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Mom technology and volumes of hyperbolic 3-manifolds

David Gabai1, Robert Meyerhoff 2, and Peter Milley3

Abstract. This paper introduces Mom technology to understand low volume hyperbolic 3-
manifolds; it is used in [GMM3] and [M1] to show that theWeeks manifold is the unique closed
orientable hyperbolic 3-manifold of least volume. Here we enumerate the hyperbolic Mom-n
manifolds for n 3, offer a conjectural enumeration when n D 4, and establish important
technical results about embedding hyperbolic Mom-n manifolds into hyperbolic 3-manifolds.
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0. Introduction

This paper introduces a new technique, Mom technology, to understand the structure
of low-volume complete orientable hyperbolic 3-manifolds. Among other things,
we enumerate the 21 Mom-n, n 3 hyperbolic 3-manifolds and describe the 138
conjectural Mom-4 manifolds.

This work is used in [GMM3] to give a positive solution to the long-standing
conjecture that the Weeks manifold is the unique lowest volume closed orientable
hyperbolic 3-manifold. It is used in [LM] to solve affirmatively two conjectures of
Cameron Gordon. The first states that, given a complete finite-volume hyperbolic
3-manifold with boundary a torus, the maximal number of exceptional slopes these

correspond to non-hyperbolic Dehn surgeries) is 10. The second states that, further,
the maximal intersection number of exceptional slopes is 8.

William Thurston has long promoted the idea that volume is a good measure of the
complexity of a hyperbolic 3-manifold see, for example, [Th1] page 6.48). Among
known low-volume manifolds, JeffWeeks ([We]) and independently Sergei Matveev
and Anatoly Fomenko ([MF]) have observed that there is a close connection between
the volume of closed hyperbolic 3-manifolds and combinatorial complexity. One

1Partially supported by NSF grants DMS-0346270, DMS-0504110 and DMS-1006553.
2Partially supported by NSF grant 0553787.
3Partially supported by NSF grant DMS-0554624 and ARC Discovery grant DP0663399.
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goal of this paper is to begin to explain, in an organized fashion, this phenomenon as

summarized by the following:

Hyperbolic Complexity Conjecture 0.1 Thurston, Weeks, Matveev–Fomenko).
The complete low-volume hyperbolic 3-manifolds can be obtained by filling cusped

hyperbolic 3-manifolds of small topological complexity.

Remark 0.2. Part of the challenge of this conjecture is to clarify the undefined
adjectives low and small. We propose that the manifolds obtained by Dehn filling a

Mom-n, n 3 or n 4) include all the reasonably low volume complete hyperbolic

3-manifolds. Indeed, in [GMM3] we show that the 10 lowest volume 1-cusped
hyperbolic 3-manifolds or equivalently the manifolds of volume 2:848) are
obtained by filling a Mom-n manifold with n 3. Furthermore, based on computer
calculation all the cusped orientable manifolds in the SnapPea census of volume

3:177, 4:059, and 5:468 are obtained by respectively filling Mom-2, Mom-3,
and Mom-4 manifolds. This includes 2948 manifolds.)

In the late 1970s,TroelsJorgensen proved that for any positiveconstantC there is a

finitecollection of cusped hyperbolic 3-manifoldsfromwhich all completehyperbolic
3-manifolds of volume less than or equal to C can be obtained by Dehn filling. If it
could be proved that all cusped manifolds of volume 5:0 can be obtained by filling
a Mom-n manifold with n 4, and if a corresponding result with a somewhat lower
volume bound) could be proved for closed manifolds, then we would have a concrete
and satisfying realization of Jorgensen’s Theorem for “low” values of C.

A special case of the Hyperbolic Complexity Conjecture is the following:

Theorem 0.3 ([GMM3]). TheWeeks manifoldMW obtained by .5; 1/, .5;2/ surgery
on the two components of the Whitehead link, is the unique orientable hyperbolic 3-
manifold of minimum volume.

Note that the volume of MW is 0:942 : : : : The proof required understanding all
the very low volume manifolds obtained by filling a Mom-n manifold for n 3, an
analysis carried out in [M1].

All manifolds in this paper will be orientable and all hyperbolic structures are
complete. We call a compact manifold hyperbolic if its interior supports a complete
hyperbolic structure of finite volume. Unless said otherwise, all compact hyperbolic
3-manifolds in this paper are compactified cusped hyperbolic 3-manifolds.

Definition 0.4. A Mom-n structure M; T; / consists of a compact 3-manifold M
whose boundary is a union of tori, a preferred boundary component T and a handle
decomposition of the following type. Starting from T I n 1-handles and n
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2-handles are attached to T 1 such that each 2-handle goes over exactly three 1-
handles, counted with multiplicity. Furthermore, each 1-handle encounters at least

two 2-handles, counted with multiplicity. We say that M is a Mom-n if it possesses

a Mom-n structure M; T; /

Remark 0.5. On a Mom-n, the handle decomposition deformation retracts to
an almost simple 2-complex which has 2n true vertices, in the sense of Matveev

[Mv2]. Therefore Mom-n manifolds are a subset of those with Matveev complexity
at most 2n.

Here is the fundamental idea at the foundation of our project. Given a complete
finite-volume hyperbolic 3-manifold N, start with either a slightly shrunken maximal
horotorus neighborhood V of a cusp or slightly shrunken maximal tube V about a

geodesic. After expanding V in the normal direction, it eventually encounters itself,
thereby creating a 1-handle. Subsequent expansions give rise to the creation of 1,
2, and 3-handles. In the presence of low volume we expect that V will rapidly
encounter 1 and 2-handles and @V together with a subset of these handles perhaps
somewhat perturbed to allow for the “valence-3 2-handle condition”) will create a

Mom-n manifold M, for some n 4. Furthermore, the complement of M will
consist of cusp neighborhoods and tubular neighborhoods of geodesics. In practice,
the handle structure may arise in a somewhat different manner; e.g., as a sub-complex
of the dual triangulation of the Ford domain see [GMM3]).

The papers [GM] and [GMM] can be viewed as steps in this direction when V is
a tubular neighborhood about a geodesic Indeed, [GM] gives a lower bound on

Vol.N/ in terms of the tube radius of and [GMM] gives a lower bound in terms of
the first two ortholengths, or equivalently the radii of the expanding V as it encounters
its first and second 1-handles.

Definition 0.6. If i W M N is an embedding, then we say that the embedding is
elementary if i 1.M/ is Abelian, and non-elementary otherwise. When the context
is clear, we will refer to embedded submanifolds of N as either elementary or
nonelementary. In this paper, N will be a compactified cusped hyperbolic 3-manifold of
finite volume and M is a compact 3-manifold embedded in the interior of N.

The strength of our method derives from three things. First, our definition of
Mom-n manifolds appears to be the correct definition for attacking questions about
low-volume hyperbolic 3-manifolds we give the basic definitions in this introduction

and in §1, and set down some basic facts about handle structures in §2). Second,

from the Mom-n definition we are able to construct a bridge between topology and

geometry. This is achieved in §3 and §4, where we prove that if n 4, then given
a non-elementarily embedded Mom-n manifold M1 in a cusped hyperbolic manifold

N we can find a non-elementarily embedded compactified cusped hyperbolic
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Mom-k manifold M2 in N, where k n, with weaker results for general values

of n. Third, we provide a powerful tool for exploiting this topological-geometric
bridge by classifying all hyperbolic Mom-2 and Mom-3 manifolds, and conjecturally
classifying Mom-4 manifolds. This classification is carried out in §5 where we prove
Theorem 5.1 and state Conjecture 5.3, which we summarize here as follows:

Theorem. There are 3 hyperbolic Mom-2 manifolds and 21 hyperbolic Mom-3 manifolds

including the 3 hyperbolic Mom-2’s, which are also Mom-3’s).

Conjecture. There are 138 hyperbolic Mom-4 manifolds including the hyperbolic
Mom-2’s and Mom-3’s, which are also Mom-4’s).

In §6 we clean up a loose end by proving that any non-elementary embedding of a

hyperbolic Mom-n manifoldM, n 4, into a compact hyperbolic manifold N gives
rise to an internal Mom-n structure on N, i.e., every component of @M either splits

off a cusp of BN or bounds a solid torus in N. In either case it is to the outside of M.

Definition 0.7. The Mom number of the compact hyperbolic 3-manifold N is the
smallest n such that its interior is obtained from a Mom-n manifold by capping off
the toral boundary components with solid tori and cusps.

We believe that a reasonable solution to Conjecture 0.1 will be given by a solution
to the following

Conjecture 0.8. Low volume compact hyperbolic 3-manifolds have low Mom number.

In §7 we give examples of internal Mom-2 structures on cusped hyperbolic 3-
manifolds, including in particular a detailed exposition of one of our key motivating
examples.

The authors wish to thank Morwen Thistlethwaite for his assistance in identifying
the hyperbolic manifolds in §5.

1. Basic definitions and lemmas

Notation 1.1. If X is a space, then let jXj denote the number of components of X,
BX denote the interior of X and N.X/ denote a regular neighborhood of X in some
ambient space in which it is embedded. Similarly, Xx denotes the closure of X.

Definition 1.2. Let M be a compact connected 3-manifold M with B @M a

compact surface which may be either disconnected or empty. A handle structure
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on M;B/ is the structure obtained by starting with B I adding a finite union of
0-handles, then attaching finitely many 1 and 2-handles to B f1g and the 0-handles.
We call B I resp. B I [ 0-handles) the base resp. extended base) and say that
the handle structure is based on B.

Most of the time B will be a component of @M. We strongly recommend that the
reader think only about this case until absolutely necessary. Sometimes, B will be
an 1-injective annulus in @M. In that case, M will be a manifold with corners, the
corners being @B f0; 1g; see the manifold M1 in Example 7.1 for a typical case of
this. In the most general case in this paper), B will have several components, each

being either an annulus or torus as above.

In this paper all k-handles will attach to lower dimensional handles in a standard

way. E.g. if a 1-handle is parametrized by D2 I then D2 @I is the attaching
zone and a 2-handle will attach to the 1-handle in regions of the form I where

is an embedded arc in @D2. For a precise statement see Definition 2.1.
The valence of a 1-handle is the number of times, counted with multiplicity, the

various 2-handles run over it and the valence of a 2-handle is the number of 1-handles,
counted with multiplicity, it runs over.

Following the terminology of Schubert [Sch] and Matveev [Mv1] we call the
0-handles, 1-handles and 2-handles balls, beams and plates respectively. We call
islands resp. bridges) the intersection of the extended base with beams resp. plates)
and the components of the closure of the complement of the islands and bridges in
B f1g [@.0-handles/ are the lakes. We say that is full if each lake is a disc. If
B D ;, then we say that is a classical handle structure.

LetM be a compact 3-manifold with @M a union of tori and let T be a component
of @M. We say that M; T; / is a weak Mom-n if is a handle structure based on T
without 0-handles or 3-handles, such that each 1-handle is of valence 2 and each

2-handle is of valence 2 or 3. Furthermore, there are exactly n 2-handles of valence 3.
A weak Mom-n with no valence-2 2-handles is a Mom-n. A weak Mom-n is strictly
weak if there exists a valence-2 2-handle.

Remark 1.3. For Euler characteristic reasons, if M; T; / is a weak Mom-n, then
has the same number of 1 and 2-handles.

The following is a well-known existence result stated in our language.

Proposition 1.4. A compact 3-manifold M has a weak Mom-structure if and only if
@M is a union of at least two tori.

Proof. IfM has a weak Mom-n structure, then by definition all of its boundary
components are tori and there is at least one such boundary component. Further, because
there are no 3-handles in there must be another torus) boundary component.
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The converse is not much more difficult. In fact, if M has at least two boundary
components, then it is standard to create it by first starting with a thickened boundary
component and then adding 1 and 2-handles where the 1 and 2-handles are of valence

2. By subdividing the 2-handles with 1-handles we satisfy the condition that the
2-handles have valence 3.

Definition 1.5. Call a torus that bounds a solid torus a tube and call a torus bounding
a tube with knotted hole a convolutube. Recall that a tube with knotted hole is a

B3
B

N. / where is a knotted proper arc.

The following standard result follows from the loop theorem see e.g. [Jac]).

Lemma 1.6. If S is a torus in an irreducible 3-manifold N, then either S is

incompressible or S is a tube or a convolutube. If S BN
@N is incompressible and S

is compressible, and there exists an embedded essential annulus connecting S to a
component of @N then S is a tube.

Proposition 1.7. IfM is a non-elementary compact, connected3-manifold embedded

in the compacthyperbolic3-manifoldN and @M is a union of tori, then, up to isotopy,

N is obtained from M by first filling a subset of the components of @M by solid tori
to obtain the manifold M1, then compressing a subset of the components of @M1 to
obtain the manifold M2, then attaching 3-balls to the 2-sphere components of @M2
to obtain M3. Furthermore all of these operations can be performed within N.

Proof. The components of @M that bound solid tori in N are exactly those boundary
components which compress to the non-M side. Fill in all such tori to obtain the
manifold M1. If P is a component of @M1 which is not boundary parallel in N,
then P is compressible in N and hence is a convolutube. These convolutubes can
be isotoped to lie in pairwise disjoint 3-balls in N. Therefore we can compress all
the compressible components of @M1 to obtainM2) and cap the resulting 2-spheres

with 3-cells to obtain M3 which is isotopic to N.
Since M3 must have all boundary components boundary parallel in N and M3 is

non-elementary, the result follows.

Corollary 1.8. LetM BN be a connected compact non-elementary submanifold in
the compact hyperbolic 3-manifold N. If @M is a union of tori, then each component
of @N is parallel to a component of @M via a parallelism disjoint from M.

The following result is due to Kerckhoff see [Koj]).

Lemma 1.9. If is a simple closed geodesic in the complete, finite-volume hyperbolic
3-manifold N, then N has a complete finite-volume hyperbolic structure.
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Lemma 1.10. Let M be a compact connected non-elementary submanifold of the
compact hyperbolic 3-manifold N such that @M is a union of tori.

i) If M1 D M V where V is a solid torus or 3-ball with @V M, or M1 is
obtained by deleting an open regular neighborhood of a properly embedded arc from

M, then M1 is non-elementary.

ii) If M0 is obtained by compressing @M, then a unique component M1 of M0 is
non-elementary.

iii) If A M is a properly embedded annulus in M, then a unique component

M1 of the manifold M0 obtained by splitting M along A is non-elementary.

iv) If F BM is an embedded torus, then a unique componentM1 of the manifold
M0 obtained by splitting M along F is non-elementary.

Proof. i) Both M1 and M have the same 1-image.

ii) Let S denote the 2-sphere component of @M0 and B the 3-ball bounded by S.

If M0 is connected, then B \
B

M 0 D ;, or else 1.M/ is cyclic. It follows that M
and M0 have the same 1-image. If M0 is disconnected, then some component M2
lies in B hence has trivial 1-image in N and hence the other componentM1 has the
same 1-image as M.

iii) The boundary of each component of M split along A is also a union of tori.
We consider the case where the split manifoldM0 is connected, for the general case is
similar. Since all tori in N separate, M is obtained fromM0 by attaching a thickened
annulus A to a boundary parallel torus, a tube or a convolutube T

If T is boundary parallel and A attaches to the cusp side of T then M0 and M
have the same 1-image. If A attaches to the non-cusp side, then it must attach
along essential curves in T else some component of @M is a 2-sphere. Since N is
hyperbolic, A is boundary parallel. It follows that M is elementary, a contradiction.

If T isa tube, let V denote the solid torusboundedby T IfA V thenM andM0
have the same 1-image. If A attaches to the outside of V then let X D V [N.A/.
NotethatX andM have the same 1-image. If some componentof @Awas inessential
in @V then either @M contains a 2-sphere or the 1-image of X is cyclic. If some

component of @A bounded a disc in V then again X has cyclic 1-image, since N is
irreducible. In the remaining case, X is a Seifert fibered space with incompressible
boundary. It is well known that there is no non-elementary embedding of such a space

into a hyperbolic 3-manifold, e.g. see [JS], [Jo] for related material.
If T is a convolutube, and A attaches to the inside, thenM0 has the same 1 image

as M. If A attaches to the outside, then M has cyclic 1-image.
iv) Again F is either boundary parallel or a tube or a convolutube. In each case

one componentM1 ofM split along F has the same 1-image asM while the other
component has Abelian 1-image.
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Lemma 1.11. If M is compact, irreducible, and non-elementary, and if @M is a
union of tori, then @M is incompressible.

Proof. IfM0 is obtained by compressing @M, then @M0 has a 2-sphere component S
that bounds a 3-ball B in M and hence in M0. It follows that either the compression
is inessential or M is a solid torus. The latter implies that M is elementary.

Definition 1.12. Let N be a compact hyperbolic 3-manifold. An internal Mom-n
structureonN consists ofa non-elementaryembedding f W M N where M; T; /
is a Mom-n and each component of @M is either boundary parallel in N or bounds a

solid torus in N. We will sometimes suppress mention of the embedding and simply
say that M; T; / is an internal Mom-n structure on N. In the natural way we define
the notion of weak internal Mom-n structure on N.

Lemma 1.13. A non-elementary embedding of the Mom-n manifold M into the
compact hyperbolic 3-manifold N will fail to give an internal Mom-n structure on

N if and only if some component of @M maps to a convolutube. In that case, a
reimbedding ofM, supported in a neighborhood of the convolutubes gives rise to an
internal Mom-n structure on N.

Proof. As in the proof of Lemma 1.7, there exists a finite set of pairwise disjoint
embedded 3-balls such that each convolutube is contained in exactly one such ball.
Reimbed M in N by unknotting each convolutube. The boundary components of
the resulting reimbedded M will be either tubes or essential annuli. Further the
reimbedded M will have the same 1-image as M.

Given a Mom-n structure M; T; / in a hyperbolic manifold N, we very much
want to be full. A common problem with non-full structures in what follows is
that if contains a lake which is a 1-injective annulus in T f1g, then M clearly
contains an essential annulus and hence is nothyperbolic. We will frequently try to fix
this problem by splittingM open along the essential annulus to obtaina newmanifold
M1, with one fewer torus boundary components. However the handle structure 1

that M1 inherits from M is no longer based on a torus, but rather is based on the
annulus that remains when T is split. This necessitates the following definition:

Definition1.14. Ageneral basedMom-n.M; B; /consistsof acompact3-manifold
M with @M a union of tori, B @M a compact codimension-0 submanifold of @M
that is 1-injective in @M, and a handle structure for M based on B without 0-
handles such that every 1-handle is of valence 2, every 2-handle is of valence 3 and
there are exactly n of each of them. A weak general based Mom-n is as above with

having k 0 extra valence-2 2-handles. Note that such a has k C n 1-handles.



Vol. 86 2011) Mom technology and volumes of hyperbolic 3-manifolds 153

A general based internal Mom-n structure on N consists of a non-elementary
embeddingf W M N, whereN is acompacthyperbolic3-manifold,nocomponent
of @M is a convolutube and M; B; / is a general based Mom-n structure. Along
similar lines we have the notion of weak general based internal Mom-n structure
on N.

Remark 1.15. See the second part of Example 7.1 for a simple non-trivial example

of a general based Mom-2 structure arising from a non-full Mom-2 structure on the
figure-8 knot complement. Whenever we obtain a general based Mom-n structure,
our wish is to transform it into a “proper” Mom-k structure M; T; / with k n,
but it is questionable whether or not we can always do this for n > 4; see also
Problem 2.13.

Notation 1.16. If is a 2-handle resp. is a 1-handle), then let i. / resp. i. /
denote the lateral boundary, i.e., the closure of that part of @ resp. @ which does

not lie in lower index handles. If b is a bridge which lies in the 2-handle then
define i.b/ D b \ i

2. Handle structures and normal surfaces

We slightly modify Haken’s [Ha] theory of surfaces in handlebodies to our setting.
We closely parallel the excellent exposition given by Matveev in [Mv1].

Definition 2.1. Let be a handle structure on M based on B @M. A compact
surface F M is called normal if the following holds:

1) F intersects each plate D2 I in parallel copies of the form D2 fptg
D2 .0; 1/.

2) Each component of the intersection of F with a beam D2 I is of the form

I up to isotopy, where is a proper arc whose endpoints are disjoint from
i(bridges). Furthermore, each component of D2 f0g intersects i(bridges)
in at least two points. See the Remarks 2.2.)

3) Each component U of F \ B OE0; 1 [ 0-handles/ is 1-injective in B
OE0; 1 [ 0-handles. If U \ B f0g ¤ ;, then U is a product disc or product
annulus, i.e., the inclusion U;U \.B f0g/; U \.B f1g/;U \.@B I//
B I; B f0g; B f1g;@B I/ can be relatively isotoped toaverticalembedding

of I into B I where f0g is either an essential simple closed curve or
an essential proper arc in B f0g.

Remarks 2.2. i) For F closed, the second condition can be restated by requiring that
intersect distinct components of D2 f0g\ bridges/. When @F ¤ ;, the second
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condition implies that F is locally efficient in that it neither can be locally boundary
compressed nor can its weight be reduced via an isotopy supported in the union of a

2-handle and its neighboring 1-handles.
ii) Note that @F lies in the union of the beams, lakes and B f0g.

Lemma 2.3 Haken). If F is a compact, incompressible, boundary-incompressible,
properly embedded surface in a compact irreducible 3-manifold, then F is isotopic
to a normal surface.

Definition 2.4. Let be a handle structure on M based on B @M. The valence

v.b/ of a beam resp. plate) is the number of plates resp. beams) that attach to it,
counted with multiplicity. Define the complexity C. / to be 1. /; j 1

j; j
2
j/

lexicographically ordered, where 1. / D †beamsb max.v.b/ 2; 0/ and j i j is the
number of i-handles for i D 1, 2. In particular we have the

1-formula:

1. / D X
2-handles

v. / 2j
1
jCjfvalence-11-handlesgjC2jfvalence-01-handlesgj:

11

Lemma 2.5 Matveev). Let be a handle structure on M based on B, F M
a closed normal surface and let M0 be M split along F If each component of
M0\ B OE0; 1 disjoint from B f0g is a 3-ball, thenM0 has a handle structure 0

based on B with 1. 0/ D 1. /
Proof. This follows almost exactly as in §3 and §4 of [Mv1]: M0 naturally inherits
a handle structure 1 from as follows. The surface F splits B I into various
submanifolds one of which is homeomorphic to B OE0; 1 with B f0g D B. All
of the other submanifolds which lie in M0 are 3-balls. This new B OE0;1 becomes
the base and the 3-balls become 0-handles. The various 1 and 2-handles are split by
F into 1 and 2-handles and as in [Mv1], 1. 1/ D 1. /

Lemma 2.6. Given the handle structure on M; B/, if some 1-handle is valence-1,
then there exists another structure 1 on M; B/ with C. 1/ < C. /
Proof. Cancel the valence-1 1-handle with the2-handle that it hits to obtain 1. Note
that 1. 1/ D 1. / and j j D j

1
j 1.

Lemma 2.7. If M; T; / is a Mom-n structure then C. / D n; n/.

Lemma 2.8. Let be a handle structure on M; B/, F M a connected separating

normal surface disjoint from B and let M1 be the component of
B

M N.F/ which
does not contain B. If each component of F \ B OE0; 1 is a disc, then M1 has a
classical handle structure 1 with 1. 1/ 1. /
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Proof. This follows as in the proof of Lemma 2.5 after noting that each component
of M1 \ B OE0; 1 / is a 3-ball and these 3-balls correspond to the 0-handles of the
induced handle structure on M1.

Lemma 2.9. If @M is a union of tori, and is a handle structure on M; T / with T
a component of @M, then there exists a weak Mom-n M; T; 1/ with n 1. 1/.

Proof. First apply Lemma 2.6, then add 1-handles to subdivide the valence-k, k 4,
2-handles into valence-3 2-handles.

Definition2.10. In our setting the well known operation of turning a handle structure
upside down transforms a handle structure on M; T / to a handle structure 1 on

M; .@M n T // where i-handles of become 3 i-handles of 1.

Lemma 2.11. If 1 is obtained by turning 0 upside down and the valence of each

1 and 2-handle of 0 is at least 2, then 1. 0/ D 1. 1/.

Definition 2.12. If B ¤ ; is a compact 1-injective submanifold of @M, then define
rank 1 M; B/ to be the least n such that there exists a handle decomposition on

M; B/ with 1. / D n.

Problem 2.13. Is there an example of a compact hyperbolic 3-manifold N with
T a component of @N and A an essential annulus in T such that rank

1 N;A/ <
rank

1 N; T /?

3. Estimates for the reduction of 1 under splitting

The main result of these next two sections is Theorem 4.1 which shows that if a

compacthyperbolic 3-manifoldN i.e.,acompactifiedcuspedhyperbolic 3-manifold)
has an internal Mom-n structure M;T; / with full and n 4, then it has an
internal Mom-k structure M1; T1; 1/ where k n, 1 is full, and M1 is compact
hyperbolic. If n > 4, we obtain the similar conclusion except that “full” is replaced
by “general based” where T1 is a union of tori and annuli.

As far as we know, transforming a structure based on an annulus lying in a
component U of @M to one based on the whole torus U may require an increase in 1.

This issue is responsible for many of the technicalities of this section and the next.
See Problem 2.13.

Definition 3.1. Let M; B; / be a handle structure with a 1-handle that attaches

to the 0-handle V at each end. We say that M1;B1; 1/ is obtained by hollowing
out V and if M1 is obtained by deleting the interior of V except for a very thin
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regular neighborhood of @V n as well as a neighborhood of the core of Here 1

is based on B1, where B1 is the union of B and the newly created torus component
of @M1.

Lemma 3.2. Let M be non-elementarily embedded in N with handle structure
M; B; / If M1; B1; 1/ is obtained by hollowing out the 0-handle V and the

1-handle thenM1 is non-elementarily embedded and 1. 1/ D 1. / max.v
2;0/ where v is the valence of

Proof. ThatM1 is non-elementary follows from Lemma 1.10 while the fact about 1
is immediate.

Lemma 3.3. Let M be a non-elementary 3-manifold in the compact hyperbolic 3-
manifold N such that @M is a union of tori and let M; B; / be a handle structure.
If there exists either a lake of that is compressible in B I or a valence-0 2-handle,
then there exists a handle structure M0; B0; 0/ where M0 is non-elementary, @M0
is a union of tori, and C. 0/ < C. /

Proof. If has acompressible lake, then let.M1;B; 1/ be obtained by compressing
the lake along the disc D. Note that the 3-ball E bounded by D and a disc in B f1g
is a 0-handle of 1. Some componentM2 ofM1 is non-elementary by Lemma 1.10.
Let M2; B2; 2/ be the induced handle structure. If some component of @M2 is a

2-sphere S, then let M3;B3; 3/ be obtained by deleting from 2 a 2-handle whose
lateral boundary intersects S. If B3 ¤ ;, then let M0; B0; 0/ D M3;B3; 3/,
otherwise obtain M0;B0; 0/ by hollowing out the 0-handle E and some 1-handle

of 3.

Now assume that has no compressible lakes. If has a valence-0 2-handle
then the attaching curve is essential in B f1g. Let M1; B1; 1/ be the handle

structure obtained by compressing M along an extended core D of and absorbing
the split 2-handle into the base. Note that either B1 contains a 2-sphere component
S or has two D2 components depending whether or not the component hit by D is
a torus or annulus. In former case M1 is non-elementary by Lemma 1.10) and S
bounds a 3-ball V to the outside of M1. Let M2;B2; 2/ be obtained by adding V
to M1. If B2 D ;, then 2 is a classical handle structure with a unique 0-handle.
Finally hollow out the 0-handle and a 1-handle to obtain the desired M0; B0; 0/.

If B1 has two D2 I components, then transform them into 0-handles. Let
M2 be the non-elementary component of M1 and M2; B2; 2/ the induced handle
structure. If some components of B2 are inessential annuli in @M2, then enlarge the
0-handles to absorb them. Now complete the proofas in the previous paragraph.

Remark 3.4. From now on, unless otherwise stated, we will assume that if a
homotopically inessential lake or valence-0 2-handle appears, then it is immediately
removed as in the proof of the above lemma.
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Lemma 3.5. Let M be a non-elementarily embedded 3-manifold in the compact
hyperbolic 3-manifold N and @M a union of tori. If is a general based handle
structure on M; B/ with possibly B D ;), then 1. / > 0.

Proof. By canceling 0-handles with 1-handles we can assume that there exist no 0-
handles, unless B D ;, in which case we can assume that has a unique 0-handle.
In that case, hollow out the 0-handle and a 1-handle to reduce to the case B ¤ ;.
Since these operations are not 1-increasing, it suffices to prove the lemma in this
case. By further canceling we can assume that there are no valence-1 1-handles. If

1. / D 0, then all 1-handles are of valence-2 and so M is obtained by gluing an

I-bundle J to B I where the vertical boundary of J is glued to annuli in B f1g.
By Lemma 3.3, we can assume that no component of J is a D2 I and hence

each component has non-positive Euler characteristic. Since M/ D B/ D 0, it
follows that each component of J has zero Euler characteristic, hence is an I-bundle
over an annulus or Möbius band. It follows from Lemma 1.10 that M is elementary,
a contradiction.

The followingvery crudewarmup lemma roughly asserts that any handlestructure

M; B; / on a non-elementary manifold whose boundary is a union of tori can be
transformed to a weak general based internal Mom-k structure M0; B0; 0/ without
increasing complexity. If was notgeneral based, then neither is 0. Also if we insist
that M0 be irreducible then 1 is non-increasing. Subsequent arguments will show
that under stronger hypotheses on these transformations lead to reductions in 1.

Lemma 3.6. Let M be non-elementarily embedded in the compact hyperbolic 3-
manifold N with @M a union of tori and let M; B; / be a general based handle

structure. Then there exists a weak general based internal Mom-k structure
M0; B0; 0/, with M0 non-elementary, @M0 a union of tori and C. 0/ C. / If

B is a torus i.e., is not general based), then so is B0. If M is hyperbolic, then
either M0 D M or 1. 0/ < 1. /

If M is reducible, then there exists a M0; B0; 0/ with M0 irreducible,
nonelementary, @M0 a union of tori and 1. 0/ 1. /

Proof. By Lemma 3.3 we can assume that every 1 and 2-handle has valence 1. It
is routine to cancel the 1 and 2-handles of valence 1 without increasing complexity;
then note by Lemma 3.5 there must exist at least one 1-handle of valence 3. If
M is hyperbolic, @M is incompressible in M so these operations do not change M.
If B D ;, then is classical and we can assume that it has a single 0-handle. By
hollowing out this 0-handle and a valence 3 1-handle we obtain a handle structure

M1; T; 1/ whereM1 is non-elementary, T is the newly created component of @M1
and 1. 1/ < 1. /
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If M is reducible, then let F be a normal reducing essential 2-sphere and let

M1; B1; 1/ be the handle structure obtained by splitting along F Let M2 be the
non-elementary component of M1, B2 D B1 \M2 and 2 the restriction of 1 to
M2. Note that 1. 2/ 1. /

If possible obtain M3; B3; 3/ by deleting a 2-handle whose lateral boundary
intersects the 2-sphere component S of @M2 in exactly one component. Observe
that j@M3j < j@Mj and 1. 3/ 1. / If every 2-handle with lateral surface
intersecting S has both its lateral surfaces intersecting S, then since M is connected
each lateral surface of every 2-handle intersects S. Obtain M3; B3; 3/ by deleting
a 2-handle that attaches to a valence 3 1-handle. Observe that 1. 3/ < 1. /
and j@M3j j@Mj. After finitely many such operations we obtain an irreducible
3-manifold M0. Since M0 is non-elementary and its boundary is a union of tori, it
has incompressible boundary. Now complete the proof as in the first paragraph.

Similarly we have

Lemma 3.7. Let M be non-elementarily embedded in the compact hyperbolic 3-
manifold N with @M a union of tori and let M; / be a classical handle structure.

Then there exists a classical handle structure M0; 0/ such that M0 is
nonelementary, @M0 is a union of tori, 1. 0/ 1. /; 0 has a unique 0-handle, and

every 1 and 2-handle has valence 2.

Lemma 3.8. Let M; B; / be a handle structure such that each 1-handle is of
valence 3 and B contains an annulus component A. Suppose there exists an
essential arc f1g in A f1g disjoint from the 1-handles crossing the cores of 2-
handles exactly once, transversely. Then there exists a handle structure M;B0; 0/

such that 1. 0/ < 1. /

Proof. Replace A I by a 0-handle and 1-handle to create a handle structure 1,

possibly classical, based on B nA. More precisely, if A D X [N. / where X is the
closure of A n N. / then the 0-handle is X I and the 1-handle is N. / I Here

N. / is sufficiently small so thatall the 1-handles of which attached to A f1gnow
attach to the 0-handle. Thus all the handles of can be viewed as handles of 1 and
so 1. 1/ D 1. / The 1-handle of 1 corresponding to N. / I is of valence

1 while all the others are of valence at least three. Let 2 be the handle structure
obtained by canceling this 1-handle with its 2-handle. Then 1. 2/ < 1. 1/.

Lemma 3.9. Let f W M N be a non-elementary embedding of a compact
connected 3-manifold into a compact irreducible 3-manifold. Suppose @M is a union
of tori, T is a component of @M, and is a handle structure on M; T / without
0-handles such that each 2-handle is of valence 3. If there exists a valence-0
1-handle resp. two valence-1 1-handles, resp. one valence-1 1-handle) then there
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exists a non-elementary embedding g W M0 N with @M0 a union of tori and a
handle structure 0 on M0;T 0/ with T 0 D T such that 1. 0/ 1. / 3 resp.

1. 0/ 1. / 3, resp. 1. 0/ 1. / 2) and 0 contains no valence-0 or
valence-1 1-handles.

If the same hypothesis as above holds, except that the valence of each 2-handle of
is at least two, then the same conclusion holds except that in each case the upper

bounds for 1. 0/ are raised by one.

Proof. The assertion follows by induction on C. / If is a valence-0 1-handle,
then the manifold M1 obtained by deleting is connected since T is connected. By
Lemma 1.10M1 is non-elementary. If 1 is the induced handle structure onM1, then

C. 1/ D C. / .0; 1; 0/. Now let M2 and 2 be obtained by deleting a 2-handle

of 1 whose lateral boundary intersects the 2-sphere component of @M1. Note that
@M2 is a union of tori and M2 is non-elementary by Lemma 1.10. If each 1-handle
of 2 is of valence at least 2, then 1. 2/ D 1. 1/ valence. / 1. 1/ 3.
Otherwise either 1. 2/ < 1. / and there exists a valence 1 1-handle of 2
and the result follows by induction or C. 2/ < C. / 1. 2/ D 1. / and 2

has either a valence-0 1-handle or at least two valence-1 1-handles. Again the result
follows by induction.

If is a valence-1 1-handle, then canceling with its corresponding 2-handle
creates a handle structure 1 on M such that C. 1/ < C. / If 1. 1/ D 1. /
then 1 either has a valence-0 1-handle or two valence-1 1-handles. Similarly, if

1. 1/ D 1. / 1, then 1 has at least one valence 1 1-handle. In either case

the result follows by induction.
The case that the valence of each 2-handle of is at least two follows similarly.

Lemma 3.10. Let M be non-elementarily embedded in the compact hyperbolic 3-
manifold N, where @M is a union of tori. Suppose thatM has a full handle structure

without 0-handles based on a component T of @M such that every 2-handle is of
valence 3. If either of the following are true then there exists a non-elementary
M0 with handle structure M0; T 0; 0/ such that 1. 0/ 1. / 2 and @M0 is a
union of tori:

i) There exists a valence-1 2-handle N BM that can be added to

ii) There exists a disc D @M such that @D is the union of two arcs [where lies in a lake and is an essential arc in a 2-handle i.e., separates
components of i. /\ .1 handles/ inside of i. /

Proof. We first prove i). By subdividing higher valence 2-handles we can assume

that each 2-handle is of valence 3. By Lemma 3.9 we can assume that every 1-
handle of is of valence 2. Let 1 be the handle structure on the manifold M1
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obtained by attaching to along @M. Let denote the 1-handle which meets.

Let 2 and M2 be obtained by deleting a 2-handle ¤ whose lateral boundary
intersects the 2-sphere boundary component of M1. By Lemma 1.10 M2 is
nonelementary. Let 3 be obtained by cancelling and If has valence 4, then

1. 3/ 1. / 2. If so, then as in Lemma 3.6, reduce to a non-elementary M4
with handle structure 4 on M4; T / whose 1 and 2-handles are of valence 2 and

1. 4/ 1. 3/.
Now assume that valence( / D 3. If runs over thrice, then is the unique

1-handle of since is full. This implies that M2 D T I which is elementary,
a contradiction.

Now assume that some 2-handle runs over twice. We can choose to be this
2-handle. Let denote the other 2-handle of that attaches to Construct M2 and

3 as above. Since valence( / D 3, we have 1. 3/ 1. / 1. If equality holds,
then 3 has one valence-1 1-handle, one valence-2 2 handle descended from and

all the other 2-handles have valence three. Indeed, the valence-1 1-handle 0 of 3,
when viewed in is of valence 2 and is the other 1-handle to which is attached.

Now apply Lemma 3.9 to 3.
If no 2-handle runs over twice, then each 2-handle of 3 has valence at least

two, independent of the choice of Again 1. 3/ 1. / 1 and here equality
implies that 3 has either one valence-0 1-handle or two valence-1 1-handles, so we
can apply Lemma 3.9.

If valence. / D 2 and some 2-handle runs over it twice, then we can assume that

this handle is not Indeed we can assume that is chosen to run over a 1-handle 2

which is the other2-handle run over by Note that becomes a valence-12-handle in
3. Let 4 be obtained by canceling this new with 2. Again 1. 4/ 1. / 2

if valence( 2/ 4.
If valence. 2/ D 3 and runs over it twice, then 1. 4/ 1. / 1 and if

equality holds, then 4 has a valence-1 1-handle and all its 2-handles are valence
three. Thus, Lemma 3.9 applies.

If runs over 2 once, then 1. 4/ 1. / 1 and if equality holds, then either
there is a valence-0 1-handle or two valence-1 1-handles. Further, all the 2-handles

of 4 are at least valence-2 and hence Lemma 3.9 applies.
If valence. 2/ D 2, then 1. 4/ 1. / and if equality holds, then either there

is a valence-0 1-handle or two valence-1 1-handles. In this case all the 2-handles of

4 are of valence three and again Lemma 3.9 applies.

We now prove ii). By pushing BD out of M we obtain a properly embedded disc

E in N n M with @E D @D. If L is the component of i. / intersected by D and

D \ L can be isotoped rel @L into a 1-handle of then D becomes a valence-1
2-handle that can be added to Now apply i). Otherwise, we can introduce a new
valence-2 1-handle to subdivide into two valence 3 2-handles whichmeet along

such that @D runs over once. This does not change 1. Again, i) applies.



Vol. 86 2011) Mom technology and volumes of hyperbolic 3-manifolds 161

Lemma 3.11. Let M be a non-elementarily embedded compact 3-manifold in the
compact hyperbolic 3-manifold N with @M a union of tori, and let be a handle
structure for M based on R @M. If there exists a valence 3 1-handle of

which attaches to a 0-handle then there exists a non-elementary embedding
M0 N and a handle structure 0 based on R0 @M0 such that 1. 0/ < 1. /
Here either M0; R0/ D M;R/ or M0 D M BV

and R0 D R[ @V where V is an

embedded solid torus in BM

Proof. If also attachestoeither thebase or a0-handle distinctfrom then cancelling
with gives rise to a handle structure 0 on M; R/ with 1. 0/ < 1. / If

attaches only to then let M0 be obtained by hollowing out and and V the
hollowed out solid torus.

Lemma 3.12. LetN be a compact hyperbolic 3-manifold. If M; T; / is a full internal

weak Mom-n structure on N and M is reducible then there exists Mp; Tp; p/,
a weak internal Mom-k structure on N such that k D 1. p/ 1. / D n 2.

Proof. Proof by induction on 1. / Recall that T is connected, since Mom-n
and weak Mom-n structures are based on a single torus. We first consider the case

that T is incompressible in N. Let F be a least-weight normal reducing 2-sphere.
Incompressibility implies that each component of F \T f1g is inessential in T f1g
and least-weight implies that each of these circles bounds a disc in F \ T I/.
Let M0 and M00 be the components of M split along F By Lemma 1.10 and the
irreducibility of N, exactly one of M0, M00 is non-elementary. We let M0 resp.

M00 denote the non-elementary resp. elementary) component with 0 resp. 0

0 its
induced structure. Note that T M0.

Let X denote the union of the islands and bridges of Y D X \ M0 and

Y 0 D X \ M00

We now show that 1. 0
0/ > 0 and hence 1. 0/ 1. / 1, since 1. 0/ C

1. 0

0/ D 1. / D n. Assuming the contrary we show that M00 is an I -bundle.
Indeed, since F is normal, each component of intersection ofM00 with a 2-handle is a

product. Since 1. 0

0/ D 0, the same is true for the 1-handles and these local product
structures match up where appropriate. Thus each component of Y 0 is an annulus.
These annuli extend to D2 I 0s in T OE0;1 Here a component E of D2 f0; 1g
is a lake if @E is the boundary of a lake this uses fullness) and E F otherwise.
Observe that M00 a nontrivial I-bundle since F is an essential 2-sphere. However, if
M00 is not a trivial I-bundle, then F does not bound a 3-ball to the M00 side, which
implies that M0 lies in a 3-ball, a contradiction.

A similar argument shows that some component of Y is not an annulus and further
some 2-handle of 0 faces F and attaches to a valence 3 1-handle of 0. Delete

from 0 to obtain M1; T; 1/ with 1. 1/ 1. 0/ 1. Nowapply Lemma 3.6.
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We next consider the case that T is compressible in M. Let F be a least-weight
compressing disc for T Note that F \ T I consists of discs, and a single annulus
that is isotopic to a verticalone inT I. IfM1 isM split along F with induced handle
structure 1 and A is T split along F \ T then 1 is based on A. By Lemma 1.10

M1 is non-elementary. Note that @M1 contains a 2-sphere S that bounds a 3-ball
to the outside of M1 and so M is obtained by attaching a possibly knotted 1-handle
to M1 inside of that ball. This implies that T lies in a 3-cell. If that 1-handle is
parametrized by D2 OE1; 10 then we can assume that M1 is obtained by deleting
D2 .4; 5/.

Let M2 be obtained by attaching 2-handles 1; 2 to @M1 along the components
of @A I i.e., along thin neighborhoods of the curves @D2 f4; 5g. Note that
@M2 has three 2-sphere components, two of which are inside of the just added caps.

Attach a 3-cell B to the third 2-sphere to obtain the manifoldM3. The induced handle
structure 3 on M3 is classical. Here A I [ 1 [ 2 [ B comprise one of the
0-handles of 3.

Since is full F \X must cross a 1-handle of valence at least three, where X is
defined aspreviously. Thus the lateral surface of some2-handle of 3 faces a 2-sphere

of @M3 and attaches to a 1-handle of valence 3. Delete this 2-handle to obtain the
non-elementary M4 with handle structure 4 which satisfies 1. 4/ C 1 1. /
Delete another 2-handle to create M5 and 5 such that @M5 is a union of tori. Next
apply Lemma 3.7 to produce M6; 6/. Let be a valence 3 1-handle of 6,

which exists by 3.5. Next hollow out the 0-handle and to obtain M7;T7; 7/ with
1. 7/ 1. 5/ 1. Finally apply Lemma 3.6 to obtain the desired weak Mom-k

structure.
We consider the last case, that T is incompressible in M but not in N. Let F

be a least-weight essential normal 2-sphere for Incompressibility implies that

F \ T I/ is a union of discs. If T does not lie in the ball B bounded by F N,
then proceed as in the first case of the proof. Otherwise let M0 and M00 be the
components of M split along F with M00 the component lying in B. Let 0; 0

0
denote the corresponding handle structures on M0 and M00 Since is full and

some component of T 1\ M00 is nonplanar, it follows that 1. 0
0/ 1 and hence

1. 0/ 1. / 1. Now complete the proof as in the previous paragraph, by first
obtaining a classical handle structure M1; 1/ by deleting a 2-handle from 0, then
applying Lemma 3.7, then reducing 1 by hollowing out a 0-handle and a valence

3 1-handle and finish by applying Lemma 3.6.

Definition3.13. If isa handlestructure onM, then the sheetsof are the connected
components of the space which is the union of the 2-handles and the valence-2
1-handles. So sheets are thickened surfaces which are attached to a 3-manifold along
their thickened boundaries. The valence ofa sheet is the number of times theboundary
runs over 1-handles counted with multiplicity.
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Lemma 3.14. Let N be a compact hyperbolic 3-manifold and f W M N a
nonelementary embedding where @M is a union of tori. Let be a full handle structure
onM with no 0-handles based on a component T of @M such that the valence of each

2-handle is at least 3. If some sheet S of is not a thickened disc then there exists a
handle structure M0; T 0; 0/ such thatM0 is non-elementary, @M0 is a union of tori
and 1. 0/ 1. / 1. If for every such M0; T 0; 0/ equality must hold, then S
is a thickened Möbius band and there exists such a M0; T 0; 0/ such that 0 is full
and T 0 D T in particular T0 is connected).

Proof. By Lemmas 3.9 and 3.12 we can assume that each 1-handle of has valence

2 andM is irreducible. IfM1 denotes the manifold obtained by deleting the sheet

S, then M/ D M1/ C S/. Since M/ D 0, if S/ < 0, then @M1 contains
a 2-sphere and hence M is either elementary or reducible, a contradiction.

Now assume that S/ D 0; note that M1 is non-elementary by Lemma 1.10. In
this case S is either an annulus I or a non-trivial I -bundle over a Möbius band. If S
contains either at least two 2-handles or a single 2-handle of valence at least 4, then
valence.S/ 2. If valence.S/ > 1, then either 1. 1/ 1. / 2, where 1

is the induced structure on M1 or 1. 1/ D 1. / 1 and Lemma 3.9 applies. If
S is a valence-1 annulus I then is not full. If S is a thickened Möbius band of
valence 1, then 1. 1/ D 1. / 1. Note that 1 is based on T

We consider the case that 1 is not full and valence(S)=1. Here S runs over the
1-handle of 1 and is attached to the component R of @M1. After isotopy the
core 1 of the attaching annulus of S crosses the core of the annular lake L1 of 1

exactly once. Let 2 be the handle structure on M1 obtained by turning 1 upside
down. By Lemma 2.11 1. 2/ D 1. 1/. In the switch becomes a 2-handle
The lake L1 corresponds to a lake L2 R f1g of 2 and 1 corresponds to a

curve 2 R f1g which crosses both the attaching curve of exactly once and the
core of L2 once. Let M3; 3/ be obtained from M1; 2/ by splitting M1 along an
annulus connecting the core of L2 to T Then 3 is based on an annulus C together

with a possibly empty union U D @M1 n T [R/ of tori Here C D R n
BL2. Since

crosses 2, an essential arc in C f1g, once and the valence of each 1-handle of

3 is at least 3 since that was true of 2-handles of 2), we can apply Lemma 3.8 to
conclude that there exists a handle structure M3; U; 4/ with 1. 4/ < 1. 3/. If
U D ;, then 4 is a classical handle structure. In that case, hollowing out produces

M5; T5; 5/ with M5 non-elementary, @M5 a union of tori, T5 a torus component
of @M5 and 1. 5/ 1. 4/.

The next three lemmas deal with the case that M contains an essential annulus.

Lemma 3.15. Let M; T; / be an internal Mom-n structure on the compact hyperbolic

manifold N. Assume that every sheet of is a thickened disc and is full.
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If there exists a properly embedded essential annulus A M with boundary
components respectively on T and a component of @M n T then there exists a handle
structure M0; T 0; 0/ such that M0 is non-elementary, @M0 is a union of tori and

1. 0/ 1. / 2.

Proof. ByLemma3.12wecan assume thatM is irreducible andhencebyLemma1.11
@M is incompressible. Since all sheets are discs we can cancel valence-2 1-handles

with 2-handles to obtain a full handle structure M; T; 1/ without 0-handles such

that 1. 1/ D 1. / and every 1 and 2-handle is of valence 3. Since A is 1-
injective and @M is incompressible, A is also boundary incompressible. Therefore
by Lemma 2.3 A is isotopic to a normal surface. By replacing A if necessary, we can

assume that A is least-weight among all properly embedded normal essential annuli
connecting T to another boundary component J of M. Since A is least weight,
A\ T I is a union of discs and a single annulus.

Let A0 resp. A1) denote A \ T resp. A \ J Let M2 denote the manifold
obtained by splitting M along A and let 2 denote the handle structure induced
from 1. As in §2, those components of T I split along A which are 3-balls are
the 0-handles of 2. The remaining component is homeomorphic to B0 I where
B0 I/\ T D B0 0 is T split along A0 and hence 2 is based on B0 T Note

that M2 is connected. By Lemma 1.10, M2 is non-elementarily embedded in N.
As in [Mv1], if is a 1-handle of 1 and if f ig denotes the 1-handles of 2

which descend from then Pi max..valence. i / 2/; 0/ valence. / 2 with
equality if and only if A1 does not run over

Claim. If counting with multiplicity A1 runs over more than one 1-handle, then the
conclusion of the lemma holds.

Proof of Claim. This is immediate if A1 runs over distinct 1-handles. Now assume

that A1 runs over a unique 1-handle Let R1, …, Rn be the components of A \which nontrivially intersect A1. Let Ci and Di denote the closure of the components
of i n Ri

If some Ri intersects @M in two components and say Ci intersects the attaching
zone of exactly one 2-handle and \Ci is connected, then viewed in 2, attaches

to a valence-1 1-handle 1 descended from Furthermore, A\ D ; otherwise
condition ii) of Definition 2.1 is violated. Since the valence of every 1-handle of

1 is 3 it follows that in 2, only attaches to valence 3 1-handles except for
those 1-handles descended from Therefore, after cancelling with 1, either 1

is reduced or viewed in 1, only attaches to and both and have valence 3.
In that case, since 1 is full, is the unique 1-handle of and 1. 2/ D 0. This
contradicts Lemma 3.5.

If some Ri intersects @M in two components and each of Ci and Di intersect
attaching annuli of 1-handles of 1 in at least two components, then 1. 2/

1. 1/ 2.
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We now assume that eachRi intersects @M in exactly one component. If two such

Ri ’s are not normally isotopic in then again 1. 2/ 1. 1/ 2. Therefore we
can assume that all the Ri’s are normally parallel. Since all lakes are discs, it follows
that if L is the lake with L\A ¤ ;, then L \ A equals n parallel arcs. Since A1 is
connected, n D 1.

We now assume that A1 runs over a unique 1-handle and it does so with
multiplicity one. This implies that 1. 2/ D 1. 1/ 1. Also A1 is the union of two
arcs and where lies in a 1-handle of 1 and lies in a lake of 1.

Our A has an induced handle structure ˆ based on A0 as follows. The base Z
consists of the annular component of A\ T I the 0-handles consist of the disc
components ofA\ T I the 1-handles resp. 2-handles) consist of the intersections
of A with the 1-handles resp. 2-handles). Since 1 has no annular lakes and A is an
annulus,ˆ contains at least one 0-handle. We abuse notation by viewing 0-handles

ofˆ also as properly embedded discs in T I
Give A a transverse orientation. Call a 0-handle v of ˆ plus resp. minus) if the

transverse orientation of the disc v T I points away from resp. towards) T
Each disc v separates in T I a 3-ball vB from T Let vD denote vB \ T f1g.

Viewed in A, lies in the boundary of either the base of ˆ or a 0-handle v of ˆ
We consider the case that lies in a 0-handle v. Since A is least weight, the disc vD
contains a bridge b in its interior and this bridge is not parallel to In fact by ii) of
Definition 2.1, if P and Q are the islands in T f1g corresponding to there exists
bridges b1; b2 emanating from each of P and Q lying interior to vD. Since A1 runs
over a unique 1-handle it follows that b1 ¤ b2, else 1 has a valence-1 2-handle.

Now suppose that b1 ¤ b2. If vD \ wD D ; for all 0-handles w ¤ v of ˆ then
Lemma 3.11 applies to the 0-handle vB of 2 and the Lemma is proved. Indeed, vB
can cancel with a valence 3 1-handle 1 of 2 which descends from a 1-handle

¤ of 1, one of whose islands intersects b1. Otherwise, vB is split into balls by
the various 0-handles ofˆ and Lemma 3.11 applies to one of these balls.

From now on we assume that lies in the base Z ofˆ Let X T 1 denote the
union of the islands and bridges of 1. An argument similar to one in the previous
paragraph shows that for each 0-handle v ofˆ either @v is boundary parallel in X or
Lemma 3.11 applies.

We now assume that if v is a 0-handle of ˆ then @v is boundary parallel in X.
This implies

i) if v ¤ w are 0-handles of ˆ and vB wB, then @v and @w are normally
parallel in X,

ii) no 1-handle ofˆ connects a plus 0-handle to a minus 0-handle ofˆ and

iii) if v0 and v1 are two 0-handles of ˆ that are connected by a 1-handle, then
v0
B \ v1

B D ;.
It follows from i)–(iii) and the compactness of F that
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iv) there do not exist 0-handles w0; w1; : : :; wn of ˆ such that for i D 1; 2; : : :;
n 1; wi is connected to wiC1 by a 1-handle and wnB w0B

LetZ0 andZ1 denote the components of @Z whereZ0 D A0. Since A1 runs over
a unique 1-handle, Z1 \ @M D Therefore Z1 D [ 1 where 1 is a properly
embedded arc in A. Let H A be the disc A n Z. Define an equivalence relation
on 0-handles of ˆ generated by the relation that v w if v and w are connected

by a 1-handle of ˆ Given a class OEv let E0v H be the union of all 0-handles

of ˆ lying in OEv together with all 1-handles of ˆ which attach to discs in OEv Let
Ev H be the largest disc bounded by an arc in 1 and an arc in @E0v Notice that

if Ev \Ew ¤;, then either Ev Ew or Ew Ev with both holding if and only if
OEv D OEw

Let OEv be a class with Ev innermost. A small neighborhood E H of Ev is a

disc whose boundary is the union of two arcs and where is a proper arc in a

2-handle of ˆ and lies in Z1. Furthermore E non trivially intersects exactly one

E0v By ii)-(iv) above, if v; w are 0-handles of ˆ lying in E, then they are of the
same parity and vB \ wB D ;.

Since every 0-handle of ˆ is normally boundary parallel and iv) holds, E can be

normally isotoped with respect to 1 to a discG @M such that @G isa union of two
arcs, one lying in a lake and the other in a 2-handle. Now apply ii) of Lemma 3.10
to

Lemma 3.16. Let M;T; / be a full internal Mom-n structure on the compact
hyperbolic 3-manifold N. Suppose that every sheet of is a disc and there exists an
essential embedded annulus A with @A\T D ;. Then there exists a non-elementary
embeddingM0 N with handle structure M0; T 0; 0/ where @M0 is a union of tori
and 1. 0/ 1. / 2.

Proof. Assume that M is irreducible and therefore @M is incompressible. Again by
canceling 1 and 2-handles we can pass to a handle structure 1 of M; T / which
is full, has the same 1 and every 1 and 2-handle has valence 3. Let A be a

least-weight normal essential annulus with A \ T D ;. By Lemma 3.15 we can

assume that no essential annulus connects T to a component of @M n T and hence

A\ T I is a union of discs. Let M2 be the non-elementary component of M split
along A and let M2;T2; 2/ be the induced handle structure. As in the previous
proof, 1. 2/ 1. 1/ 1. Furthermore, the argument of the Claim implies that

either the lemma is true or counted with multiplicity @A traverses a single 1-handle
in two normally parallel components; furthermore, A\ consists of two normally

parallel discs which contain \ @A. There are two components since j@Aj D 2. If
1. 2/ D 1. 1/ 1, then as in the proof of Lemma 3.12 there is a non-elementary

component of M n A and the closure of that component is a non-trivial I -bundle.
Since A is an annulus, it must be a non-trivial I -bundle over a Möbius band AO.
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We now assume that A normally double covers a Möbius band AO and @AO runs
over a single 1-handle of with multiplicity one. In that case @AO is the union of
two arcs and where and is properly embedded in a lake of Note that

T @M2.
Let ˆ be the induced handle structure on A. In this case,ˆ is a classical handle

structure. Therefore @v, where v is a 0-handle of 1. As in the proof of
Lemma 3.15, there exists a valence 3 1-handle of 2 that attaches to a 0-handle
of 2 and hence by Lemma 3.11 there exists M3; T3; 3/ such that M3 is
nonelementary, @M3 is a union of tori and 1. 3/ < 1. 2/.

Lemma 3.17. Let M;T; / be a full internal Mom-n structure on the compact
hyperbolic 3-manifold N such that every sheet is a disc. Suppose that there exists

an essential embedded annulus A with @A T Then there exists a handle structure
M0; T 0; 0/ where M0 is non-elementary, @M0 is a union of tori and 1. 0/

1. / 2.

Proof. By Lemma 3.12, Lemma 3.15 and Lemma 3.16 we can assume that M is
irreducible, @M is incompressible and all essential annuli must have both boundary
components in T Let M; R;†/ be the dual handle structure, where R D @M n T
Note that 1.†/ D 1. / † is full and each 1-handle of † is of valence 3, though

† may have valence-2 2-handles.
Let A be an essential annulus, least weight with respect to †. Since each essential

annulus has its entire boundary in T A\ R I is a union of discs. LetM1 beM split
along A with M1; R;†1/ the induced structure. As before 1.†1/ < 1.†/. Let
M2 be the non-elementary component of M1 and M2; R2;†2/ the induced handle
structure.

Claim. Either the conclusion of the lemma holds or @A runs over a single one

handle of † and A\ contains two normally parallel discs which contain @A \Furthermore each such disc intersects @M in a single arc.

Proof of Claim. In contrast to the previous claim both components of @A are disjoint
from the base as opposed to just one, † may have valence-2 2-handles and R may
havemore components than T Note that the number of components of T did not play
a role in the proof. The proof is immediate if @A runs over distinct 1-handles. Now
assume that @A runs over a unique 1-handle Let R1; ; Rn be the components
of A\ which nontrivially intersect @A. Let Ci and Di denote the closure of the
components of i n Ri

The proof follows exactly as in the previous claim except in the case that some Ri
intersects @M in two components and say Ci intersects the attaching zone of but one

2-handle and \Ci is connected. The lemma holds as before unless, as viewed in
†, only attaches to valence. / D 3, and valence. / D 2. Let 0 be the other 2-
handle of † that attaches to If M2, then the lemma follows from Lemma 1.10
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since attaches to a valence-1 1-handle 1 of †2. Otherwise there exists a 2-handle

2 of †2 descended from 0 that attaches to a valence-1 1-handle of †2. Now apply
Lemma 1.10.

The proof now follows as in the previous lemma. I.e., either A double covers
a Möbius band AO or 1.†2/ 1.†/ 2 and in the former case after canceling a

0-handle of †2 with a valence 3 1-handle of †2, 1 is reduced.

Lemma 3.18. Let M;T; / be a full internal Mom-n structure on the compact
hyperbolic 3-manifold N. If M is not hyperbolic, then either there exists a full
internal Mom-k structure M0;T; 0/ with k < n and M0 hyperbolic or there exists
a weak Mom-r structure structure M0; B0; 0/ with r n 2.

Proof. Proof by induction on 1. / By Lemmas 3.12, 3.14, 3.15, 3.16, 3.17, and

3.6 it suffices to consider the case that M is irreducible and annular and every sheet

is a disc.
By Thurston [Th2], ifM is annular butnot hyperbolic, then it contains an essential

torus. Let F be a least-weight essential torus. Since there are no essential annuli,
F \ T I is a union of discs.

Let M1 denote the component of M split along F which contains T and let M01

denote the other component. Let 1 and 0

1 denote the induced handle structures.
Note that 1 is basedon T 0

1 is aclassical structure and 1. 1/C 1. 0

1/ D 1. /
Let X T f1g be the union of the islands and bridges of Y D M01 \ X and

Z D M1 \ X.
By Lemma 1.10 one of M1 or M01 is non-elementary. If M1 is elementary,

1. 1/ 1 since Z is nonplanar. By Lemma 3.7 there exists a handle structure 2

on M01 such that 1. 2/ 1. 0

1/, 2 has a unique 0-handle, and each 1-handle is
of valence 2. Since M01 is non-elementary, some 1-handle is of valence 3. Now
apply Lemma 3.11.

From now on assume that M1 is non-elementary. If 1. 0

1/ D 0, then as in
Lemma 3.12, M01 is a non trivial I-bundle, hence a non trivial I -bundle over a Klein
bottle, which is impossible in a hyperbolic 3-manifold. Hence 1. 1/ < 1. /

Since is full and F \ T I are discs, it follows that 1 is full, though it may
have 0-handles. If some valence 3 1-handle attaches to a 0-handle of 1, then the
lemma follows from Lemma 3.11. Otherwise, cancel the 0-handles with 1-handles
to obtain a full handle structure M1; T; 2/. Cancel the valence-1 2-handles of

2 with their associated 1-handles and if necessary repeat the process, to obtain the
handle structure M3; T; 3/. Note that either 3 is a full weak Mom-r structure or

1. 3/ < 1. 1/.
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4. From Mom-n to hyperbolic Mom-n

The main result of this section is the following:

Theorem 4.1. If M;T; / is a full internal Mom-n structure on the compact
hyperbolic 3-manifold N and n 4, then there exists a full internal Mom-k structure
M0; T 0; 0/ on N where M0 is hyperbolic and k n.

Forgeneral n,either there exists a full internalMom-k structure.M0; T 0; 0/ inN
with k nandM hyperbolicor there existsageneral based internalMom-k structure
M0; B0; 0/ on N such that k n 2, M0 is hyperbolic and each component of B0

is either a component of @M0 or an essential annulus in a component of @M.

Remark 4.2. Recall that in this paper all general based handle structures M; B; /
haveB beinga union of components of@M and essential annuli of@M except forbrief
moments when disc components are created. But these are immediately transformed
into 0-handles. In particular the handle structure produced in Lemma 3.18 is based

on components of @M0 and essential annuli. Given a non-elementary M with @M
a union of tori, it is an exercise to reduce any M;B; / to M0; B0; 0/, where M0
is non-elementary with @M0 a union of tori, B0 a union of components of @M0 and
essential annuli and C. 0/ C. /

Lemma 4.3. Let M be non-elementarily embedded in the compact hyperbolic 3-
manifold N with @M a union of tori and let M; B; / be a general based handle
structure. Then there exists a general based handle structure M0; B0; 0/, with M0
hyperbolic and non-elementary, 1. 0/ 1. / and 0 has no 0-handles.

Proof. Proof by induction on 1. / By Lemma 3.6 we can assume that M is
irreducible and hence by Lemma 1.11 that @M is incompressible. IfM is not hyperbolic,
then by[JS], [Jo] there exists aembedded surface S consisting of tori and incompressible,

boundary incompressible annuli such that the manifoldM1 obtained by splitting
along S is aunion of hyperbolicmanifoldsandSeifert fiberedspaces. By Lemma 1.10
one of these components M2 is non-elementary in N and hence hyperbolic.

Let F be anormal surface isotopic to S. Let M1;B1; 1/ be obtainedby splitting
M; B; / along F Let M2;B2; 2/ be obtained by restricting 1 to M2. As in

[Mv1], 1. 2/ 1. /:
If B contains annuli, and @F crosses B in arcs, then B1 will contain discs. IfD is

a disc component of B2, then delete it by viewing D I as a 0-handle. Now cancel
0-handles with 1-handles to produce M3; B3; 3/ which either has no 0-handles or
is classical. Note that 1. 3/ 1. / If 3 is classical, then hollow out a valence

3 1-handle and the 0-handle to produce M4; B4; 4/ with 1. 4/ < 1. 3/. The
result follows by induction.
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Lemma 4.4. If M is a compact hyperbolic 3-manifold and if M;B; / is a handle

structure, then there exists a general based Mom-k structure M; B0; 0/ with
1. 0/ 1. / In particular, if M;B; / is a weak Mom-n structure, then k n.

Proof. If 1 has compressible lakes or valence-0 2-handles, then use Lemma 3.3
to eliminate them and obtain M; B1; 1/ with C. 1/ < C. / Note that M is
unchangedsince@M is incompressible. Next, ifpossible,cancel thevalence 11and
2-handles to strictly reduce C. If isa valence-2 2-handlewhich goes over distinct 1-
handles, then cancelling a 1-handle with creates M; B; 2/ with C. 2/ < C. 1/.

We now assume that no valence-2 2-handle goes over distinct 1-handles. Suppose

that goes over the same 1-handle twice. Then [ can be viewed as

an embedded annulus or Möbius band A with boundary on B. Since M is hyperbolic

and orientable, A must be an annulus and is either boundary parallel in M or
compressible in M.

If A is boundary parallel, then it together with an annulus on B bound a solid
torus V M. This contradicts the fact that 2 has no 3-handles. Similarly, If A
is compressible in M, then since @M is incompressible and M is irreducible, there
exists a 3-ball V in M bounded by A together with two discs in @M. This again

implies that 2 has 3-handles.
Thus every 1-handle of 2 is valence 2 and every 2-handle is valence 3.

By subdividing the 2-handles we obtain a general based Mom structure M; B3; 3/
with 1. 3/ D 1. 2/ 1. / Recall that if M; B; / is a general based Mom-n
structure, then n D 1. /

Lemma 4.5. If M; B; / is a general based internal Mom-n structure on a compact
hyperbolic 3-manifold N, then n 2.

Proof. This follows by direct calculation.

Lemma 4.6. If the compact hyperbolic 3-manifold N has a general based internal
Mom-2 structure M; B; / then it has a full internal Mom-2 structure.

Proof. By splitting along annuli in B I we can assume that every non-peripheral
lake of B is a disc.

Suppose B contains two tori T1 and T2. If each 1-handle connects T1 to T2, then
this implies that each 2-handle is of even valence which is a contradiction. If neither
1-handle connects T1 to T2 thenM is disconnected and consists of either two general
based internal Mom-1 structures, contradicting Lemma 4.5, or a Mom-2 structure
and a thickened torus, in which case we throw away the torus and reduce to a simpler
case. If one 1-handle connects T1 to T2 and the other connects T1 to itself, then the
1-handle connected to T2 must have valence at least 4, since there must be at least
two bridges on T2 f1g in order for all of the lakes to be discs. The only possibility
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is that that 1-handle has valence exactly 4, while the other 1-handle has valence 2; in
other words, has a single sheet of valence 4 which is a thickened disc. Now note
that T2 f1g has a single island and two bridges, and that those bridges must follow
paths which form a meridian-longitude pair for T2 f1g. T1 f1g has three islands
and four bridges, but two of those islands only meet the ends of two bridges. We

can ignore those islands i.e., consider the 1-handle of valence 2 to just be part of the
sheet) in which case we get the same picture on T1 f1g: one island and two bridges
forming a meridian-longitude pair. Now consider the four attaching zones i I
where the sheet intersects the boundary of the 1-handle of valence 4. Together with
the four bridges, these regions should join together to form the transverse boundary
of the sheet i.e., the closure of the complement of the lateral boundary) but under
the conditions described the union of the attaching zones with the four bridges will
have two distinct components, a contradiction.

If B consists of a single torus, then M; B; / is a full Mom-2 structure. We

finally assume that B contains an annulus. We only discuss the case that B is
connected; the case where B is either the union of an annulus and torus or two annuli is
similar and easier.

Note that B f1g contains four islands and six bridges. Let be a path from one
component of @B f1g to the other that crosses no islands and a minimum number
of bridges, and let U be the union of the islands, bridges, and non-peripheral lakes.

By Lemmas 4.3 and 4.4 we may assume that M is hyperbolic with incompressible
boundary, and hence U is a connected essential annulus. Thus U/ D 0 and hence

U has exactly two non-peripheral lakes. Clearly has to cross each non-peripheral
lake at most once, so crosses at most three bridges. Let D D I ; D is an
essential compressing disc for B I which cuts across the bridges in at most three
components.

Now suppose that has a single sheet of valence four, i.e., one of the 1-handles
of has valence four and the other has valence two. Let denote the valence-4

1-handle of View N.D/ as a 1-handle and B I B

N.D/ as a 0-handle to obtain a

classical handle structure with two 1-handles respectively of valence 4 and 3. Now
as in Lemma 3.11 hollow out the 0-handle and to get a non-elementary M1 with
handle structure 1 based on a torus with a single 1-handle of valence 3. Thus we
obtain a Mom-1 structure on a hyperbolic 3-manifold, which is a contradiction.

The other case is that has two valence-3 1-handles. If D happens to cut the
bridges in 2 components, then as above we obtain a handle structure with one

0-handle and three 1-handles. Hollowing out a valence-3 1-handle and the 0-handle
produces a handle structure 1 on a non-elementary manifoldM1 with 1. 1/ 1,
which is a contradiction. However it is possible that D cuts the bridges in exactly
three components; then we have to look deeper. View N.D/ as a 1-handle and

B
B I N.D/ as a 0-handle as before to obtain a handle structure with a 0-handle,
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three 1-handles all of valence 3, and two 2-handles. Denote the original 1-handles by

a and b and the new 1-handle by c. Since c has valence 3, one of the 2-handles must
run over c at least twice; call this 2-handle and call the other 2-handle Since

has valence 3 in must run over one of the original 1-handles at least twice;
without loss of generality assume runs over a at least twice. Hence runs over b
at most once, and it runs over c at most once. If we drill out a and the 0-handle as

before, we will get a non-elementary M1 with handle structure 1 based on a torus
with two 1-handles b and c each of valence 3 and two 2-handles and where
has valence at most 2. If the valence of is less than 2 we can use the results of the
previous section to produce a simpler structure and get a Mom-k structure on N with
k < 2, a contradiction since N is hyperbolic. If the valence of is exactly 2, then
must run over b once and c once, while runs over b twice and c twice. Cancelling

with either b or c results in a new Mom-2 structure on N with a single disc sheet

of valence 4. If this new Mom-2 structure is full then we are done, otherwise we can

split along annular lakes in the new Mom-2 and reduce the problem to the previous
case. Either way, the proof is complete.

Remark 4.7. The figure-8 knot complement contains a non-full Mom-2 structure
with two 1-handles of valence 3, in addition to having a full Mom-2 structure.
Transforming this non-full Mom-2 structure as in the proof of the preceding lemma results
in a full Mom-2 structure with a single disk sheet of valence 4. See §7.

Proof of Theorem 4.1. The proof is by induction on 1. / If M is not hyperbolic,
then apply Lemma 3.18 to obtain M1; B1; 1/ which is either a full internal Mom-k
structure withk < n(and hence k D 1. 1/ < 1. / D n) or 1. 1/ 1. / 2
and M1 is non-elementary and @M1 is a union of tori. In the former case the proof
follows by induction. In the latter case apply Lemma 4.3 to obtain M2; B2; 2/ with
M2 hyperbolicandnon-elementary and then apply Lemma 4.4 toobtain.M3; B3; 3/
with 1. 3/ 1. 1/. If 1. 3/ D 2, then apply Lemma 4.6.

5. Enumeration of hyperbolic Mom-n’s for 2 n 4

Let M; T; / be a full hyperbolic Mom-n, with 2 n 4. The handle structure
collapses to a cellular complex K in the following fashion. Each 1-handle collapses

to the arc at its core, and each 2-handle collapses to the disc at its core expanded as

necessary so that it is still attached to the cores of the appropriate 1-handles). Also,
T I collapses to T f1g, subdivided into 0-cells, 1-cells, and 2-cells corresponding
to the islands, bridges, and lakes of M; T; / Note that if M; T; / were not full,
we might have a non-simply connected lake and K would not be a proper cellular
complex.)
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The resulting complex K is a spine for M in the sense of [MF]. If all of the
1-handles of are of valence 3, then it is also a special spine in the sense of [MF];
howeverK is not a special spine in general. In particular, in a special spine the link of
each point is either a circle or a circle with two or three radii, but if has a 1-handle
of valence n then the endpoints of the corresponding arc in K will have links which
are a circle with n radii. This, however, is the only way in which K fails to be a

special spine.

InSection 2 of [MF] Matveev and Fomenko describe howa manifoldwith a special
spine can be reconstructed by gluing together truncated or ideal simplices dual to the
vertices of the spine. This construction is easily generalized to our situation, and

shows that M can be reconstructed from K by gluing together ideal polyhedra dual
to the vertices of K. The result is an ideal cellulation of M which is dual to the
cellular complex K.

The 3-cells of this cellulation will be dual to the elements of K0, which consist of
the endpoints of the cores of the 1-handles of In addition, since we have assumed

each 1-handle of meets at least two 2-handles, each point v 2 K0 will be the
endpoint of at least two curves in T f1g\K1. Hence if nv is the valence of v in the
1-skeleton of K then nv 3. If nv 4 then v is dual to an nv 1/-sided pyramid:
the base of the pyramid is dual to the core of a 1-handle while the sides are dual to
curves in T f1g\K1. If nv D 3 then v is dual to a “digonal pyramid”, which we
eliminate from the cellulation by collapsing it to a face in the obvious fashion. Thus

K is dual to a cellulation ofM by ideal pyramids. Since the bases of these pyramids
correspond to the ends of the 1-handles of we can pair them up into a collection
of ideal dipyramids.

We can say more concerning the possible types and combinations of dipyramids.
On one hand, each vertex v is adjacent to nv 1 edges in T f1g\K1, and each such

edge has two endpoints; on the other hand, the core of each 2-cell of contributes
three edges to T f1g \ K1, and there are n such cores in a Mom-n. Therefore

†v.nv 1/ D 6n in a Mom-n. Furthermore, nv 1 must be at least 2 and if
it is greater than 2) equals the number of sides of the pyramid dual to v. Finally
the vertices v occur in pairs since each one corresponds to an end of a 1-handle,
and the vertices in each pair have the same valence. Therefore for a Mom-2, there
are only two possibilities: four three-sided pyramids, which glue together to form
two three-sided dipyramids, or two four-sided pyramids and two “digonal pyramids”,
which after eliminating the “digonal pyramids”) glue together to form a single
ideal octahedron. Similarly, there are only three possibilities for a Mom-3: three
three-sided dipyramids, a three-sided dipyramid together with an octahedron, or a

five-sided dipyramid by itself. The five possibilities for a Mom-4 are as follows:
four three-sided dipyramids, two three-sided dipyramids and an octahedron, one

three-sided dipyramid and one five-sided dipyramid, two octahedra, or one six-sided
dipyramid.
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Thus, if M; T; / is a hyperbolic Mom-2, Mom-3, or Mom-4 then M can be
obtained by gluing together the faces of one of these ten sets of ideal polyhedra.
Enumerating the possibilities forM then becomes a matter of enumerating the ways
in which the faces of these polyhedra can be glued together to form a hyperbolic
3-manifold.

This task is simplified somewhat by the following observation: the faces of each

dipyramid always have exactly one vertex which is dual to the cusp neighborhood
T OE0; 1/. When gluing the polyhedra together to form N, all such vertices must
be identified with one another and with no other vertices. Thus given any two faces,
there is only one possible orientation-preserving way that those two faces could be
glued together.

Hence it is sufficient to enumerate the number of ways in which the faces of one

of the ten sets of polyhedra can be identified in pairs. Although it is almost trivial to
program a computer to do this, care must be taken as the number of possibilities is a

factorial function of the number of faces, and a naive approach can rapidly exhaust
a computer’s memory. To reduce the demands on the computer, a refinement to the
naive approach was employed. First, for each possible set of polyhedra a symmetry
group was computed. Each dipyramid has dihedral symmetry, while if a given set

of polyhedra contains two dipyramids with the same number of sides then they can
be exchanged to provide an additional symmetry. Secondly, an ordering was chosen
for the set of all possible pairings of faces, namely the lexicographic ordering of the
pairings when represented as permutations. Our computer programconsidered the set

of pairings in order, and any pairing was immediately rejected if it was conjugate to
a previous pairing via an element of the symmetry group. This considerably reduced
the running time of the program.

The next step in the process is to eliminate pairings which result in obviously
non-hyperbolic manifolds. While the program SnapPea can in principle handle this,
for reasons of speed our program checked one necessary criterion itself: whether the
link of every ideal vertex was Euclidean. Computing the Euler characteristic of the
link of each ideal vertex in the cellular complex resulting from a pairing was easy to
do and eliminated many cases from consideration. Our program also eliminated any
pairing in which the vertices supposedly dual to the original cusp neighborhood or
solid torus in fact glued together to form two or more ideal vertices.

The above considerations resulted in a list of gluing descriptions of 4236 manifolds

which might be hyperbolic Mom-2’s or Mom-3’s. At this point, SnapPea was

employed to try and compute hyperbolic metrics for each of these manifolds, and to
find further hyperbolic symmetries among the manifolds which admitted such metrics.

SnapPea claimed to identify 22 hyperbolic manifolds, although only 21 were
unique; the manifold known as s785 in the SnapPea census appeared twice. There
were also two cases in which SnapPea experienced an error and was unable to make
a determination. In both of these cases, computation by hand showed that the funda-
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mental group of the manifold was isomorphic to the group ha;bjOEa; b3 i which has a

non-trivial center and hence is not the fundamental group of a hyperbolic manifold
with torus boundary components.)

Some comments about rigor are in order here. Since SnapPea relies on floatingpoint

arithmetic, some of its results are unavoidably inexact. In particular, there is
no guarantee that SnapPea will find a hyperbolic metric on a manifold even if one
exists, or that SnapPea will correctly discern the absence of a hyperbolic metric in
cases where it does not exist. In practice it is our experience that if one is careful
to allow SnapPea to simplify a triangulation before attempting to find a metric, then

if a metric exists SnapPea will either find it or fail to make a determination, while
if a metric does not exist SnapPea will either correctly say so or on rare occasions

“find” a metric with absurdly low volume due to floating-point error. Still, from a

standpoint of rigor this is problematic. Fortunately there is at least one task which
SnapPea does perform exactly, and that is finding isometries between two different
cusped manifolds: SnapPea will only report that an isometry exists if it finds identical
triangulations of the two manifolds. See [We]; in particular see the comments in the
source code file isometry.c.) This is a combinatorial operation, not a floating-point
one, and hence we are confident that SnapPea performs this operation rigorously.

Those familiar with SnapPea’s source code may object that SnapPea re-triangulates

each manifold before determining if an isometry exists, and that SnapPea uses

floating-point information to choose the re-triangulation. To this objection we would
reply that while floating-point information is used to choose the re-triangulation, the
actual re-triangulating isstill a combinatorial operation, i.e., it uses integer arithmetic.
The new triangulation is guaranteed to have the same topological type see the
comments in canonize_part_1.c from [We]), and hence the possibility of floating-point
errordoes not invalidate the result whenSnapPea reports that it has found an isometry.

Thus while we are trusting SnapPea when it says that the manifolds mentioned
above areall in the isometry class of one of 21 manifolds from the SnapPeacensus, we
are confident that we are not sacrificing rigor in so doing. Furthermore, the census

manifolds were recently confirmed to be hyperbolic by Harriet Moser in [Mos],
establishing that we have found 21 different hyperbolic Mom-2’s and Mom-3’s.

Unfortunately, we still cannot trust SnapPea when it fails to find an hyperbolic
metric for agiven manifold, as that result is not guaranteed to berigorous. Fortunately
SnapPea does have facilities to determine when two triangulations arecombinatorially
identical; this operation significantly reduced the number of manifolds to consider,
and it uses no floating-point arithmetic and hence can be considered rigorous. Doing
this results in a list of 66 unique triangulations from the above list of 4236 which need
to be confirmed to be non-hyperbolic manifolds. These manifolds were analyzed by
hand in the same way as the two manifolds for which SnapPea experienced an error.
Namely, SnapPea was used as before to compute the fundamental groups of the
manifolds in question, and then we examined the list of groups to see if any of them
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might be the fundamental group of a hyperbolic manifold. The majority of the groups
on the list either had a non-trivial center, or else had two rank-2 Abelian subgroups
which intersected in a rank-1 Abelian subgroup also impossible in the fundamental
group of a hyperbolic 3-manifold). Some of the groups required further analysis but
were still eventually rejected; for example, some groups had an index-two subgroup
with one of the above properties even when it was not clear that the whole group had
such properties. In the end the hand analysis did not reveal any new hyperbolic 3-
manifolds in the list of gluing descriptions. This completes the proof of the following
result:

Theorem 5.1. There are 3 hyperbolic manifolds M such that M; T; / is a Mom-2
for some T and : the manifolds known in SnapPea’s notation as m125, m129, and
m203. There are 18 additional hyperbolic manifolds M such that M; T; / is a
Mom-3 structure for some T and : the manifolds known in SnapPea’s notation as

m202, m292, m295, m328, m329, m359, m366, m367, m391, m412, s596, s647,
s774, s776, s780, s785, s898, and s959.

Remark 5.2. The computer code and data in the preceding description are available
from one of the authors [M2].

Some comments about the above list are in order. The manifold m129, better
known as the complement of the Whitehead link, is the only manifold on this list
which is obtained by gluing together the faces of an ideal octahedron. Also, all but
one of these manifolds have two cusps. The exception is the three-cusped s776, which
is the complement in S3 of a three-element chain of circles the link 631 in Rolfsen’s
notation).

Enumerating hyperbolic Mom-4’s was more difficult: merely enumerating the
possible gluing descriptions resulted in a list of 1033612 possibilities compared to
4236 possibilities in the previous case). However, using a similar process to the one

described above SnapPea identifies 138 different hyperbolic manifolds. Note that all
of the Mom-2’s and Mom-3’s appear in the Mom-4 list; the same manifold can admit
multiple handle structures.

Based on the above result, we propose the following:

Conjecture 5.3. There are 138 hyperbolic manifolds M such that M; T; / is a
Mom-2, Mom-3, or Mom-4 for some T and Of these, 117 are strict Mom-4’s, i.e.,

Mom-4’s which are not Mom-2’s or Mom-3’s.

Of the 117 strict Mom-4’s, SnapPea was successfully used to identify 83 of them
as manifolds from the SnapPea census. Those manifolds appear in Figure 1. SnapPea

was not able to identify the remaining 34 manifolds, and in fact 33 of those manifolds
have volumes which do not appear anywhere in the SnapPea census, presumably
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m357 s579 s883 v2124 v2943 v3292 v3450
m388 s602 s887 v2208 v2945 v3294 v3456
s441 s621 s895 v2531 v3039 v3376 v3468
s443 s622 s906 v2533 v3108 v3379 v3497
s503 s638 s910 v2644 v3127 v3380 v3501
s506 s661 s913 v2648 v3140 v3383 v3506
s549 s782 s914 v2652 v3211 v3384 v3507
s568 s831 s930 v2731 v3222 v3385 v3518
s569 s843 s937 v2732 v3223 v3393 v3527
s576 s859 s940 v2788 v3224 v3396 v3544
s577 s864 s941 v2892 v3225 v3426 v3546
s578 s880 s948 v2942 v3227 v3429

Figure 1. Conjectured list of SnapPea manifolds which are strict Mom-4’s.

because the Matveev complexity of the corresponding manifolds is greater than 7
see [MF]). The remaining manifold has the same volume and homology as the

census manifold v3527; it is conceivable that SnapPea was simply unable to find a

corresponding isometry.
The unidentified manifolds are listed in Figure 2. The notation used can be

interpreted as follows: the numbers before the semi-colon describe the type of ideal
polyhedra used to construct the manifold. For example, the first entry in the figure
has the numbers “3; 3; 4” to the left of the semi-colon; each “3” indicates an ideal
triangular dipyramid, while each “4” indicates an ideal square dipyramid i.e., an
ideal octahedron). Each ideal dipyramid has two “polar” vertices and either three or

four “equatorial vertices”. Number the faces of all the polyhedra sequentially in such
a way that the faces “north” of each equator are numbered before the faces “south”
of each equator. For example, in the first entry the first triangular dipyramid has

faces 0, 1, and 2 next to one polar vertex, and faces 10, 11, and 12 next to the other
polar vertex. The next triangular dipyramid has faces 3, 4, and 5 as well as faces

13, 14, 15, and the square dipyramid has faces 6 through 9 and 16 through 19. This
somewhat unintuitive numbering scheme was chosen for convenience when writing
the computer software for this part of the paper.) Then the numbers to the right of the
semi-colon form a permutation which describes how to glue together the faces of the
ideal polyhedra. For example, in the first entry the string of numbers which begins
with “3, 6, 8, 0, …” imply that face 0 is glued to face 3, face 1 is glued to face 6,
and so on. Since we are requiring “polar” vertices to be identified solely with other

“polar” vertices, no other information is needed to reconstruct the polyhedral gluing.
One additional point of information: all but eight of the manifolds in the list

satisfy j@Mj D 2; seven satisfy j@Mj D 3 and one satisfies j@Mj D 4. Thanks to
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.3;3; 4 I 3;6;8;0; 13;19; 1; 15;2; 17; 14; 18;16; 4;10; 7;12;9; 11; 5/

.3; 3; 4 I 3;6; 11; 0;10; 9; 1; 15;14;5; 4;2; 16;18; 8; 7; 12; 19;13; 17/

.3; 3; 4 I 3;6; 11; 0;9;18; 1; 19;13; 4; 15; 2; 16;8;17;10; 12; 14; 5; 7/
.3;3;3;3 I 3; 6;9;0;13; 19;1; 22; 14; 2;17;12;11; 4; 8; 23;18; 10; 16;5; 21; 20; 7; 15/

.3; 3;3;3 I 3; 4; 6; 0; 1; 19;2;9;13; 7;14;15; 23;8;10; 11;20; 21;22;5;16; 17; 18;12/

.3;3;3;3 I 3; 6;12;0;17;9;1; 11; 18;5; 23; 7;2;20; 15;14;21; 4;8; 22; 13;16; 19; 10/

.3;3; 4 I 3;4; 6;0;1;18; 2; 11; 16;10; 9;7; 15; 19;17;12;8; 14; 5; 13/

.3;3; 4 I 3;4; 6;0;1;18; 2; 14; 12; 13;19; 17;8; 9; 7;16; 15;11; 5; 10/

.3;3; 4 I 3;4; 6;0;1;18; 2; 14; 16;13; 19; 17; 15;9;7; 12; 8;11; 5; 10/

.3;3; 4 I 3;6;10; 0; 13;9; 1; 16;19; 5; 2;17;14;4;12;18; 7;11; 15; 8/

.3;3;4 I 3; 6;10; 0; 8; 13;1;16; 4; 18;2; 17; 15;5;19; 12; 7;11; 9; 14/

.3;3; 4 I 3;6;10; 0; 8;13; 1; 18;4; 16;2;19; 15; 5;17; 12; 9;14;7; 11/
.4; 4 I 15; 10;13; 8; 11;14;9; 12; 3; 6; 1; 4; 7;2;5;0/
.4; 4 I 15; 14; 5;6;9;2;3;10; 13;4; 7;12;11; 8;1;0/
.4; 4 I 15; 14; 9;8;11; 10;13; 12; 3; 2; 5; 4;7; 6;1;0/
.4; 4 I 15; 4; 13;6;1;8;3; 10;5;14;7; 12; 11;2;9;0/
.4; 4 I 15; 14; 4; 5; 2; 3; 11;10; 12; 13;7; 6; 8; 9;1;0/
.4; 4 I 15; 14; 6;7; 11; 10;2;3;12;13; 5; 4; 8; 9;1;0/
.4; 4 I 15; 7;13; 10;9;14;11; 1;12;4; 3; 6;8;2;5;0/
.4; 4 I 15; 5; 13;7; 9;1;11; 3; 14; 4; 12; 6; 10;2;8;0/

.3;3; 4 I 3;6;10; 0; 15;17;1;18; 14; 16;2;19; 13; 12;8;4; 9;5;7; 11/

.3;3; 4 I 3;6;11; 0; 8;19; 1; 15;4; 17; 14; 2; 16; 18;10; 7;12;9; 13; 5/

.3;3; 4 I 6;7; 10;8;13; 17; 0; 1; 3; 15;2;19; 16;4; 18;9;12; 5; 14; 11/
.3; 3;3;3 I 3; 4; 6; 0; 1; 9;2; 15;17;5;13; 18;19; 10;23; 7;22;8;11; 12; 21;20; 16;14/

.3;3; 4 I 3;6;10; 0; 8;14;1;16; 4;18; 2; 17; 13; 12; 5;19; 7;11; 9; 15/

.3;3; 4 I 3;6;10; 0; 8;14;1;18; 4;16; 2; 19;13; 12; 5; 17; 9; 15;7; 11/

.3;3; 4 I 3;6;7; 0; 16;19; 1; 2; 10;12;8;14; 9; 18;11; 17;4;15; 13; 5/

.3;3;4 I 6; 10;19; 8; 13; 17;0;12; 3; 15;1;16; 7;4; 18;9; 11; 5;14;2/

.3;3; 4 I 6;7; 10;8;9;13; 0; 1;3;4; 2; 19;16; 5; 17; 18;12;14;15; 11/

.3;3; 4 I 3;6;10; 0; 8;18; 1; 14; 4;16; 2; 19;13; 12; 7;17; 9;15; 5; 11/
.3;3;3;3 I 3; 6;12;0;9; 16; 1;18; 23; 4; 20;22;2;19; 15; 14; 5;21; 7;13; 10; 17; 11;8/
.3;3;3;3 I 3; 4; 6; 0;1;9;2;15; 17;5; 14; 13; 19; 11; 10;7; 23;8; 22; 12; 21;20; 18; 16/

.3;3;3;3 I 3; 6;12;0;9; 16; 1;10; 18; 4; 7;22;2;20; 15; 14;5;21; 8; 23;13; 17; 11; 19/

.3;3;3;3 I 3; 6;12;0;9; 16; 1;18; 11; 4; 23;8;2;19; 15; 14;5;21; 7;13; 22; 17; 20; 10/

Figure 2. Conjectured Mom-4’s not identified by SnapPea.

the timely assistance of Morwen Thistlethwaite, the authors were able to positively
identify all eight of these manifolds:
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Conjecture 5.4. There are 8 hyperbolic manifoldsM such that M; T; / is a Momn

for some 2 n 4 and j@Mj > 2. All eight manifolds are complements of links
in S3: the links 631 632 the Borromean rings), 831 839 842 and the links with Gauss
codes jcccddEGHiJBFCa, jcbecceaHbIJDGF, and mccdfiEhAjKLcmdbFG.

At the time ofwriting we arestill searching for an efficientway to verify SnapPea’s
computations in the Mom-4 case; examining all of the fundamental groups by hand is
no longer a practical solution in thiscase. Until a betterway is found, our enumeration
results in the Mom-4 case should properly be considered speculative.

6. For n 4, hyperbolic Mom-n’s in hyperbolic 3-manifolds are internal
Mom-n’s

Let R be a convolotube in the interior of a compact hyperbolic 3-manifold N and
let V be the cube with knotted hole bounded by R. By drilling out solid tori from

N
BV we can create a manifold M which is non-elementarily embedded in N and

whose boundary contains a convolutube. We call such an embedding knotted. The
goal of this chapter is to show that if n 4, any embedding of a Mom-n manifold
M; T / into a compact hyperbolic manifold N; T / is unknotted.

Definition6.1. LetM be a compact3-manifold and T a possibly empty unionof
components of @M. We say that M; T / is hereditarily unknotted, ifevery non-elementary
embedding into a compact hyperbolic 3-manifold N, taking T to components of @N
has the property that each component of @M is either boundary parallel or bounds a

solid torus.

Remark 6.2. If M; T / is hereditarily unknotted and M1 is obtained by filling a

component of @M T then M1; T / is hereditarily unknotted.

Lemma 6.3. If M;T / is ahereditarily unknotted Mom-n manifold non-elementarily
embedded in the hyperbolic 3-manifoldN such that T bounds a tubular neighborhood
of a geodesic, then M; T / is an internal Mom-n structure.

Proof. Let V be the solid torus bounded by T By Lemma 1.9, if N1 D N
BV with

cusp neighborhoods deleted, then N1 is compact hyperbolic. Therefore M; T /
N1; T / is a non-elementary embedding and hence any component of @M T either

bounds a solid torus or is boundary parallel in N1. Therefore similar properties hold
in N and hence M;T / is an internal Mom-n structure on N.

Remark 6.4. The condition that T bounds a neighborhood of a geodesic is essential.
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Lemma 6.5. Let M be a compact hyperbolic 3-manifold with T a union of components

of @M. If @M T is connected, M;T / is hereditarily unknotted.

Proof. If under a non-elementary embedding M;T/ N; T /, @M T was a

convolutube, then M would be reducible.

The following result establishes criteria for showing that M; T / is hereditarily
unknotted.

Lemma 6.6. LetM be a compact hyperbolic 3-manifold with V1, …, Vn components
of @M and T a nonempty union of some other components. If any of the following
hold, there exists no non-elementary embedding M;T / N; T / such that N is
compact hyperbolic and fV1;: : : ; Vng is exactly the set of convolutubes of @M N.

i) The manifold obtained by some filling of M along V1, …, Vn is a 3-manifold
without any hyperbolic part. That is, after applying sphereand torus decompositions
there are no hyperbolic components.)

ii) After some filling of M along V1, …, Vn, the surface T is compressible.

iii) For every filling on a non-empty set of components of @M T [V1[ [Vn,
either V1 [ [ Vn is incompressible or the filled manifold has no hyperbolic part.

Proof. Suppose that M; T / embeds in N; T /, where among the components of @M,
V1; ; Vn are the set of convolutubes andW1; ;Wm are the tubes. LetWi denote
the solid torus bounded by Wi and Vi denote the cube with knotted hole bounded by

Vi Let B1; ;Bn be pairwise disjoint 3-balls in N such that for each i Vi Bi
i) LetMy be a manifold obtained by filling the Vi ’s. Let Ny be obtained by deleting

the Vi ’s and doing the corresponding fillings along the Vi’s. Therefore Ny is obtained

from My by Dehn filling and Ny is a connected sum of N with S2 S1’s and/or lens
spaces and/or S3’s. This implies that My has a hyperbolic part.

ii) If T is compressible in My it is compressible in Ny and hence in N, which is a

contradiction.
iii) First observe that Vi compresses in the manifold M0 obtained by filling M

where each Wi is filled with Wi Topologically, M0 is homeomorphic to N with n
open, unknotted, and unlinked solid tori removed and so has a hyperbolic part.

Theorem 6.7. If the Mom-n manifolds for n 4 with three or more boundary
components are exactly those listed in Figure 3 i.e., if Conjecture 5.1 is true), then
any hyperbolic Mom-n manifold M; T / with n 4 is hereditarily unknotted.

Proof. By Lemma 6.5 it suffices to consider the case where M is one of the eight
Mom-4 manifolds with at least three boundary components listed in Figure 3. If
M is any of the first six manifolds and T is any component of @M, then M;T /
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28 jcccddEGHiJBFCa

jcbecceaHbIJDGF mccdfiEhAjKLcmdbFG

Figure 3. Eight links whose complements are Mom-4’s with 3 or more cusps.
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is hereditarily unknotted by criterion i) of Lemma 6.6. For manifolds 7 and 8,
depending on which boundary component is used for T applications of i) and iii)
imply that they are hereditarily unknotted.

7. Examples of Mom-n structures

Inthissectionwegivesomerepresentative examples ofhyperbolic manifoldsN which
contain an internal Mom-2 or Mom-3 structure M; T; / Our goal in this section is
to give the reader an intuitive feel for how these particular cell complexes arise inside
hyperbolic manifolds. All of the manifolds in this section involve manifolds N with
torus boundary, with the base torus of the Mom-structure M; T; / being @N. To
obtain Mom-n structures on closed manifolds, note that if T D @N then a Mom-n
structure M; T; / on N passes to a Mom-n structure on any manifold obtained by
filling @N

Example 7.1. The first example is the figure-8 knot complement. We construct a

Mom-2 M;T; / inside this manifold as follows. The torus T is just the boundary
of the manifold. The 1-handles span the two tangles which make up the standard
diagram of this knot, as seen in Figure 4 a). Finally the 2-handles are symmetrically
placed as shown in Figure 4 a). Note that, as required, each 2-handle meets three
1-handles counting multiplicity. Specifically, each 2-handle meets the top 1-handle
twice and the bottom 1-handle once. Also, one can see from the diagram that the
complement of T [ f1-handlesg [ f2-handlesg consists of a solid torus, and that the
solid torus retracts onto a homotopically non-trivial simple closed curve which is a

geodesic in N). Thus this is a valid hyperbolic internal Mom-2 structure on N.

a) b)

Figure 4. The figure-8 knot complement equipped with a) a full internal hyperbolic Mom-2

structure, and b) a non-full internal Mom-2 structure with a non-hyperbolic underlying
submanifold M.
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Moreover, we can quickly determine the nature of the ideal triangulation of M
described in the Section 5. The ends of the valence-4 1-handle are each dual to
a four-sided pyramid in this triangulation, and the two endpoints of the valence-2
1-handle are each dual to a “digonal pyramid”, each of which gets flattened to a

face and ignored. Thus the figure-8 knot complement possesses an internal Mom-
2 structure M; T; / where M is a two-cusped hyperbolic manifold which is in
turn obtained by gluing together the faces of an ideal octahedron. By the comments
after Theorem 5.1, M must be the complement of the Whitehead link. And indeed,

it is easy to verify that if one drills out the core of the solid torus in the complement
of M one obtains a manifold homeomorphic to the complement of the Whitehead
link.

Figure 4 b) shows a similar internal Mom-2 structure M; T; / on N, but in this
case the structure is not full as the boundary of the rightmost arc in the diagram is
an annular lake. Consequently, M in Figure 4 b) has an embedded essential annulus
and is a non-hyperbolic manifold. However we can split M along this essential
annulus to obtain M1 N, and split T to obtain an annulus B; then using the same

1-handles and 2-handles we get a full general based Mom-2 structure M1;B; 1/
on N, where M1 has a single torus boundary component which is boundary parallel
in N in factM1 is a deformation retract of N) and where B is a 1-injective annulus
in this boundary component. Transforming this general based Mom-2 structure as in
Lemma 4.6 results in another full internal Mom-2 structure on N.

Example 7.2. Next we will let N be the manifold known as m003 in the SnapPea
census. This manifold has first homology group Z C Z=5, and hence is not a knot
complement; instead, we will present this manifold as the union of two regular ideal
hyperbolic tetrahedra; see Figure 5. Note that in the diagram each face is glued to the
corresponding face on the other tetrahedron, in such a way that the edges match up
into two equivalence classes as shown. To make N a compact manifold with torus
boundary, assume the ideal tetrahedra are truncated. Now suppose that we construct

M; T; / in this case as follows. For the 1-handles, we use neighborhoods of the
two edges shown in the diagram, truncated by the torus T D @N And for the 2-
handles, we use neighborhoods of the two truncated triangles which are formed by
gluing together the faces on the front of each tetrahedron in the diagram. It is a

simple exercise to confirm that the complement of the resulting embedded manifold
M consists of a solid torus, and that the solid torus retracts onto a simple closed
geodesic curve, and that therefore this manifold possesses a valid hyperbolic Mom-2
structure. Each of the 1-handles in thisMom-2 meets three of the 2-handles, counting
multiplicity; therefore we canconclude that m003 containsa Mom-2 M; T; / where

M is obtainedby gluing together two ideal three-sided dipyramids. FromTheorem5.1
and the comments following it we know this must be either m125 or m203. Further
investigation with SnapPea shows that it must in fact be m125.
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Figure 5. The two ideal tetrahedra making up the manifold m003.

It is instructive to get another view of this Mom-2 by constructing a cusp diagram
for this manifold. Specifically, consider the triangulation induced on T by the given
ideal triangulation of m003. The two ideal tetrahedra in m003 will appear as eight
triangles, the four ideal triangles will appear as twelve edges, and the two edges will
appear as four vertices. The resulting cusp diagram is shown in Figure 6; keep in
mind this is a diagram of a torus, so the edges of the parallelogram are identified with
one another. The labels inside each triangle indicate which of the ideal simplices

b b

a a

b b

a a

Figure 6. The cusp diagram for m003, with the components of the Mom-2 highlighted.

contributes that triangle to the cusp diagram.) The highlighted edges in the cusp
diagram are those that correspond to the 2-handles of the handle structure ; in other
words, they along with the four vertices of the diagram comprise 1 \ T
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Example 7.3. As another example in this vein, consider the manifold N D m017.
Thismanifoldhas first homologygroupZCZ=7, so again it is not a knot complement
in S3, but for brevity’s sake we only present a cusp diagram here. In Figure 7, the
corners of the three ideal hyperbolic tetrahedra which make up m017 can be seen.

And again, the highlighted edges in the cuspdiagram correspond to two faces of those

tetrahedra which provide the 2-handles for an internal Mom-2 in this manifold. Note
that we can determine from the cusp diagram alone that the 1-handles of this Mom-2
meet four and two 2-handles respectively, counting multiplicity, and that therefore
in the resulting Mom-2 structure M; T; / the manifold M is obtained by gluing
together an ideal octahedron. As before, this implies thatM must be homeomorphic
to the complement of the Whitehead link. Some further work with SnapPea confirms
this: m017 is obtained by 7; 2/ Dehn surgery on either component of the link.

c

b

a

c

a

b

c

b

c

a

b

a

Figure 7. The cusp diagram for m017, with the components of a Mom-2 highlighted.

Example 7.4. Finally, we include the motivating example for this paper. Figure 8
shows the maximal cusp diagram of the 1-cusped manifold m011 as provided by
Weeks’ SnapPea program. Unlike the previous cusp diagrams in this section, it
also shows all the horoballs at hyperbolic distance at most 0:51 from the maximal
horoball at infinity. The parallelogram shows a fundamental domain for the Z° Z
action. Note that the ideal triangulation presented in this diagram is dual to the Ford
decomposition of the manifold. In particular the 1-simplices of the triangulation are

geodesics orthogonal to pairs of horoballs; these 1-simplices appear either as edges

in the figure joining the endpoints of the simplex in S21 or as the vertical geodesics
passing from the center of each horoball to the horoball at infinity.
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Figure 8. SnapPea’s cusp diagram for m011, with the components of a Mom-2 highlighted.

Let H1 denote the horoball at infinity. There are six horoballs in the diagram
up to the Z ° Z-action, labelled 1 1C, 2 2C, 3 and 3C. This notation
means that if 2 1.m011/ takes horoball n to H1, the horoball at infinity, then

H1 is transformed to one labelled n The geodesic from n to H1 is oriented
to point into H1 and hence the geodesic from nC to H1 is oriented out of H1.
These orientations induce, via the 1.m011/-action, the indicated orientations on the
edges of the diagram. We explain, by example, the meaning of the edge labels. The
edge 3 from 2C to 2 corresponds to a geodesic with the property that when 2C
is transformed to H1, then 2 is transformed to 3C and is transformed to the
vertical geodesic oriented from H1 to 3C. Had the edge been oriented oppositely,
then 2 would have been transformed to 3 SnapPeadid not provide the orientation
information, however such information can be derived from the SnapPea data.

By staring at this diagram we can see how m011 contains a Mom-2. Let V0 be
the maximal horotorus neighborhood of the cusp, slightly shrunken. By expanding
V0, the expanded V0 touches the expanded) horoballs labeled 1, thereby creating a

1-handle denoted E1. Let V1 denote this expanded V0. Further expansion creates V2
which is topologically V1 together with another 1-handle E2, this 1-handle occurring
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between horoball 2 and H1. The edge labelled 1 between horoballs 2 and 2C
corresponds to a valence three 2-handle which goes over E1 once and E2 twice.
Similarly the edge labelled 2 between horoballs 1 and 1C gives rise to a valence
three 2-handle going twice over E1 and once over E2. The parallelogram of Figure 8
can also be viewed as @V0, with the centers of 1 1C, 2 2C as the attaching sites

of the 1-handles and the thick black lines corresponding to where the 2-handles cross

over @V0.
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