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The arithmeticity of a Kodaira fibration is determined by its
universal cover

Gabino Gonzalez-Diez and Sebastian Reyes-Carocca*

Abstract. Let S -> C be a Kodana hbiation Here we show that whether or not the algebraic
surface S is defined over a tuimbei field depends only on the biholomoiphic class of its universal
cover
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Introduction and statement of results

Let X c P" be a complex piojective vanety and k a subheld of the field of the
complex numbers C We shall say that X is defined over k or that k is a field of
definition for X if there exists a collection of homogenous polynomials /o fm
with coefficients in k so that the variety they define is isomorphic to X We will say
that X is arithmetic if it is defined over Q oi equivalently over a number held

While it is classically known that theie aie only thiee simply connected Riemann
surfaces, theie is a huge amount ol possibilities foi the holomoiphic universal cover
°f a complex surface S It would be inteiesting to undeistand the extent to which the
arithmeticity of a projective suiface can be lead off from its holomorphic universal
covei In this shoit note we study this question foi a veiy impoitant class of complex
surfaces known in the hteiature as Kodana fibiations

A Kodaira fibnition consists of a non-smgulai compact complex suiface S, a
compact Riemann surface C and a suijective holomoiphic map S —> C eveiywhere

maximal rank such that the hbeis aie connected and not mutually isomorphic
einann suifaces The geneia g of the fibre and h of C aie called the genus of the
ration and ol the base iespectively It is known that such a suiface S must be an

a tebraic suiface of geneial type and that necessanly g > 3 and b > 2 We notice
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that an important theorem by Arakelov [11 implies that, up to isomorphism, there are

only finitely many Kodaira fibrations over a given algebraic curve C.

In 1967, Kodaira [13] used fibrations of this kind to show that the signature of
a differentiable fiber bundle need not be multiplicative. Soon after Kas [12] studied

the deformation space of the surfaces constructed by Kodaira, and two years later

Atiyah [2| and Hirzebruch [10] studied further properties concerning the signature
of Kodaira fibrations in a volume dedicated to Kodaira himself.

Explicit constructions of Kodaira surfaces have been made by Gonzalez-Diez and

Harvey [81, Bryan and Donagi [4], Zaal [16] and Catanese and Rollenske [6[.
We now state the main results of the paper.

Theorem 1.1. Let k be an algebraically closed subfield of the complex numbers and
S | —> C\ and S2 C2 two Kodaira fibrations so that their respective holomorphic
universal covers are biliolomorphically equivalent. Then Sj is defined over k if
and only if S2 is defined over k. In particular, .Sj is arithmetic if and only if S2 is

arithmetic.

To prove this theorem we will have to show first the following result which is

interesting in its own right.

Theorem 1.2. Let k be an algebraically closed subfield of the complex numbers and
S —> C a Kodaira fibration. Then S is defined overk ifand only ifC is defined over
k. In particular, S is an arithmetic surface ifand only if C is an arithmetic curve.

Theorem 1.1 states that the arithmeticity of a Kodaira fibration can be recognized
in its holomorphic universal cover. We anticipate that the holomorphic universal

cover of S is a contractible bounded domain S3 C C2 (see Section 2). Clearly,
Theorem 1.1 implies that the biholomorphism class of varies together with the

variation of S in moduli space. We note that in general Kodaira surfaces are not

rigid ([12], [6]).

2. Uniformization of Kodaira Surfaces

It is well-known that the universal cover of a Riemann surface is biholomorphically
equivalent to the projective line P1. the complex plane C or the upper half-plane HI.

Understanding universal covers of complex manifolds of higher dimension seems to
be a very complicated task. However, thanks to the work of Bers [3] and Griffiths [9]
on uniformization of algebraic varieties, it is possible to describe the universal cover
of a Kodaira fibration / : 5 -> C in a very explicit way.

Let 71 : HI —> C be the universal covering map of C and T the covering

group so that C HI/T. By considering the pull-back h : 71* S -> HI of / by

n, we obtain a new fibration in which, for each t e HI, the fiber h~x(t) agrees
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with the Riemann surface / '(7r(/)). Teichmüller theory enables us to choose

uniformizations h~x (t) D,/K, possessing the following properties:

(a) K, is a Kleinian group acting on a bounded domain Dt of C which is

biholomorphically equivalent to a disk.

(b) The union of all these disks 38 := U^hD, is a contractible bounded domain

of C2 which is biholomorphic to the universal cover of S, that is, S 38/G,
where G < Aut(A^) is the covering group.

(c) The group G is endowed with a surjective homomorphism of groups 0 : G -» T

which induces an exact sequence of groups

i — > g —r > i

where, for each t e H, the subgroup K preserves Dt and acts on it as the

Kleinian group Kt.
We note that 38 carries itself a fibration structure 38 -»• HI whose fiber over t e HI

's D, (i.e. 38 is a Bergman domain in Bers' terminology).
In 114) and [15] Shabat studied the automorphism groups of universal covers of

families of Riemann surfaces and proved a deep result which in the case of Kodaira
fibrations amounts to the following theorem.

Theorem (Shabat). Let f : S -> C be a Kodaira fibration and 38 the holomorphic
universal cover of S. Then:

(a) the covering group G of S has finite index in Aut(33).

(b) Aut(38) is a discrete group.

3. Proof of Theorems 1.1 and 1.2

We denote by Gal(C) the group of field automorphisms of C. The natural action
of Gal(C) on the ring of polynomials C[.v0 x„] induces a well-defined action
(o, V) -> on the set of isomorphism classes of algebraic varieties. Throughout
this section k will denote an algebraically closed subfield of C and Gal(C/&) the

subgroup of Gal(C) consisting of all automorphisms a fixing the elements of k.

3.1. Proof of Theorem 1.2. Let f : S —> C be a Kodaira fibration. Let us assume
that the curve C is defined over k. Then C° C for all o e Gal(C//r), and

so' by Arakelov's finiteness Theorem, there are only finitely many pairwise non-
isomorphic Kodaira fibrations fa : Sa -+ C° with a Gal(C/k). This implies
that 5 is defined over k [7, Crit. 2.1 ].

In order to prove the converse, we begin by recalling that a complex manifold X
is named hyperbolic if every holomorphic map C X is a constant map. We claim



432 G Gonzalez-Diez and S Reyes-Carocca CMH

that Kodatra hbrations are hyperbolic. In fact, let j : S —> C be a Kodaira fibration
and <p : C —>• S a non-constant holomorphic map. As C has genus greater than one,
the map / o <p C -> C must be constant and therefore the image of <p has to be

contained in a libei / — 1

(v) tor some x C. Since the fibers are also hyperbolic, <p

must be constant too
Let us now assume that S is defined over k, so that Sa S for any a e

Gal(C/fc). Now as S is a Kahler hyperbolic manifold, the canonical divisor Ks
is ample [5] and this implies that only finitely many curves R of genus greater than

one can arise as the image ot a surjective morphism S —> /? [11]. In particular the

family {Ca a e Gal(C/A:)} itself contains only finitely many isomorphism classes

ot curves. It then follows that C is defined over k [7, Crit. 2.1], as required

3.2. Proof of Theorem 1.1. Let /2 : S2 —»• C2 be a Kodaira fibration and Si an

arbitrary non-singular complex surface. Let us denote by ,the universal cover
of Si and suppose that there exists an isomorphism a : 381 382 between them.

Let G, be the uniformizing group of S, so that 38,/Gt S,. By Shabat's Theorem

G2 finite index in Aut(^82). We claim that Gi has finite index in Aut(^i) too.

In fact, as 38i/Aut('J8i) S$2jAut(^2) ancl as Aut(^2) ls a discrete group, the

projection map Si 38\/G\ -* 38\/A.ui{3§\) is a holomorphic map between

(normal) compact complex surfaces; from here the claim follows.

By replacing Gj by aGia-1 we can assume that 38\ 382, so we denote

simply by °j8. As both Gi and G2 have finite index in Aut(^), so must do their
intersection G|2 Gi n G2 The complex surface Sj2 := 38/G\2 is endowed with
two finite degree covers : Sj2 -> S, with / 1,2; in particular, S|2 is also a

projective surface. Moreover, if we denote by 0i2 the restriction of the epimorphism
0 : G2 -* r2 introduced in the previous section to Gi2, then we obtain an exact

sequence of groups

where ri2 0j2(Gi2) and K[2 ker(0i2) K fl Gi2. As in Section 2, this

sequence defines a Kodaira fibration /12 : Si2 -> Cl2 '= H/ri2 whose fiber

over [f]r,2 1S isomoiphic to the Riemann surface D,/K(12 where K\2 is the Kleiman

group that realizes the action of HC[2 on Dt. We have the following commutative

diagram

*r> 0,2 r< 1

> G[2 > T12 > 1

j 12 /
C\2

P
C2

where p is the projection induced by the finite index inclusion Ti2 < T2.
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Let us now assume that S2 is defined ovei k Then Theorem 1.2 ensures that C2

is also defined over k. Fuitheimoie, being an unbianched cover of C2. the curve C12

must also be defined over k [7, Th 4 1] Again, by Theorem 1.2 we conclude that

S12 is defined ovei k Now, as Si is a suiface of geneial type ansing as the image
(by n[) of a surface defined ovei k, it must be defined ovei k as well |7, Prop. 3.2]
This proves Theorem 1.1
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