. Recall that LAa n K [a, b]. This can only happen if
b z, za), aa b and aa-1 <a a in LAa.

First suppose that at-1
[z, a]. Then

at-1a [za, aa] [b, za] at-1a K at-1at K
and this last point bridges to b in LAa. Then at-1ata-m a.ß bridges to ba-m

in LAa. But

ba-m <a b in LAa a.ß bridges to bt-1 a in LAß.

On the other hand a. [z, at-1
] and bridges to at-1 in LAß, so a.ß bridges to

at-1ß in LAß. Since at-1ß is a point in LAß -K it is not equal to bt-1, leading
to a contradiction.

The second option is at-1 > a in K. Here use

zß-1 zat-1 K, za z, zß-1 zß-1a-1 U.

On the other hand za-1 bridges to aa-1 in LAa so bridges to at-1 in LAß. So

za-1ß-1 bridges to at-1ß-1 in LAß and is in U. As above this is a contradiction.
We conclude that Problem 2 does not occur.
After some analysis as in problem 1, this implies that

Ka-1
nK [t r ] with t r t z
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and if K not properly embedded on the other side then r has to be finite in K.
Then clearly Ka-1t-1 U and intersects K in a segment.
The last problem is the following:

Problem 3. Does Kata-1 U?
Suppose not, that is, Kata-1 U. We have to be careful here. First a preliminary

claim:

Claim. z Kata-1.

If this is not true then Kata-1
n U Ø. Notice that

Kat n LAa Ø Kata-1
n LAa Ø and Kata-1

n U Ø,

contrary to assumption here.
So consider Kat n LAa Ø. Also here Kat n K is a non trivial segment.

If Kat bridges to a in LAa then Kata-1 is contained in U and we are done. It
follows thatKat has to bridge to b inLAa and hence za has to be in the this bridge.
But then za is in K, which was disallowed in problem 2. This proves the claim.

We now analyse what happens when

z Kata-1 so zt-1 z Kaß and zß-1a-1 K.

Also zß-1a-1. za-1ß-1 is in K as well.

Situation I. aa-1 <a a in LAa.

Situation I.1. at < a in K.
Here za-1 bridges to aa-1 in LAa, so it bridges to at-1 in LAß. Also

za-1ß-1 K and at-1
a aa-1 za-1

As ß-1 moves points up alongK, it follows that za-1ß-1 > binK and at-1ß-1

bt-1. Here aa-1
[at-1,za-1

], see Figure 13 a). Then

at-1ß-1 bt-1 aß-1 aa-1ß-1
v1 za-1ß-1

v2

and all are in K. Also aß-1 b, aa-1ß-1) K and zß-1 bridges to K in aß-1

so bridges to LAa in b. Then zß-1a-1 v2. -1 K bridges to a in LAa and

aß-1a-1 v1.-1 is in zß-1a-1,a), see Figure 13 a). Then

zß-1a-1 aß-1a-1 aa-1ß-1 za-1ß-1

all points in K. This contradicts the fact that acts as a translation in K.
Situation I.2. at > a in K.
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K
K

LAa

LAa

LAß

LAa

LAa
LAß

LAß

LAß

z

z

a

a

b

b

zß-1

bt-1

at-1

at-1

za-1ß-1

aa-1ß-1

aß-1

ß-1

ß-1

a

a

aa-1

aa-1

aß-1a-1

zß-1a-1

za-1

za-1

aß-1 bt-1

at-1ß

zß

a) b)

Figure 13. Situation aa-1 <a a in LAa: a) Picture when at < a in K. b) Picture when

at-1 < a in K.

Here za-1 bridges to a in K, see Figure 13 b). If a bt-1 in K then za-1

bridges to a point t ß bt-1 in LAß, so

za-1ß-1 bridges to LAß in a point ß bt-1ß-1 and za-1ß-1 K,

contradiction. Hence a < bt-1 in K and za-1 bridges to a in LAß so za-1ß-1

bridges to aß-1 in LAß and as za-1ß-1 is in K then

za-1ß-1 > bt-1 in K and aß-1 bt-1 or ata b.

Now
aß-1 bt-1 so aa at-1ß-1t < aß-1t b,

in particular aa is inK. Also zß bridges to a in LAa and so does z. But zßa zaß
and za bridges to aa in LAa. Since aa < b, then za, zaß bridge to aa in LAt as

well.
If aa < bt-1 inK then za,zaß bridge to aa in LAß, impossible – they have to

bridge to distinct points in LAß. If

bt-1 a, aa) za, zaß bridge to bt-1 in LAß,

again contradiction. Therefore aa bt-1 or aat b. Now

aata-1t-1 ba-1t-1 a, so a. aa-1ß-1.
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Notice that a. [z,at-1
]. But aa-1 bridges to a in LAß, so aa-1ß-1 bridges to

aß-1 bt-1 in LAß and aa-1ß-1 cannot be a. contradiction.
This finishes the analysis of situation I.
The remaining options are extremely similar and have shortened proofs.

Situation II. aa <a a in LAa.

Situation II.1. at-1 < a in K.
This is as situation I.1above. Here zß-1 bridges to a inLAa, so zß-1a-1 bridges

to aa-1 in LAa and aa-1 b. It follows that

b at-1a-1 at-1ß-1a-1 zß-1a-1

all points in K.
On the other hand at-1a-1 b, at-1)ß-1a-1) K. The point za-1 bridges

to at-1)a-1 in K. It follows that

za-1ß-1 at-1 a-1ß-1 at-1 ß-1a-1 zß-1a-1

all points in K. As before this contradicts the fact that acts as a translation in K.
Situation II.2. at < a in K.

This is very much like situation I.2. Here zß-1 bridges toat-1 inK. If at-1 b
in K, then

zß-1a-1 bridges to a point >a b in LAa zß-1a-1 K,
contradiction. Hence

at-1 < b in K, zß-1a-1 > b in K and at-1a-1 b or a bat

In addition,

za, z bridge to LAß in at-1 zßa zaß, zß bridge to LAß in at-1ß,

and similarly to situation I.2, this implies at-1ß b ora bta. Then baß b and

b. ba-1ß-1. But b. bt-1 in K and ba-1 bridges to b in LAß, so ba-1ß-1

bridges to bß-1 at-1 in LAß and cannot be equal to bt-1.

This contradiction shows that problem 3 cannot occur. This finishes the proof of
Lemma 6.1.

It follows from Lemma 6.1 that Kata-1 U, so Kaß U as is K.ßa. So
all of the sets K, Ka, Kat, Kata-1, Kaß, Ka-1, Ka-1t-1 and Ka-1t-1a
which is Kßa K. -1aß Kaß) are contained in U and none has z as an ideal

point. If K has another ideal point v, then v has the same properties as z and the
same situation occurs with respect to this other ideal point.
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Given these facts, an analysis exactly as in case A.2 can be applied here. That
analysis then shows that case B.1.4 is not possible.

Hence case B.1.4 is disallowed. This also finishes the proof of case B.1.
For case B.2 we return to the study of a acting freely using the axis Aa.

Case B.2. Fix(t n Aa Ø.
This is the key case of theproof foressential laminations. In this case the topology

will be important, in particular, the exact condition |p - 2q| 1 will be used in a

crucial manner. Let z Fix(t n Aa. Let U1 respectively U2) be the component
of T - {z} containing za respectively za-1). A priori we do not know whether z is
also a fixed point of In some subcases, the tricky part will be in fact to show that

z. z.

Case B.2.1. U1t U1.
Notice that U1a is contained in U1. Here use zat zt.ßam z.ßam.

za U1 zat U1 zata-m U1a-m U1 z.ß U1.

So z.ta-1t-1 is in U1 and then z. a-1 is in U1 or z. is in U1a. In particular

z za z. see Figure 14 a). We stress that in this case z. is not equal to z!

U1

U2

za

za

za-1t-1 zaß

zß

z.
t

za-1

za-1

zat-1

zß-1a-1.

zat-1a-1 zß-1a-1

Aa Aa

z

z

zat

zam

zam-1

zß2

zaßam-1 zat

a) b)

Figure 14. Case B: a) Picture when U1t U1. b) Picture when U1t-1 U2 and

[z, zß] n [z,za] [z, t]

Use now zat zaßam-1 zata-1t-1am-1.

zata1-m U1 zata-1t-1 U1 zata-1 U1 zat U1a.

In particular z za zat and z zat-1 za and so zat-1a-1 za-1, z). In
other words

zat-1a-1 ztat-1a-1 zß-1a-1 za-1 z).
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Then zß-1a-1 is in U2 so zß-1a-1. is in U2. Notice zß-1 ztat-1 zat-1

with za U1, zat-1 also in U1.
Recall that z. z. If U1. U1 this implies that z is in a local axis for

contradicting z.q zt-p z. ThereforeU1. is not contained inU1 and consequently

U2. is contained in U1 and so z. separates U2. from z. Hence

za separates U2. from z and zß-1a-1. U2.

But zß-1a-1. za-1ß-1 za-1tat-1. Nowza separates z from za-1tat-1

which is in U2. Apply t : zat separates z from za-1ta. Then

zat U1a za-1ta U1a za-1t U1 and za-1 U1t-1 U1.

But this contradicts za-1 is in U2. This is an impossible case.
We conclude that U1t U1.

Case B.2.2. U1t U2.
Then zat is not in U2, which implies zata1-m is in U1, or zaß U1 and

zata-1t-1 is in U1. By assumption zat U1, hence zata-1 U2 and

zata-1t-1 U2t-1. This would imply U2t-1 U1 or U1t U2, so the
assumption is incompatible.

We conclude that U1t U2.

Case B.2.3. U1t-1 U2.
This is a very interesting case. Here we only use the fact that p is odd.
First consider zß zta-1t-1 za-1t-1 which is in U2t-1 U1. Then

za, zß are in the component U1, hence [z, za], [z, zß] share a subprong. Suppose

first that

[z, zß] n [z, za] [z, t ], t za, zß, that is za [z,zß], zß [z, za]

see Figure 14 b). Notice that ß has a local axis through zt-1 z. Hence zß is in
z, zß2) and zaß bridges to t in Aa. Also zaßam-1 bridges to Aa in tam-1 which

is a point in zam,zam-1). But

zaßam-1 zat za-1t-1
[z, za) zß za-1t-1

[z, za),

contradiction.
So either zß [z,za] or za [z,zß].

Situation I. za is in [z, zß].
Use zßt zta-1 za-1. As za is in [z, zß], then zat [z, zßt] [z, za-1

]
and zata1-m [za-m, za1-m

]. But

zata1-m zt-1ata1-m zaß, so zaß [za-m, za1-m
] Aa.
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We stress that zaß Aa. Here zß-1 z za, hence z zß zaß. It follows that

zß Aa and zß [z, zaß] zaßa-1
[za-m-1, za-m

].

We want z. z or zaß zßa. We first analyse the other two possibilities.

Situation I.1. zaßa-1 > zß in Aa.
Then zß zaßa-1 zaß, so z z. za, or z. z, za), so z. U1.

Clearly zßa Aa. Here zaß > zßa in Aa. Then

z zßa zaß all in Aa zß-1 zßaß-1 za and zß-1a-1 z. -1 z.

But zß-1 zat-1 U2, hence zß-1a-1 is in U2. Nowz. U1, z. -1 U2,
therefore z is in a local axis for hence z. q z, contradiction.

Situation I.2. Suppose zaß <a zßa.
Then

z zaßa-1 zß zß-1 z. z.

As zß-1 zat-1 is in U2, then z. is in U2.
Now zaß <a zßa. IfAß contains elements inAa above zaß, that is, Aß nAa

[z, t) with t >a zaß and t <a zßa, then

z za tß-1 zßaß-1 z tß-1a-1 z. -1

Here tß-1a-1 bridges to e >a zaßa-1 >a z inAa. Sotß-1a-1 is inAa and z. -1

is in U1 and not in U2.
On the other hand if Aß escapes Aa in zaß, then zßaß-1 bridges to Aß in

za, hence bridges to Aa in za as za z, zaß). Hence zßaß-1 U2a and
zßaß-1a-1 z.-1 bridges to Aa in z and z. -1 is not in U2. In any case z. -1 is
not in U2 and z. is in U2 so z separates z. from z. -1 and z is in a local axis for
impossible.

We conclude that zaß zßa or that z. z.

Situation I.3. z. z.

Then leaves invariant the set of components of T - {z}. Recall that U1t-1

U2 and U1t U2 in situation I. Use zß-1a-1. za-1ß-1. The left side is

ztat-1a-1. zat-1a-1.

za U1 zat-1 U1t-1 U1, so zat-1a-1
U2 and zat-1a-1 U2..

On the other hand the right side is za-1tat-1:

za-1 U2

za-1t U2t U1, za-1ta U1 and za-1tat-1 U1t-1 U2.
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So U2. n U2 Ø. Since now preserves the set of components of T - {z} it
follows that U2. U2 and U1. U2t. U2. t U2t U1. Now we use p
odd and tp. q id:

U1 U1. qt p U1tp U1tp(mod 2) U1t.

This contradicts U1t U1 and finishes the analysis of situation I.

Situation II. zß [z, za].
This is very similar to the previous case if we think of it in the appropriate way.

The trick here is to switch the roles of a and ß, which can be done. Notice first that
zß U1 and zß-1 ztat-1 zat-1 is in U2. So the component of T - {z}
containing zß respectively zß-1) is the component U1 respectively U2). First
rewrite the relations as

tat-1 ß-1 tßt-1 -1aßm ßaßm-1

As zß is in [z,za] then zßt-1 is in [zt-1,zat-1
] [z,zß-1

]. So

ztßt-1ß1-m zßt-1ß1-m zßa [zß-m zß1-m
] Aß.

As zß [z, za], then zßa is in [za, za2] and

za [z, zßa] [z, zß1-m
] Aß.

Therefore za is in Aß and similarly zaß, zßa are in Aß.
From this point on the proof is entirely similar to the analysis in situation I:

consider whether zaß <ß zßa, zaß >ß zßa, or zaß zßa, with completely
analogous proofs.

Therefore this case is disallowed. This finishes the analysis of the case B.2.3,

U2t U1.

Case B.2.4. U1t U2, U1t-1 U2.
This is the most interesting case which relates to the topology in a crucial way.
Use zß-1a-1. za-1ß-1. The right side is ztat-1a-1. zat-1a-1.

za U1 zat-1 U1t-1 U1 zat-1a-1 U2.

Hence zß-1a-1. is in U2. On the other hand za-1ß-1 za-1tat-1:

za-1t U2t U2 za-1ta U1 za-1tat-1 U1t-1 U2.

We conclude that

U2. n U1t-1
Ø, or U1t. n U1t-1

Ø. (*)
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What we actually want is that these two sets are equal. A priori we have to be careful
because may not preserve the set of components of T - {z}, or equivalently we
may have z. z. So we first deal with this case. We will need the following useful
lemma:

Lemma 6.2. Let be a homeomorphism of a tree V so that .n has a fixed point c,
where n is not 0. Then there is a fixed point of in [c, c.].

Proof. Consider c.2. If c.2 is in [c,c.] and not equal to c., then sends [c, c.] into
itself and has a fixed point there, done. If c. is in c,c.2) then c is in a local axis
of and c.n is not c, impossible. If c is in c.,c.2), then .-1 sends [c.,c.2] into
itself into [c, c.]) producing a fixed point there, done.

We can now assume c.2 bridges to [c, c.] in a point r which is in c, c.), see

Figure 15 a). If r. r we are done. Assume r. r. Then r. is in [c., c.2].

c c

r r

r.

c.2 r. c.2

r.2

r.2

c. c.

c.4

a) c.3 b)

Figure 15. a) r. [r, c.], b) r. r,c.2 ].

Suppose first that r. is in [r, c.], see Figure 15 a). Then r.2 is in [r., c.2] so

either [r.,r] is contained in its image under or vice versa. As seen above there is
a fixed point of in [r,r.].

Suppose now that r. is in r, c.2] see Figure 15 b). Hence c r r. and

c. r. r.2. Then r c.,r.) and r. r, r.2), so r is in a local axis for
This implies that c.t c for any nonzero t in Z, contradiction. This finishes the
proof.

We are back to case B.2.4.

Situation I. z. z.
Suppose first that z. U2. Notice U2t U1 and also U2. Since z.q z,

the previous lemma shows that there is c in [z, z. ] fixed by so c is in U2. This
implies

U2t. U2 U1t 2 U2, or U1t. U1.

But by (*) U1t. n U1t-1
Ø, which now implies U1t-1

n U1 Ø. This is
impossible and rules out this case.
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The second possibility is that z. U1. Here U2. U1 so U1t. U1. As

U1t. n U1t-1
Ø then U1t-1

n U1 Ø, also impossible.
The final option is z. U1 U2, z. U3 which may be U2t or not). Here

there is y fixed by with y U3. Here first use

U2. U3, or U1t. U3 U1t-1
n U3 Ø and U1t-1 U3.

Also
U1. U3 U1t. U3t.

By (*), U1t-1
nU3t Ø orU1t-1 U3t ThenU3 U3t orU1t-1 U1t-2,

so U1t U1, which is impossible. This rules out this final option.
We conclude that:

Situation II. z. z.

This is a crucial case. In fact there is an essential lamination in Mp/q whenever

|p-2q| 2 and this essential lamination may satisfy these properties: t has a fixed
point, a has an axis or at least a local axis) which contains the fixed point of t See

more below. So here is a part of the proof where the specific condition |p- 2q| 1
needs to be used. See remark below on the topological significance of this condition.

Here is the proof. As z. z, permutes components of T - {z}. So U1t. n
U1t-1

Ø implies

U1t. U1t-1 or U1. t 2
U1.

We now compute

U1 U1tp q U1tp-2qt2q q U1( t 2 qtp-2q U1t p-2q

When |p - 2q| 1 then either U1 U1t or U1 U1t-1. So in either case

U1 U1t But this contradicts that we proved in case B.2.1 that U1t is not equal
to U1. This is a contradiction showing that case B.2.4 cannot happen. This is quite
straightforward, but it needed all the previous steps.

This finishes the proof of case B: Fix(t Ø, Fix(a) Ø.

Remark. We now analyse the topology of this situation. Consider the original stable
foliation in the torusbundle over the circle themanifoldM). After blowup of the leaf
through d, thisproducesa lamination .1 inM-N(d). The solid torus complementary
component of .1 has degeneracy locus 1,2), which corresponds to t2. This means

the t2 is a curve in the boundary leaf of the complementary component and it also
preserves the “outer" side of this complementary component. Now do p/q Dehn
filling on M -N(d) and look at the tree T produced. The leaf through d collapses to
a fixed point z of t and too). Usually neither t nor preserves the complementary
components of z, but the above fact about the degeneracy locus means that t2
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does preserve these components – if U1 is one such component of T - {z} then

U1. t2 U1 After q,p) Dehn surgery, the leaf space T of the lamination has a

singularity at z with exactly |p- 2q| prongs. The transformation t rotates by one in
the set of prongs, hence t p-2q preserves each of the prongs. This is also detected by

t2 preserving the set of prongs and t p.q being null homotopic. All is well when

|p- 2q| 2, because we have 2 or more prongs and the lamination is essential and

the action is very nice. However when |p - 2q| 1 there is only one prong and
the lamination is not essential. It is amazing that this sort of difficulty can still be
detected on the level of group action on trees. Notice that this is exactly what the
proof shows that U1t U1, which must happen if there is only one prong.

7. Case C: a has a fixed point and t has a fixed point

Let s in Fix( w in Fix(a) with s,w] n Fix( Ø and [s, w) n Fix(a) Ø. The
following notation will be very useful in this section. Given u v in T recall that

Tu(v) {component of T - {u} containing v}.

Let
W Ts(w), V Tw(s).

This notation for W, V will be used throughout this section. First in this section
we will try to prove that W is invariant under t and V is invariant under a. This
will produce local axes for a and eventually) for t and we will see how the 2 axes

interact.

Case C.1. Suppose Wt W.
Notice that Wt is a component of T - {s} as st s. s.

Case C.1.1. Suppose w [s, sa].
This is equivalent to Va V. Notice sa w. Here saß sßa, and sßa

sa-1t-1a, so

sa-1 V sa-1 W sa-1t-1 Wt-1 V
sa-1t-1a Va W sßa W.

On the other hand saß sata-1t-1. Here

sa Va W sat Wt V sat-1a-1 Va-1 W

and saß is inWt These two facts together implyW Wt contrary to assumption.
Conclusion: if Wt W, then Va V.
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Case C.1.2. sa-1
[s, w], sa [s, w].

This implies sa, sa-1 are in W. For otherwise if sa is not in W, then s is in
w,sa] and so sa-1 is in [w, s]. In this case sa-1 bridges to [s, w] in a point r with

r s, w) – the important fact is that r is not one of the endpoints which would occur
if sa-1 is not in W or V. Then

r w, s) n w,sa-1 ra-1 w, sa-1

Notice ra-1 is not equal to r. If ra-1 is in r, sa-1), then sa-2 bridges to [r, sa-1
]

in ra-1, hence sa-2 bridges to [s,w] in r. The same happens for all san with n
negative. If on the other hand ra-1 is in w,r) then sa-2 bridges to ra-1 in [s, w]
and san bridges to [s,w] in ran+1 for all n negative. Notice that ran are all in

w,r) w, s). The important conclusion is that under the hypothesis sa,sa-1

both not in [s, w] then any san bridges to [s, w] in a point in the interior of [s, w],
Hence all san are in W and V.

Use st-1at s.ßam. Here sa is in W, so sat is in Wt Also sß sa-1t-1

is in Wt-1 and bridges to s in [s,w]. Hence sßam bridges to sam in [sam, w]. But
sam is in W and bridges to [s,w] in a point in the interior of s, w). This implies
sßam is in W, contradiction.

This case is impossible.

Case C.1.3. Suppose sa [s, w].
This implies for instance that Wa W and Ts(wt-1)ß-1 Ts(wt-1).

Case C.1.3.1. Suppose sa-1 Wt
Then sß-1 sat-1 is in s, wt-1) Wt-1. Also sa-1 sßa-1ß-1. Here

sß sa-1t-1 is in W.
In this case suppose first that sß is not in V. Then

w [wt-1
sß] and wß-1

[wt-1
s] wß-1a-1 Wt,

as sa-1 is in Wt This implies that wß-1a-1 is in Wt. Notice wß-1a-1 is not s.

On the other hand

wß-1a-1 wa-1ß-1 wß-1 is in Wt-1

Notice if wß-1 s, then

wß-1a-1 wß-1 -1 s.-1
s wß-1

contradiction because s is not fixed by a.
Collecting all of this together: wß-1a-1. is inWt. But wß-1a-1. wß-1

Wt-1. Hence

Wt. Wt-1 or Wt 2. W, impossible when |p - 2q| 1,

as in case B.2.3.
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The second option in case C.1.3.1 is that sß V. Recall that sa-1t-1 sß is
in W. Notice that

LAß LAa)t-1 has a segment [wt-1, s] Wt-1
{s}

and then it goes into W, as sß is in W. Then either sß t w, s) or sß bridges to

[w, s] in t w, s), so bridges to t in LAa. In either case sßa-1 bridges to ta-1

in LAa or is ta-1. If ta-1 is in [w, s), then sßa-1 bridges to ta-1 in LAß, see

Figure 16 a). Here ta-1 is in [wt-1, sß). If

s [ta-1, w] then sßa-1 bridges to LAß in r, with r [s,wt-1
].

Thisdepends for instanceon whetherWt Wt-1 or not. In anycasesßa-1 bridges
to LAß in a point in [wt-1, sß). It follows that sßa-1ß-1 bridges to a point y in
LAß with y in [wt-1, s), that is, sßa-1ß-1 is in Wt-1. Then

sa-1 Wt, sßa-1ß-1 sa-1 Wt-1 Wt. Wt-1

contradiction when |p - 2q| 1.

This shows that case C.1.3.1 cannot occur.

LAa

LAß

w w

sa

sa

sa-1

sß

sa-1

sß

sß-1

sß-1

wt-1

wt-1

t

t

t

s

s

r
sßa-1ß-1

sßa-1

ta-1ß-1

ta-1

rta

rtaß saß sßa

a)

b)

rt

Figure 16. a) Case C.1.3.1, b) Case C.1.3.2.

Case C.1.3.2. sa-1 is not in Wt
Here sß sa-1t-1 is not in W. Also sß-1 sat-1 is not in W and is in

Wt-1. It follows that

LAß n [w, s] {s},
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so sa bridges to LAß in s and saß sßa bridges to LAß in sß. Hence [s, sß]
sa, sßa) and there is a fixed point r of a in s, sß), see Figure 16 b). It also implies

that
sa-1

[s, r] and sa-1 Ts(sß) Ts(sß)t,
because sß sa-1t-1 and sa1 is in Ts(sß), see Figure 16 b). Also t contracts

[s,sß] towards [s, sa-1
]. Now apply taß ata1-m to r: rtaß rta1-m.

As sßt sa-1 and r s, sß), then

rt s, sa-1 rta s, sa) rtaß sß, saß) Tr sß).

As rta is in s, sa-1) Tr s) and Tr s)a Tr s). This implies rta1-m is also in
Tr s). Therefore r separates rta1-m from rtaß, contradiction.

This shows that case C.1.3, sa [s,w] cannot occur. Finally consider:

Case C.1.4. Suppose sa-1
[s, w].

This implies that Wa-1 W and Wt-1)ß Wt-1).

Case C.1.4.1. Suppose sa Wt-1.

This case is very similar to case C.1.3.2. Here sß Ts(wt-1) which is not equal
to either Ts(sa) or Ts(sa-1). Hence sß bridges to LAa in s and sßa saß bridges
to LAa in sa. Hence

sß s sa saß

and there is a fixed point r of ß in s, sa). Then sß-1 s, r) s, sa). Now use

ßt-1ß1-m t-1ßa applied to r: rt-1ß1-m rt-1ßa. As sat-1 sß-1 then

rt-1
s,sß-1 so rt-1

ß1-m r, sß1-m Tr s).

On the other hand rt-1ßa is in sa, sßa) Tr sa). As Tr sa) Tr s), this is a

contradiction, ruling out this case.

Case C.1.4.2. sa is in Wt-1.

This is similar to case C.1.3.1. Suppose first that Wt-1 Wt Then sat-1

sß-1 is in W. Also Wß-1 is contained in W. It follows that

sa-1ß-1 W and sa-1ß-1 -1 sß-1a-1 W.

Hence W. W, Wt2 W, leading to contradiction when p is odd.
Suppose now that Wt-1 Wt Then sa Wt-1 and sat-1 sß-1 is not in

W. Also sß-1 is in Wt-2. So sß-1 bridges to s in LAa and sß-1a-1 bridges to

sa-1 in LAa implying sß-1a-1 is in W.
Also sß-1a-1. sa-1ß-1. Here sa-1 bridges to s in LAß, sa-1ß-1 bridges

to sß-1 in LAß. But

sß-1 Wt-2 sa-1ß-1 Wt-2 W. Wt-2

As in case B.2.4 this is impossible when |p - 2q| 1.
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This finishes the analysis of case C.1.4, sa-1
[s,w].

We conclude that case C.1, Wt W is impossible. This implies Wt W. We
stress that this does not yet produce a local axis of t in W, because we may have

other fixed points of t in s, w).

Case C.2. Suppose that Va V.
Here we will use sat sßam saßam-1 many times.

Case C.2.1. Suppose wt, wt-1 are not in [s, w].
The bridge from wt to [s, w] is [wt, t], where t is in s, w). Since sa V, then

sat bridges to t in [s, w], so sat is in V. Hence sata-m is in Va-m. This point is
equal to sß sa-1t-1. In the same way sa-1 is not in V and bridges to [s, w] in
w. It follows that sa-1t-1 bridges to a point r in [s,w], where r is in s,w), hence

sß V. Therefore Vam V.
On the other hand

sat saßam-1 sata-1t-1am-1

The point sat is in V and bridges to t in [s, w]. Sosata-1 is in Va-1 and bridges to

w in [s, w] so sata-1t-1 bridges to r in [s, w] r as above) and as a result this point
is in V. Hence saßam-1 is in Vam-1 and Vam Vam-1, contradicting Va V.

Case C.2.2. wt-1
[s, w].

Here Vt-1 is contained in V.
The condition implies that w is in a local axis LAt of t this case will be ruled

out, we only establish the existence of a local axis of t inW later). Beware that s may
not be a limit point of LAt Put an order < in LAt soc < d in LAt if s c d –
the order decreases as points get closer to s.

Case C.2.2.1. wt Va, wt Va-1, see Figure 17 a).

Here Vat Va.
The conditions imply in particular that Va Va-1. Here sat Va, so

sßam Va. Also sa-1 bridges to LAt in w so sß sa-1t-1 bridges to LAt in
wt-1. It follows that sß is in V and sßam is in Vam. Hence Vam Va.

On the other hand sat saßam-1. Use saß sata-1t-1. Here

sat Va sata-1 V sata-1t-1 V.

Finally saßam-1 is in Vam-1. So Vam-1 Va and V Va, again contradicting
the assumption in this case.

Case C.2.2.2. Suppose wt is not in Va and wt is not in Va-1.

Then wt is in R another component of T - {w}. Then sat is in R. Now
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sßam sa-1t-1am. But

wt Va-1 sa-1 bridges to LAt in w

sa-1t-1 bridges to LAt in wt-1

and sß is in V. Therefore sßam Vam R. Notice Ra-1 R because

R Vam and Va-1 V. Use

sat saßam-1 sata-1t-1am-1 and sata-1 Ra-1 R.

Hence sata-1 bridges to LAt in a point w in LAt it is in [s,w]) and saß
bridges to LAt in a point wt-1 in LAt Hence

saß V saßam-1 Vam-1 Vam Vam-1

contradiction. Notice that here it doesn’t matter whether Va Va-1 or not.

s s
wß-1

sa-1t-1wt-1
wt-1

wt

wt

sa

sa

sat

sat

sa-1

sa-1
sata-1w w

sß

saß

wt-1a-1t wß-1a-1

b)
a)

Figure 17. a) Case C.2.2.1, b) Case C.2.2.3.

Case C.2.2.3. wt is in Va-1, see Figure 17 b).
This implies Va-1t is a subset of Va-1.

Use sat sßam sa-1t-1am saßam-1. Here

sa V sat Tw(wt Va-1 sata-1 Va-2 Va-1

so it bridges to a point r in LAt with r w in LAt Hence saß is in V and
saßam-1 is in Vam-1. Hence Vam-1 Va-1 or Vam V.

On the other hand sat sßam is in Va-1, so

sa-1t-1
sß is in Va-1-m Va-1
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Then sß bridges to a point > w in LAt But sß sa-1t-1, so sa-1 bridges to a

point > wt in LAt which implies wt w, sa-1). It follows that wta w, s)
and wß-1 wtat-1 is in wt-1, s) and so is in W and in V.

The following arguments use the strategy of case R.2:
Now wß-1a-1. wß-1 is in s, w) W and therefore

wß-1a-1 wt-1a-1t is in sa-1 w) Va-1

Since s. s, this implies that W. W and wß-1a-1 is in a local axis for
and hence so is w. Because tp -q and the local axis for and t intersect
in w, it follows that these two axis are equal. In particular LAt LAt and

wß-1a-1. wß-1, wß-1a-1 are in LAt
Since wta wß-1t then wta is in LAt. If wta wt-1 in LAt then

wß-1 wtat-1 wt-2 in LAt Also wt, wß-1a-1 are in LAt and wt <
wß-1a-1 in LAt Hence

wt. < wß-1a-1 wß-1 wt-2 in LAt p > 3q,

contradiction to |p- 2q| 1.
If wta > wt-1 in LAt then wtat-1 wß-1 wt-2,wt-1). Here use

wt2 .ßam wtat Tw(wt Va-1 wt2.ß Va-1

because Vam V. Therefore wt2.ß bridges to v in LAt with v > w in LAt
Hence wt2. < wß-1 in LAt and as wß-1 < wt-1 we also obtain p > 3q,
contradiction.

This rules out the case C.2.2.3 and hence finishes the analysis of case C.2.2,

wt-1
[s,w]. The next case is:

Case C.2.3. wt [s,w].
This implies that Vt V. The case is similar to case C.2.2.

Case C.2.3.1. wt-1 Va-1, wt-1 Va.
This implies that Va-1t-1 Va-1.

Here wt-1a is in V, wt-1at is in V so waßam-1 wßam-1 is in V. Also

wta-1 Va-1
wß wta-1t-1 Va-1 wßam-1 Vam-2

which must be equal to V.
On the other hand sat sßam. Here sa Va and bridges to w in LAt, so

sat bridges to wt in LAt and sat V. Also

sß sa-1t-1 Va-1 and sßam Vam-1

It follows that Vam-1 Vam-2, contradiction to V Va.
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Case C.2.3.2. wt-1 Va-1, wt-1 Va.
Use sat sßam saßam-1. In this case the point sa brides to w in LAt and

sat V. Also sa-1 bridges to w inLAt and sß sa-1t-1 bridges wt-1 inLAt
so

sß is in R Tw(wt-1 Va, Va-1 sßam Ram V.

So in particular R Ra.
On the other hand sata-1 Va-1 and bridges to w in LAt so saß

sata-1t-1 bridges to wt-1 in LAt and is in R. Then saßam-1 Ram-1

Va-1. This would imply V Va-1, contradiction.
The final case in C.2.3 is:

Case C.2.3.3. wt-1 Va.
Let [sa,r] be the bridge from sa to LAt with r in LAt Then r > w in LAt

Here we have to subdivide.

Situation I. r is in w, wt-1).

Then sat bridges to LAt in rt w, wt and sat V. Hence

sata-1 V sata-1t-1 saß Va saßam-1 Vam V Vam

On the other hand sßam sa-1t-1am. Here sa-1t-1 is in Va so sßam is in
Vam+1, implying Vam Vam+1 again a contradiction.

Situation II. r wt-1.

Here sat bridges to LAt in w hence sat Va and sat V. So sat is in R,
another component of T - {w}. Also

sa-1 V sß sa-1t-1 Va sßam Vam+1 R Vam+1

On the other hand saßam-1 Vam+1, so saß Va2. Now Va2 Va so

Va2t is contained in V. Hence sata-1 saßt is in V. This would imply sat is
in Va, contradiction to the first conclusion in this case.

Situation III. wt-1 < r in LAt
This is a little more tricky. Here sat Va. Also

wß-1 wtat-1 Va W.

Now use wß-1a-1 wt-1a-1t Here

wt-1 w, sa) wt-1a-1 w, s)

wß-1a-1 wt-1a-1t s, wt W.
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So wß-1a-1 and wß-1 are both in W, with the implication as in case C.2.2.3 that

W. W and leaves LAt invariant. As wß-1a-1 and wß-1 wtat-1 are in

LAt then wta is in LAt as well.
The proof is now analogous to previous arguments. If

w wt-1 wta wt-1 wt-2 wtat-1 wß-1

But
wß-1a-1 wß-1 and wß-1a-1 s, wt

implies as before that p > 3q, contradiction. Same arguments show that wt-1

wta implies p 3q.
On the other hand if w wta wt-1, then wt-1 wtat-1 wß-1

wt-2 all in LAt Here sat Va. Nowsßam sa-1t-1am. Also

sa-1 V sa-1t-1 Va sßam Vam+1 Va Vam+1 or V Vam

Now use wt2.ßam wtat Here

wt wtat w in LAt wtat V, wt2.ß Va-m V.

So wt2. wß-1 wt-1 w, implying againp > 3q, contradiction.
This finishes the analysis of case C.2.3, wt [s, w] and so proves that the case

Va V cannot occur. From now on in case C assume:

Case C.3. Wt W and Va V.
Since there is no other fixed point of a in s, w), this immediately implies there

is a local axis LAa of a contained in V with w as an ideal point of LAa. We stress

that at this point we do not yet have an axis for t because there may be other fixed
points of t in s, w).

Lemma 7.1. sa,sa-1 W, so sa, sa-1 are not in [s, w).

Proof. Suppose first that sa is not in W. Then

sa-1
s,w) W sa-1t-1 Wt W.

So sß W and bridges to [s, w] in a point r which is in s, w]. Then sßam bridges
to [s, w] in ram and sßam is in W. Therefore sat is in W and sa is in Wt-1 W,
contradiction.

On the other hand suppose that sa-1 W. Then sa s, w]. Also sß

sa-1t-1 W, so bridges to [s, w] in s. Then sßam bridges to [sam, x] in sam.
Since sam W this implies sßam W, therefore sat W. But then sa is not in
W, contradiction. This finishes the proof.
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We conclude that sa, sa-1 are in W n V. Let sa bridge to r in [s, w], hence

r s, w) and sa-1 bridges to [s, w] in a point t also in s, w).
Let z be the fixed point of t in [s,w] which is closest to w. Then z may be equal

to s, but is not w. Let U Tz(w). One important goal is to prove that Ut U.

Lemma 7.2. Let U Tz(w). Then Ut U. If z s then z., w. W, and za,
za-1 z, w).

Proof. If z s then U W and the result follows from case C.1. For the rest of
the proof of the lemma assume that s z.

We first analyse the possibility that z. W. As fixes s then z. -1 W also.

If z. z, then z. z, contradiction.
Suppose that z. or z. -1 is in [s,z). Then as s. s, it follows that z is in a local

axis for and z. q z, contradiction to z fixed by t Hence z.,z. -1
[s, z].

Let [z., r] be the bridge from z. to [s, z]. Notice that r is in s, z), because

z.,z.-1 are not in [s, w]. Then

r [s,z] n [s, z.] r.-1
[s, z].

If r. r, then rtp r. -q r. But ([s, z])t [s, z], so this would imply rt r.
Together these imply r. r, contradiction to s the fixed point of in [s, w] which
is closest to w.

We conclude that r. r. But as s. s, this implies that r is in a local axis

LA. of Compute r.nq n Z. Assume without loss of generality that r. nq

moves away from s as n.+8. Then

r. nq rt-np [s,w], for all n, and r. nq c s, z] as n.+8.
Hence c. c and also ct c, contradiction.

This contradiction shows that z. W is impossible. Notice that if z. is not in
W, then z. separates W. from s and hence from W. It follows that W. n W Ø,
so w. W. This proves one assertion of Lemma 7.2.

We now consider where za and za-1 are. The proof of case C.2 shows that they
are both in V. Remember that for the rest of the proof s z.

Situation I. Suppose first that za z,w).
Use at t.ßam, applied to z. Here za is in U so zat is in Ut Suppose first

that za-1 is not in Ut Then zat bridges to LAa in a point in [z, w] and hence

a zata-m bridges to LAa in a point in [za-m, w] and a is in U. Here

zata-m z.ß z. a-1t-1 z. a-1 Ut U.

Again z. a-1 bridges toLAa in a point in [z, w] and it follows that z. is inU, hence

z. W contradicting W. n W Ø.
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w.ß w.
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w.ßam

za wt-1a
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Figure 18. a) Situation I, b) Situation III.

The remaining possibility is Ut Tz(za-1), so in particular Ut U, see

Figure 18 a). Consider wt-1a-1t The point wt-1 is not in U, hence it bridges
to LAa in a point not in z,w]. Therefore wta-1 bridges to LAa in a point not in
za-1, w], so wta-1 is in Tz(za-1) Ut Hence

wt-1a-1t wß-1a-1 is in Ut 2 Ut, Tz(s).

Notice that

Tz(s))t Tz(s), since st s, so Tz(s) Ut2

In particular wß-1a-1 is inW and also bridges to LAa in a point which is in [z, w].
Then wß-1 bridges to LAa in a point which is in [za, w] so in particular wß-1 is in
U W. But then wß-1a-1 and wa-1 are both in U, contradicting W. n W Ø.

This finishes the analysis of possibility za z, w).

Situation II. Suppose za-1 z, w).
Consider first the case when za Ut-1, that is Tz(za) Tz(wt-1). This is

very similar to situation I, second part. Since za is not inU, this in particular implies

Ut U. Here wt U, hence it bridges to LAa in a point which is not in z, w].
It follows that wta bridges to LAa in a point which is not in za, w]. This implies
that wta is in Tz(za) Tz(wt-1). Hence

wß-1 wtat-1 is in Tz(wt-2
Tz(s), Tz(wt-1

The first fact means that wß-1 is in W. The second fact means that wß-1 is not in
Tz(za), hence wß-1 bridges to LAa in a point contained in [z, w]. Hence wß-1a-1

bridges to LAa in a point contained in [za-1, w] and is in W. As wß-1a-1.
wß-1, this would imply W. W, again contradiction. Hence this cannot occur.

Now we know za is not in Tz(wt-1). The point zß za-1t-1 is in Tz(wt-1),
hence it bridges to LAa in a point contained in [z, w]. It follows that zßam bridges
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to LAa in a point contained in [zam, w]. But

zam U zßam U z.-1at U or z. -1a Tz(wt-1

and bridges to LAa in a point in [z, w]. It follows that z. -1 bridges to LAa in a

point in [za-1, w], hence z. -1 U W, impossible.
We conclude that situation II cannot occur. This proves the last 2 assertions of

the Lemma 7.2. It also implies that the following situation must occur:

Situation III. za z, w),za-1 z, w), see Figure 18 b).
What is left to prove of Lemma 7.2 is that Ut U. So suppose that Ut U.
Here za-1 bridges to [z, w] in a point r which is in z,w). Also za bridges to t

in [z,w] with t also in z, w).
The point w. is not in W, so it is in Tz(s) and bridges to [wt-1,z] in z. Hence

w.ß bridges to [wt-1, zß] in zß. But zß za-1t-1 bridges to [z,wt-1
] in rt-1.

Then w.ß bridges to [z, w] in z this uses Ut U!). Then

w.ßam bridges to [z,w] in a point in z,w) so w.ßam U.

On the other hand wt-1 bridges to [z, w] in z so wt-1a bridges to [z,w] in a

point in z, w) and wt-1a is in U. Then wt-1at is in Ut Of course this implies

Ut U, contrary to assumption.
So in any case we conclude that Ut U. This finishes the proof of Lemma 7.2.

This lemma is very useful. Since there is no fixed point of t in z, w) and

Tz(w)t Tz(w) it follows that there is a local axisLAt of t contained inU Tz(w)
with an ideal point z.

Lemma 7.3. w is not in LAt

Proof. Suppose not, that is, w LAt Notice that LAt is a local axis for t and w
is a fixed point of a.

Claim. At least one of the components of T - {w} containing wt, wt-1 is not
invariant under a.

We first prove the claim. Suppose the claim is not true. IfLAt is also a local axis
for that is LAt LAt then we can apply Lemma 5.1 and prove the claim.
Suppose then that does not leave LAt invariant or equivalently LAt is not
equal to LAt. If LAt were an axis for t as opposed to a local axis), then t would
act freely and so would and would leave LAt invariant, contrary to assumption.

It follows that LAt is not properly embedded and has limit points in T In the same

way does not act freely and it has a fixed point r. Then r bridges to LAt in a
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point v. Here rt r bridges to vt in LAt hence vt v and v is a limit point of

LAt
Let s be the point of [p, v] which is closest to v and fixed by It might be that

s v. Let C Ts(w), which contains LAt First we show that C. is not equal
to C. Suppose by way of contradiction that C. C. First consider the case that
s v. Then C Tv(w) and

C. C, Ct C implies C. C,

and consequently has a local axis in Tv(w). As seen before this axis must be equal
to LAt which was dealt with before. Suppose then that s, v are distinct. Let t in

[s,v] be the closest point to v which is fixed by Then

ttp t. -q t and ([s, v])t [s,v] imply tt t.

Therefore t. t and by the defining property of s then t s. It follows that fixes
no point in s, v]. Then if C. C it follows that has a local axis LA. in C with
ideal point s. But again ([s, v])

q [s, v] and s,v] intersecting LA. implies the
existence of a fixed point of in s, v], contradiction.

We conclude that C. is distinct from C and consequently it is disjoint from C as

we wished to prove. We continue the proof of the claim. Let

U1 Tw(wt U2 Tw(wt-1

The assumption of the claim is that Uia Ui for i 1,2. There are two options:

Option 1: v is a forward limit point. Suppose v as above is the limit of wtn with

n.+8.In this case v is in U1. Notice that U2 C and U1 is not contained in C, but
since C. n C is empty it follows that C. is contained in U1. Here we use

wt-1 -1t-1at wt-2 -1at wt-1ßam

Nowß leaveswt-1 invariantandwt-1 is inU2. Hencewt-1ßam is inU2am U2.
On the other hand wt-2 is in C so wt-2. -1 is in C. U1. Therefore

wt-2.-1a is in U1 and wt-2. -1at is in U1t U1.

This is a contradiction and cannot happen.

Option 2: v is a backward limit point. Suppose that v as above is the limit of wtn
withn.-8.In this case v is in U2. Notice that U1 C and U2 is not contained in C but C.
is contained in U2. We use wat wt.ßam. First wat is wt which is in U1. We
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now consider the right side. Here wt is in U1 C so wt. is in C. U2t-1. The
set U2t-1 is invariant under ß. Therefore

wt.ß is in U2t-1 U2 and wt.ßam is in U2am U2.

This contradicts that wat is in U1.
These two options show at least one of U1a U1 or U2a U2 has to hold.
This proves the claim. We now continue the proof of Lemma 7.3.

Situation I. wt-1 z, w).
Here V Tw(z) Tw(wt-1) is invariant under a. By the claim above the set

R Tw(wt is not invariant under a. Notice that Ra is not equal to V either.
Use wat wt wtaßam-1. Here

wt R wta Ra V wtat Rt R
c wtata-1 Ra-1 R.

So c bridges to w in LAt and then wtata-1t-1 wtaß bridges to wt-1 in LAt
and is then in V. Finally wtaßam-1 is in Vam-1 V. This is notR, contradiction.

Situation II. wt z,w).
Here V Tw(wt Tw(z) is invariant under a. In this case letR Tw(wt-1),

which is not invariant under a. Use wt-1at waßam-1. Then wt-1 is in R, so

wt-1a is not in R or V and bridges to w in LAt Then wt-1at bridges to wt in

LAt and is in V. It follows that

wt-1ata1-m waß wß wta-1t-1 is in V.

Hence wta-1 is in Vt This implies

wta-1 wt w wt wta w w wtat-1 wß-1 wt-1

In particular wß-1 is in R and wß-1a-1 is in Ra-1 which is not equal to V. Also
wß-1a-1 wt-1a-1t Here wt-1a-1 is in Ra-1 and bridges to w in LAt and
so wt-1a-1t bridges to wt in LAt and so is in V. As V is not equal to Ra-1, this
is a contradiction.

We conclude that situation II cannot happen either. This finishes the proof of the
lemma.

Now we know that w is not in LAt

Lemma 7.4. z is not in LAa.
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Proof. Suppose not, that is, z LAa. This implies that either za or za-1 is in
z, w). Then Lemma 7.2 implies that s z.

Suppose first that za z,w]. So za-1 Tz(w) U. Use zat zßam As

za U, then zat is in U also. Then

za-1 U za-1t-1 U zß bridges to [z, w] in z

and zßam bridges to [zam,w] [z, w] in zam. It follows that zßam is not in U,
contradiction.

Suppose now that za-1 is in [z,w]. Then za-1t-1 zß is in U and bridges
to [z, w] in a point t which is not z. Then zßam bridges to [z, w] in tam and zßam
is in U. On the other hand za is not in U and so zat is not in U either. This is a

contradiction.
This finishes the proof of the lemma.

Summary in case C.3. So far we have proved: suppose that wa w, s. s, no

fixed points of or a in s,w). Let z [s, w), the closest to w with zt z. Then

Tz(w))t Tz(w), Tw(z))a Tw(z).

IfLAt LAa are the corresponding local axes of t and a then z LAa, w LAt
Case C.3.0. Suppose that LAa n LAt has at most one point.

This is simple. Let [c, d] be the bridge from LAt to LAa, where c d if the
intersection is one point. First notice that c is a point in LAt and not a limit point.
The reason is: if c is equal to z then z is a limit point of LAa, hence it is fixed by

a contradiction to no global fixed point. Suppose that c were another limit point of

LAt. As LAt n LAa is at most one point, this would imply that c separates w
from z and contradicts the fact that z is the closest fixed point of t to w. This shows
that c is an actual point of LAt and similarly d is actual point of LAa.

We do the proof for c d, the other is very similar. Use zt-1at zaßam-1.

The right side is zat Here za bridges to LAa in da, hence bridges to LAt in c.
So zat bridges to LAt in ct

Hence zat bridges to LAa in d so zata-1 bridges to LAa in da-1 and to LAt
in c. So zata-1t-1 zaß bridges to LAt in ct-1 hence to LAa in d. Finally
zaßam-1 bridges to LAa in dam-1 hence to LAt in c. Since c ct this is a

contradiction.

Case C.3.1. Now assume LAa n LAt has more than one point. We will use the
analysis done in case B.

If U. is not equal U then we use the proof of case B.1.3 – which was also done

for the case of local axis of a. This disallows this case.
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The remaining case is that U. is equal to U. As explained in case B.1.4 this
implies leavesLAt invariant. Hereweconsider the intersectionB LAanLAt
First notice that z is not in B as z is not in LAa. Also it was shown in case C.3.0
that z is not a limit point of B. If LAt is not properly embedded on the other side
let v be the other ideal point of LAt Then

vt v, Tw(v))a Tw(v), Tv(w))t Tv(w).

Also w, v) has no fixed points of t Suppose that v is in LAa. Then w, v) also has

no fixed points of a. But then v has the same properties as z and this case is ruled out
by Lemma 7.4. It follows that v is not in LAa. So if LAt has another ideal point v,
then B is [r, t] with t an actual point in LAt

Now we can apply the analysis of case B.1.4 which was also done for a with a

local axis. The analysis rules out this situation.
This shows that case C.3.1 cannot happen either.
This finishes the proof of the main theorem.

8. Remarks

Recent activities. There has been a flurry of activity in this arearecently. We describe
the results in more detail here and how they relate to the results in this article.

Calegari and Dunfield [Ca-Du] approached the existence problem for foliations,
laminations and pseudo-Anosov flows from a different point of view. Following ideas

and results of Thurston [Th5], [Th6] concerning the universal circle for foliations
they showed that a wide class of essential laminations also possess a universal circle.
One consequence is that tight essential laminations with torus guts see [Ca-Du]
for detailed definitions) have universal circles. Tight means the lifted lamination
to the universal cover has Hausdorff leaf space. Hence the fundamental groups
act on the circle. Under certain conditions related to orderability of a finite index
subgroup, then the action lifts to a non trivial action in R and they obtain nonexistence
results for these types of laminations. For example they can show that the Weeks
manifold does not have Reebless foliations, pseudo-Anosov flows or general tight
essential laminations. The results on manifolds eg theWeeksmanifold) arecomputer
assisted and so far there are computer capability restrictions to extending them to
other manifolds. In addition these results use heavily the tight hypothesis, except for
pseudo-Anosov flows.

A more recent article is that of Jinha Jun [Ju] who used the techniques of Roberts,
Shareshian and Stein to analyse Dehn surgery on the (-2, 3, 7) pretzel knot in S3. He
proved that there are infinitely many hyperbolic Dehn surgeries on this knot, which
yield manifolds without Reebless foliations.
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Another more recent result October 2003) is from Kronheimer, Mrowka, Ozvath
and Szabo [KMOS]. This result is part of a very wide program to use techniques of
analysis, symplectic and contact geometry to analyse 3 and 4-manifolds. Results of
Eliashberg and Thurston [El-Th] allow one to perturb a Reebless foliation to a tight
contact structure. Using this the above authors show that infinitely many hyperbolic
manifolds do not have Reebless foliations [KMOS]. In particular there are infinitely
many Dehn surgeries on the (-2, 3, 7) pretzel knot which satisfy this. The techniques
are extremely complicated and it is yet unclear whether they can be extended to study
essential laminations.

The tools and arguments in this article are more closely associated to those in
[RSS], in that both look at group actions on simply connected 1-dimensional spaces.

However, as we explained before there are 2 critical differences: the lack of transverse

orientability for general essential laminations and the lack of a useful group invariant
pseudo-metric in the leaf space, both of which were extremely useful in [RSS].

Open questions. There are a lot of interesting questions still open. First we discuss
some internal questions about the proofs in this article. The proof of the R-covered
case usesp > 3q for a orientation reversing. It would be useful to get a more general
proof – for instance showing that p must be equal to 4 or that p has to be even.
We obtained some preliminary results, but not conclusive. The same argument and
condition p > 3q are then used in various places of the article so it would be very
good to discover a more general proof.

Also the best possible result for the manifolds Mp/q described in this article
would be the following: If p q, p odd, m -4 then the only possible essential
laminations are those coming from either stable or unstable lamination in the original
manifold M – these remain essential whenever |p- 2q| 2. One way to interpret
such a goal is a rigidity result– all laminations in this manifold have to be of this type.
Notice that Brittenham’s results for Seifert fibered spaces [Br1] are of this form. Also
Hatcher and Thurston’s results for surgery on 2-bridge links [Ha-Th] are along these

lines.

Now on for more general goals: How far can the methods of this article be
generalized? Can they be used wheneverM is a punctured torus bundle over S1 with
Anosov monodromy and degeneracy locus 1,2)? Probably a mixture of topological
methods and group action methods needs to be used. How about surface bundles,
where the surfacehas higher genus? What aboutother degeneracy locusas discovered
by Gabai–Kazez [Ga-Ka1]?

Since essential laminations do not exist in every closed hyperbolic 3-manifold,
one looks for useful generalizations. One possible idea was introduced by Gabai in
[Ga5]: a lamination inM, compact, orientable, irreducible is loosesse if satisfies:

0) has no sphere leaves, and
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1)forany leafLof thehomomorphismp1(L) p1(M) induced by inclusion is
injective, and for any closed complementary region V the homomorphism p1(V
p1(M) induced by inclusion is injective.

Gabai [Ga5] conjectured that under these conditions with M closed, then is
a product lamination and M is homeomorphic to R3. One test case is the class of
manifolds Mp/q studied in this article. When |p - 2q| 1 the lamination coming
from the stable lamination has monogons. The leaves are either planes or have Z
fundamental group. The complementary region is a solid torus. Then in order to
check for the loosesse conditions one only needs to understand if leaves inject in the
fundamental group level.

Another direction involves general group actions on trees. When does agroup acts
non trivially on a tree? Perhaps there are theoretical characterizations of when such

an action exists. Here we are in some sense dealing with one dimensional dynamics,
because a tree is a one dimensional object.
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