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Connections on equivariant Hamiltonian Floer cohomology
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Abstract. We construct connections on S1 -equivariant Hamiltonian Floer cohomology, which
differentiate with respect to certain formal parameters.

Mathematics Subject Classification (2010). 53D40; 53D37, 55N91, 57R56.

Keywords. Floer homology, Gauss-Manin connection, topological quantum field theory.

1. Introduction

Floer cohomology often involves formal parameters, which take into account various

topological features. This paper concerns differentiation with respect to such

parameters. Before we turn to that, it may be appropriate to recall other contexts in
which cohomology groups come with similar differentiation operations:

- In algebraic geometry, given a smooth family of algebraic varieties, the fibrewise

algebraic de Rham cohomology carries the Gauss-Manin connection [18]. Griffiths
transversality [14,15] measures the failure of the Hodge filtration to be covariantly
constant, and that is the starting point for the theory of variations of Hodge structures.

- The Gauss-Manin connection has been generalized to noncommutative geometry
by Getzler [12], where it lives on the periodic cyclic homology of a family of dg
(or /loo) algebras. Recall that periodic cyclic homology can be obtained from negative
cyclic homology by inverting a formal parameter, here denoted by u. In Getzler's
formula, only a simple pole u~l appears (hence, u times that connection is an

operation on negative cyclic homology). This property is the analogue of Griffiths
transversality, in the formalism of variations of semi-infinite Hodge structures [2],

- There is a related but distinct connection on periodic cyclic homology, which

applies to a single dg algebra, and differentiates in «-direction [19,31], More
precisely, the connection is defined for Z/2-graded dg algebras (and is basically
trivial if the grading can be lifted to Z). It involves a u~2 term, hence can be thought
of as having (in general) an irregular singularity at the parameter value u 0. In
algebraic geometry, a related construction appears in the context of exponentially
twisted de Rham cohomology.
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- Closer to our interests is the (small) quantum connection in Gromov-Witten theory
[8,13]. This differentiates in direction of the Novikov parameters, as well as another

parameter, which one can think of as being our previous w. In the Calabi-Yau case,
where differentiation in «-direction is not interesting, [111 announced a proof of
the fact that the quantum connection is related to Getzler's connection on the cyclic
homology of the Fukaya category, through the (cyclic) open-closed string map.

The aim of this paper is to construct connections on S ^equivariant Hamiltonian
Floer cohomology. The idea underlying the construction is quite general, since

it mainly involves certain chain level TQFT operations (geometric realizations
of the Cartan calculus in noncommutative geometry, which underpins Getzler's
construction). However, we will not aim for maximal generality; instead, we illustrate
the idea by two specific instances, leading, in slightly different contexts, to what we
call the <7-connection and «-connection. In cases where Floer cohomology reduces

to ordinary cohomology, these reproduce appropriately specialized versions of the

quantum connection. (One also expects them to be related to the corresponding
structures in noncommutative geometry through open-closed string maps, but we
will not pursue that direction in this paper.)

The original motivation comes from [29], That paper considers (non-equivariant)
symplectic cohomology, which is a specific instance or application of Hamiltonian
Floer cohomology. One imposes a crucial additional assumption, which is that the

class of the symplectic form should map to zero in symplectic cohomology. One then

gets a connection on that cohomology, which is not canonical (it depends on the choice
of an appropriate bounding cochain, which "certifies" the previously mentioned

vanishing assumption). This looks somewhat different from our <7-connection,
which only exists for the S ' -cquivariant theory, does not require any additional

assumption, and is canonical. In spite of that, one still expects to be able to relate
the two connections, by means of a suitable intermediate object; see [ 29, Section 3],
The analogous situation in algebraic geometry would be the case of a family of
smooth varieties with vanishing Kodaira-Spencer class (this means that the family
is infinitesimally trivial, but not necessarily globally trivial; after all, any family of
affine varieties satisfies that condition). In that case, one can define a non-canonical
connection on the spaces of fibrewise (algebraic) differential forms, which (in a

suitable sense) induces the Gauss-Manin connection.

The structure of this paper is as follows. Section 2 introduces the relevant

geometric situation, and states our main results. Section 3 collects some background
material about Morse theory on CP00. Section 4 is a review of some relevant aspects
of Floer theory. Section 5 defines the ^"-connection, and in Section 6, we adapt the

previous argument to get the «-connection.

Acknowledgements. This work was partially supported by the Simons Foundation,
through a Simons Investigator award; by NSF grant DMS-1500954; and by the
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2. Main constructions

After recalling some basic Floer-theoretic notions and terminology, we explain
the formal structure of the operations to be constructed. We also include a few

comments about the wider context into which they fit (implications; relations with
other developments; and possible generalizations).

2.a. The (/-connection. Let (M, co) be a compact symplectic manifold with convex
contact type boundary. (The boundary could be empty, even though that case is of
less interest for us; also, we will not really make any use of the contact geometry
of the boundary, other than to ensure suitable convexity properties for solutions of
Cauchy-Riemann equations.) For technical simplicity, and also to strengthen the

similarity with classical cohomology, we will assume that

Cl(M) 0. (2.1)

Let A C M be the additive subgroup generated by the integers and the periods
co H2(M; Z), and R c M the subring with the same generators. Clearly,
[co] G //2(M;R) can be lifted to H2(M; A)\ we pick such a lift, denoted by [fi].
We use a single-variable Novikov ring A where the coefficients lie in R, and the

exponents in A. This means that elements of A are formal series

f{q) r0qa° + rxqa^ H rt e R, at e A, lim,- at +00. (2.2)

By construction, A is closed under differentiation dq. Quantum cohomology is the

graded ring obtained by equipping H*(M\ A) with the (small) quantum product *.
Take u to be a formal variable of degree 2, and extend the quantum product w-linearly
to H*(M\ AJm]). Concerning the notation, let's point out that the distinction between

polynomials and power series in u is strictly speaking irrelevant here, because of the

grading: in each degree, only finitely many powers of u can appear. In spite of that,

we keep the power series notation since it's appropriate in a more general context;
the same will apply to Floer cohomology. The quantum connection (or rather, the

part of that connection which concerns us at this point) is the endomorphism

Dq, H*(M-AH) —> //*+2(M; A[m]),
3)

Dqx udqX + q"1 [£2] * x.

As defined, Dq is a connection in udq-direction, which may feel awkward. If one
wants to get a connection in the more standard sense (which means in dq-direction,
hence having degree 0), one can instead take u"1 Dq, acting on H*(M; A((u))).
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We will consider Floer cohomology groups HF*(M,e), for e > 0, which are
defined using functions whose Hamiltonian vector field restricts to e times the Reeb

field on 3M (assuming that there are no closed Reeb orbits of length c). Each such

group is a finitely generated Z-graded A-moduIe. It also carries the structure of a

module over the quantum cohomology ring, via the quantum cap product, which we
will write as Our main object of study is the A'-equivariant version of Floer

cohomology, denoted by HF*q(M, e). This is a finitely generated Z-graded module

over A|m]. Equivariant Floer cohomology sits in a long exact sequence

HF*~2{M, HF*eq(M, c) — HF*(M, e) —> HF*~l(M, )->
(2.4)

We will often make use of the forgetful map (from equivariant to ordinary Floer
cohomology) which is part of that sequence. Also of interest are the PSS maps,
which are canonical maps

H*(M; A[w]) — > HF*q(M, e) (2.5)

u—0

H*(M\ A) - > HF*(M, e).

B relates the quantum product with its cap product counterpart. Moreover, if we
choose e small, then both B and Beq are isomorphisms. The ^-connection can be

described as follows:

Theorem 2.1. There is a canonical additive endomorphism

ry.HF*eq(M, e) -> HF*+2(M,

rq (fx) fTq(x) + U (dq f)X for f G A \u J,

which fits into a commutative diagram

HF*q(M, e) HF*+2(M, (2.7)

HF*(M, c)
q '["]^'

; HF*+2(M, e).

Moreover, for small c, the isomorphism Beq identifies Fv with Dq.

Let's give at least a hint of the construction. Floer cochain complexes are, by

definition, complexes of free modules over the Novikov ring, with a distinguished
basis (up to signs). Using that basis, one can equip them with the naive operation of
differentiation dq in the Novikov variable, but that operation does not commute with
the Floer differential d. In our version of the definition, d counts Floer trajectories
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with weights ±qE, where E is the intersection number with a suitable cycle £2

representing the symplectic class. Clearly, the commutator 3qd — ddq counts those

same trajectories with weights 3q(±qE) — ±(q~lE)qE. The idea is to interpret
this new count as a kind of "Lie action" of the cohomology class <7_1[£2], On
the S'-equivariant complex, the Lie action operation becomes nullhomotopic after

multiplication with the equivariant formal parameter u. One uses the nullhomotopy
to add a correction term to udq, turning it into a chain map, which induces T?.

As one can see from this sketch, the ^-connection is closely tied to the origin of
Novikov rings as a way of keeping track of energy, hence to the non-exactness of the

symplectic form. If co is exact, one can take £2 0, in which case the coefficients
of the Floer differential are ±1 ; then dq is already a chain map, and on cohomology,
one has

Tq — u'dq. (2.8)

Similarly, suppose that the periods are u> • H2(M; Z) mZ, for some integer m > 2

(and accordingly choose [£2] to be the m-fold multiple of an integral class). In that

case, A Z ((</)), but Floer cohomology can in fact be defined using only powers
of qm. As a consequence, if we consider the version of the theory with coefficients
mod m, which we denote by HF*(M,e',Z/m) (even though it is actually defined

using A <g>z Z/m (Z/mZ)((g)) as coefficient ring), then that version again carries
a trivial dq-operation. The same holds for the equivariant theory, and we have a

commutative diagram which describes 'T? modulo m

HF*eq(M, e) HF*+2(M, e) (2.9)

HF*eq(M, e; Z/m) — *- HF*+2(M, e; Z/m).

If one wants a connection in 3?-direction, one can consider Tq, acting on

HF*q(M,e) 0zim] Z((u)) HF*q(M, e) 0A[U] A((«)). (2.10)

In this context, we should mention how this fits in with the localisation theorem
of [1,36] (even though that will not be pursued further in the body of the paper).
An appropriate generalization of that theorem shows that, after tensoring with Q((u))
instead of Z ((u)) in (2.10), the equivariant PSS map (2.5) becomes an isomorphism for
all e. Moreover, a generalization of the compatibility statement from Theorem 2.1

(not proved here, but not tremendously hard) shows that this map still relates Dq
and Tq. Hence, the resulting version of Tq can be recovered, up to isomorphism,
from the standard Gromov-Witten theory of M. The "up to isomorphism" issue is

not negligible, since it may not be easy to see what the localisation isomorphism does

to geometrically relevant symplectic cohomology classes (see [29, Section 3] for an
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example of this, involving Borman-Sheridan classes). Leaving that aside, note that

tensoring with Q((w)) entails some loss of information (Z-torsion and w-torsion); it
seems unlikely that Yq itself has a description in terms of the Gromov-Witten theory
of M.

We want to briefly mention some potential further developments. One could
extend the construction to multivariable Novikov rings; this corresponds to the version
of (2.3) which uses the quantum product with all of H2{M\ A). A genuinely new
question that arises in the multivariable context is that of the (expected) flatness

of the connection. It is also worth noting that the construction applies outside the

context of Novikov completions as well. For instance, consider the case of an exact

symplectic manifold. One can then define Floer cohomology with coefficients in the

Laurent polynomial ring over H2(M;Z)/torsion. For the S^equivariant version

of that Floer cohomology theory, there is a connection which differentiates in all

H2(M;Z)/torsion directions. An analogous idea may apply to string topology
(where one studies the S '-equivariant homology of a free loop space, with twisted

coefficients).

2.b. The «/-connection. Let's replace (2.1) by the assumption that our symplectic
manifold should be either exact or monotone, meaning that

[û>] yci(M) H2(M;R), for some y > 0. (2.11)

In this case, the quantum product can be defined without using the Novikov parameter,
as a Z/2-graded product on H*(M\ Z). We will use a different form of the

quantum connection this time, namely the endomorphism of the Z/2-graded group
H*(M ; Z[w]) given by

Dux 2u2dux — 2c\ (M) * x + u/r(x), (2.12)

where

fi(x) kx if x G Z) <8> Z[w]. (2.13)

The assumption (2.11) also allows us to define Floer cohomology and its equiv-
ariant cousin without using Novikov coefficients, as a finitely generated Z/2-graded
abelian group and finitely generated Z/2-graded Z|w]-module, respectively (in spite
of that difference in the formal setup, we will keep the same notation for them as

before). There is also a Z/2-graded analogue of (2.5), involving Z and Z|u] as

coefficient rings. The counterpart of Theorem 2.1, describing the basic properties of
the w-connection, is:

Theorem 2.2. There is a canonical Z/2-graded additive endomorphism

ru:HF*JM, —> HF* (M, e),
\ (2.14)

rM(/x) fru(x) + 2u (du f)x for f e Z[m],
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which fits into a commutative diagram

HF*q(M, c) HF*eq(M, e) (2.15)

HF*(M, e) ~2c'(M)~, HF*(M, e).

For small the isomorphism Beq identifies Vu with Du.

The u-connection is closely tied to the issue of gradings on Floer cohomology.
If c\(M) 0 (which in our context implies that [co\ must vanish as well), one has

Z-gradings as in Section 2.a. Let deg be the associated grading operator, which

multiplies each element of HF*q(M, e) by its degree. Then, there is a disappointingly
simple formula

r„(x) udeg(x). (2.16)

More generally, suppose that c\(M) is m times some class in H2(M;Z), where

m > 1 (of course, the m 1 case always applies). A choice of such a class yields a

(Z/2/n)-grading, and one has a diagram analogous to (2.9):

HF*eq(M, e) HF*+2(M, e) (2.17)

t
HF*eq(M, e; Z/2m) — > HF*+2(M, e; Z/2m).

Let's assume that our symplectic manifold is monotone, which means (2.11) with
y > 0. In fact, let's normalize the symplectic form so that

H C!(M). (2.18)

One can then define a version of quantum cohomology which is Z-graded but

periodic, by adding a formal variable q of degree 2. More precisely, we want to think
of this as a ring structure on the graded w-adic completion of H*(M; Z[q, q~l, w]),
which we write as H*(M; Z[q, <7—1][[<7—1 w|). This carries a (degree 2) operation Dq
as in (2.3). Let deg? be the grading operator on H*{M\Z[q,q~x]\q~ln\).
Unlike (2.13) this takes the gradings \q\ — \u\ 2 into account, so one can write it
as

deg9 /x + 2udu + 2</3(?. (2.19)

Using (2.18), one then has

Du (u degq - 2qDq)q=v (2.20)

What this means is: the expression in brackets is Z[q, g-1]-linear, hence can be

specialized to q 1 (which simply means reducing the grading back to Z/2), and
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the result then agrees with the previously defined Du. One can similarly define

a version of Floer cohomology which is a Z-graded module over Z[q,q~1]', and

of equivariant Floer cohomology, over Z,[q,q~l]\q~lu\. The equivariant version
carries a ^-connection as in (2.6). In parallel with (2.20), this turns out to be related

to the m-connection,

r„ (udegq ~2qrq)g=v (2.21)

We want to make one more observation concerning the monotone case (2.18).
In our original framework (2.1), Floer cohomology was Z-graded, and gradings
forced all w-series to be finite. A similar, but slightly more subtle, principle is

at work in the monotone situation, allowing us (after making appropriately careful
choices) to define a polynomial version of equivariant Floer cohomology, denoted by

HF*oly(M, e), which is a finitely generated Z/2-graded module over Z[w], and from
which the previous version is recovered by completion:

HF*q(M, e) ^ HF*o[y(M, e) Z fuj. (2.22)

Similarly, one can define a w-connection on HF*oly(M, e), of which our previously
considered is the formal germ at w 0. This is of interest because the polynomial
(or indeed complex-analytic) theory of irregular connections is much richer than
the formal theory (for applications of this theory to Du, see e.g. [10]). More
immediately, the existence of the polynomial version of the m-connection has the

following consequence:

Corollary 2.3. As a Z[u)-module, HF*oly(M, c) cannot contain any directsummands
isomorphic to one of the following:

Z[w]/(u — X)d for A 0, and d > 1; or
(2.23)

(Z/p)[u\/(u — A) for an odd prime p, and d, A both coprime to p.

This may be a bit of a letdown, since such summands would yield extra information
specific to the polynomial theory. However, for the Z-torsion part, not all such extra
information is ruled out by Corollary 2.3 (and the remaining possibilités are known
to occur in other contexts; see the example of Z/2-equivariant Lagrangian Floer

cohomology in 128, Section 7c]). The proof is a one-liner: if x were the generator of
such a summand, then

0 rM ((u - X)dx) (u- X)d rux + 2du2(u - X)d~lx. (2.24)

If one projects back to the relevant summand, the first term on the right hand side

vanishes, while the second does not. For a more geometric view, let's replace Z
by C. Then, the idea is that, since the vector field lu2du only vanishes at u 0, a

coherent sheaf that admits a connection in the direction of that vector field can't have

torsion anywhere else (as in our discussion of Dq, it would be interesting to see how
this relates to what one might get from localisation techniques).
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3. Morse-theoretic moduli spaces

Following a familiar strategy (compare e.g. [3,28,30]; in the last two references, the

group involved is Z/2 rather than S1 much ofour discussion of S1 -equivariant Floer
cohomology will be based on the Morse theory of BS1 CP00. In this section, we

use this Morse theory to produce various hierarchies of manifolds with corners (of
course, one could also try to construct those manifolds directly in a combinatorial

way, but that approach seems less natural).

3.a. Setup. The basic notation is:

C°° [w — (wo, Wi,... : Wj £ C vanishes for almost all j }, (3.1)

B°° {we C°° \ IM2 \wj 12 < 1}, (3.2)

S°° 9ß°°, (3.3)

CP°° s0O/S1. (3.4)

An important ingredient for us will be the shift self-embedding

a(wo, u>i,...) (0, wo, u>i,... (3.5)

(we will allow a slight ambiguity in the notation here, using a for the shift acting on
either of the spaces above). The quotient map will be denoted by

q\ S°° —> CP00. (3.6)

Let e CP°° be the k-th unit vector (k > 0). We will identify the fibre of (3.6)
over Ck with S1 in the obvious way. A notational remark is appropriate at this

point. Following Floer theory conventions, we set S1 M/Z throughout, so the

identification is written as

S1 -JZ+q-\ck),

r I—> (0,..., e27Tir ,0,...
We will use a specific complex hyperplane in CP00, as well as a real hypersurface

bounding its preimage in S°°. These are given by, respectively,

H {Zj wj 0} C CP00, (3.8)

S q~l(H) C S°°, (3.9)

B {HjWj <0} C 5°°. (3.10)

Clearly, H ^ CP°° and S S°°. One also has B B°°, for instance by a suitable

stereographic projection (away from (1,0,..., 0), to the linear subspace where the

sum of all coordinates is zero):

V- (3.11)
1 2-,j wj
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The quotient map q\B: B -> CP00 maps B \ dB isomorphically to CP00 \ H, and

collapses the boundary dB S onto H. (In the analogous finite-dimensional
situation, q\B describes how complex projective space is obtained from its

hypersurface // by attaching a cell.)
We will use the Morse function

h:CP°° —> M,
(3.12)

h(w) |wi|2 + 2\w2\2 + 3|iu3|2 H

and the standard (Fubini-Study) metric. The critical points are precisely the ck, and

they have Morse index 2k. The negative gradient flow is the projectivization of the
linear flow

s-(w0,w1,w2,...) - (w0, e~2swi, e~4sw2,...). (3.13)

The stable and unstable manifolds are

WS(ck) {W0 Wk^ =0. wk ^ 0},

Wu(ck) {wk yL- 0, wk+l wk+2 ••• 0}.

Those manifolds intersect transversally, making the flow Morse-Smale. Moreover,
they are transverse to (3.8).

We also want to fix a connection A on the circle bundle (3.6). This must be

invariant under the shift, and flat in a neighbourhood of each ck. Every path joining
two critical points yields a parallel transport map, which in view of (3.7) can be

thought of as an element of S1.

3.b. Spaces of trajectories. All our spaces are defined as standard compactifications
(by broken trajectories) of suitable spaces of negative gradient trajectories for the

function (3.12). Concretely:

- For k > 0, consider the space of unparametrized trajectories going from ck to c()

(using (3.5), one can identify this with the space of trajectories from ck+i to C[, for
any /). Denote the standard compactification of the trajectory space by Pk. This is

a (2k — l)-dimensional smooth compact manifold with corners, and comes with a

canonical identification (which describes its boundary as the union of codimension 1

closed boundary faces)

dPk s (J Pklx Pk2. (3.15)

kl+k2=k
We will denote unparametrized trajectories by [v], thinking of them as equivalence
classes under the action of M. Points in the interior of a boundary face (3.15)
correspond to two-component broken flow lines ([iq], [^2])-

- A closely related space is the compactification of the space of parametrized
trajectories, denoted by P£ for k > 0. This has dimension 2k, and satisfies

K U rt, X/>£) u (J fjxf,,). (3.16)

k\+k2=k k\+k2=k
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- Consider pairs (u;, v), where v is a trajectory and w G S°° a point such that

q(w) «(0). Such pairs form a circle bundle over the space of parametrized
trajectories. There is also a compactification P£, of dimension 2k + 1, which is a

circle bundle over Pk, satisfying the obvious analogue of (3.16):

9^ U p^x pk2)u U plx p^\
k\+k.2=k ki+k2=k

- Finally, one could modify the most recent definition by allowing w G B°° to be a

point lying on the line singled out by u(0). This gives a disc bundle whose boundary
is our previous circle bundle. The compactification P% has dimension 2k + 2, and

satisfies

^ U (J Pk] x />*) U (J Phk{ x Pk2). (3.18)

k\+k2=k k2+k\=k

To clarify the "recursive" structure, note that since I'o 0, any boundary <)l'k only
contains spaces Pf with I < k as factors. The same is true for (3.17) and (3.18).

The reader will have noticed that we have, without further ado, declared our
compactified moduli spaces to be smooth manifolds with corners, in a way which is

compatible with the product structure on boundary strata. Such smooth structures are
constructed in [5,20,34], under the assumption that there is a focal chart around each

critical point, in which the Morse function and the metric are both standard. While
our metric does not satisfy that condition, there are focal charts around the critical
points in which the gradient flow is linear, see (3.13); and that is sufficient to make
the constructions go through. Alternatively, since our function and gradient flow are

completely explicit, one could construct the necessary charts near the boundary strata

by hand.

Over each of our spaces of trajectories, there is a "tautological family"

n --> Pk,
(pp

k -K
n--+pk<

-pbk
Let's consider the first case:

- A point of ,Pk is represented by a (possibly broken) flow line with additional data:

(ui,..., Vj, I, a) for some j > 1, l G {1,..., j}, and a G R. (3.20)

We identify two representatives iff they are related by the action of {r\,... ,rj) G R7 :

(it!,..., Vj,l, d) ~ (ui(- + rO,.. .,Vj(- + rj),i,A-ri). (3.21)
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Pk is a noncompact manifold with corners, carrying a free and proper M-action (by
translation on 4); the map to P,t, which forgets (1, 4), is invariant under that action.
In fact, the fibre of the map to I\ over any broken trajectory with j components
can be identified with a disjoint union of j copies of the real line (ordered in a

preferred way), with M acting by translation on each. This description is compatible
with (3.15), meaning that the restriction of Pk to PfCl x P^2 c dPk is canonically
identified with the disjoint union of the pullbacks of Pkx and Pk2. Additionally,
Pk comes with a smooth evaluation map to CP00, which takes (v\,... ,vj, I, 4)
to vi(s); this intertwines the M-action with the negative gradient flow (3.13).

We also find it convenient to introduce a compactification Pk (just as a topological
space, without differentiable structure) by allowing the point on our flow line to
degenerate. In the notation from (3.20), we now allow 4 ±00, but additionally
identify

The map from (3.19) extends to Pk Pk- The fibre of the extended map over a

broken trajectory with j components consists of j copies of M M U {±00}, with
the +00 point of each glued to the —00 point of the following one (so that overall,
one gets a space homeomorphic to a closed interval). The M-action extends to a

continuous action on Pk, which leaves Pk \ Pk fixed. The evaluation map to CP°°
extends continuously to Pk, taking [v\,... ,Vj, i, ±00] to the critical point which is

the s -> ±00 limit of 17. Moreover, there are canonical continuous sections which

single out the endpoints of the chain of M's:

The compactifications Pk are compatible with (3.15), in a sense which is similar to

our previous statements of the same kind, and which we will therefore not spell out.
The next case in (3.19) is an appropriate modification of the previous construction:

- A point of P£ is represented by

(t>i,..., Vj, i, I, 4) for some j > 1 ,i,l e {1,...,/}, and 4 G M. (3.24)

Here, the component u,- may be a constant flow line. We divide out by Mi_1 x {()} x
My ~' C M; acting as in (3.21).

A fibre of the map P£ -> P[! over a trajectory with j components again consists

of j copies of M, even if the parametrized component is constant. The space P£
comes with the same M-action as before. Additionally, there is a distinguished smooth

section

(v\,...,Vj,l,+oo) ~ (vi,...,Vj,l + l,-oo). (3.22)

J±: Pk —> \ Pk,

y_([ui,...,u/]) [vi,...,vj, l,-oo],
J+([Ul,...,t;y]) [vi, ,Vj, j, +00].

(3.23)

(3.25)
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There is also a compactifïcation with additional sections as in (3.23). The other
two cases in (3.19) are parallel.

Remark 3.1. The reader may have noticed that is homeomorphic to P£, hence

after all does carry the structure of a smooth manifold with corners. The same is

true for the other compactified moduli spaces, which can all be thought of as moduli

spaces of broken trajectories with one marked point (which can lie on an additional
constant component). However, those smooth structures will be irrelevant for our

purpose.

3.c. Topological aspects. In low-dimensional cases, the topology of the moduli

spaces of trajectories is easy to determine: there are diffeomorphisms

Pi S\ P2 S1xD2,

Pq point, Py S1 x [0, 1],

P£ s\ Pf s S1 x S1 x [0,1],

P<f s D2.

(3.26)

In two of those cases, we want to fix choices of diffeomorphisms, which will be

used in orientation arguments later on. For P£, we take the obvious identification
Si ~ q—t (Cq) ps^ which was spelled out in (3.7). For Pi, we choose

5 >Pl'
(3.27)

r i— [s (e2nir : : 0 :••)] [m (1 : e~2s~2nir : 0 : •••)]
We also need some more topological information about the boundary strata of the

low-dimensional spaces (3.26).

Lemma 3.2. Consider the map induced hy (3.15) for k 2,

Hi (Pi) © Hi (Pi) Hi(Px x P0 — Hx(P2) (3.28)

(the domain and target are isomorphic to TL2 and Z, respectively; and we know that
the map is onto). This map is diagonal, meaning that it is invariant under switching
the two Px factors.

Proof Take the action of (S1 )3 on CP00 which rotates the first three coordinates.
This induces an action on P2, for which the diagonal subgroup acts trivially, and the

orbits of the subgroup (l,e2jIir, 1) are contractible (since some of those orbits are
fixed points, and any orbit can be deformed to one of them). If we let the same group
act on the boundary (3.28), that action has weights (0,1, — 1) on the first Pi factor,
and weights (1,-1,0) on the second Pi factor (because those factors correspond
to flow lines lying in {0} x CP1 x {0,..., } and CP1 x {0,..., }, respectively). In
particular, the subgroup (1, e27Cir, 1) acts with weights 1 and —1 on the two boundary
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factors. By taking an orbit of that subgroup, and moving it from the boundary to the

interior, one sees that the element (1, —1) G H\(P\) © H\(P\) lies in the kernel
of (3.28).

Lemma 3.3. Consider the maps induced by (3.17) for Ic 1,

tft(Po) © Hi (Pi) tfiCo X Pi) — HtiPi),
Hi (Pi) © H{(P^ H\(P\ x PJ) —

All groups involved are isomorphic to Z2, and the maps are isomorphisms.
Composing thefirst map in (3.29) with the inverse ofthe second map yields an element

ofGL2(Z) which, with respect to the hases determined by our fixed identifications,
is given by

C (3.30)

Proof. Take the action of S1 x S1 on <C°° which rotates the first two coordinates. This
induces an action on /"', each orbit of which is homotopy equivalent to the whole

space. If we restrict the action to P£ x P\ c dP(, the action on P£ has weights (0, 1

while that on P\ has weights (1,-1) (for the same reason as in Lemma 3.2). On the

other boundary component P\x P£, we still get weights (1,-1) on the I\ factor, but

weights (1,0) on the P£ factor. In other words, the maps (3.29) sit in a commutative

diagram of isomorphisms (in which the desired map (3.30) is the dashed arrow)

Hl(S1xS1) (3.31)
(?-M

Hi(P$ x P^ ^ t [(Pi x Pq)

Let's record some information about the topology of the higher-dimensional

spaces of trajectories:

Lemma 3.4. We have

H*(Pk,dPk) 0 for* < 2k -2,
H*(PP, dPf) 0 for *< 2k — \

13 3?)
H*(Psk,dPsk) 0 for * <2k — \

H*(P%, dPg) =0 for * < 2k + 1.
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Proof. Let's start with the most basic situation, that of P£. From (3.14) one sees

that

P£ \ dP% èC*x Cfc_1 ^ 51 x M2*-1, (3.33)

which means that H*(P£, dP%) H2k-\-*{Pk) 0 for 2k — 1 — * > 1, proving
the relevant part of (3.32). The interior of Pk is a quotient of that of P£ by a free
and proper R-action, hence has the same homotopy type. Similarly, Psk is a circle
bundle over P£ (in fact, because of the topology of the latter space, it is necessarily

trivial). P£ is the disc bundle associated to that circle bundle.

The main way in which the topology of these moduli spaces enters into our
discussion is through certain circle-valued maps. We will give two constructions of
such maps: a direct geometric one, and another one by a topological argument.

Lemma 3.5. There are smooth maps

ak:Pk—>S\ (3.34)

such that: aq has degree 1; and the maps are compatible with (3.15), in the sense

that

oik I (Pkx x Pk2) akl + ak2. (3.35)

First proof. Given a gradient trajectory v from Ck to Co, let's use parallel transport
(for the connection A) to get a map q~l(ck) -> q~x (c0). The parallel transport map
is given by an element of Sl, and we set oq ([u]) to be that element. The desired

property for k 1 can be shown, for instance, by deforming our connection A to the

standard round connection, for which the parallel transport maps exactly recover the

identification (3.27). Parallel transport maps extend smoothly to broken flow lines

(this is easy to see since A is flat near the critical points); and the equality (3.35) is

just their basic concatenation property.

Second proof. Choose an arbitrary oq with the desired property, and consider the

map

3p2 px x Px -> S\
([vt],[u2])—» at([ui]) +oq(M).

Lemma 3.2 (or rather, the dual statement for cohomology) shows that this can be

extended to a2. From there on, one proceeds inductively as follows. Suppose that,
for some I > 3, we have already defined oq,..., a/_i with the desired properties.
The requirement (3.35) then prescribes the value of a/ on 3P/. By Lemma 3.4, we
have H2(Pi,dPi) 0 as soon as / >0. Hence, any circle-valued map can be

extended from 3Pi to Pi.
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Lemma 3.6. There are smooth maps

a>k,ßi:P°k-*S\ (3.37)

such that: a,) is zero, while ßs0 has degree 1; and the restriction to (3.17) is given by

(o£ I (J» xPk2) ajCi +ak2,
\ßl \ * Pk2) ßlp

and
Wk I (pki x pSk2) afci + afe2' (3 39)

First proof. One can define ask exactly as before, by parallel transport along v.
Similarly, consider inverse parallel transport along v|(—oo,0], which yields a map
q~1(v(0)) —> q~x(ck) S1. We define ßsk(w, v) to be the image of w under that

map. The required properties are obvious.

Second proof. Choose the maps first for k 0. Then (<rj\ ß\) is supposed to be a

map whose restriction to the two boundary components of P( induces the following
maps on homology:

^ ^ for If, x Pi, and ^ for A x I\S

o- (3.40)

Lemma 3.3 shows that such maps exist. It is then easy to adjust them so that (3.39)
and (3.38) are satisfied. As in Lemma 3.5, the rest of the construction is on autopilot:
by Lemma 3.4, we have H2(Pf ,dPts) 0 as soon as I >2. Hence, any map
dPf 51 x 51 extends to Pi.

Remark 3.7. In the second proof of Lemma 3.6 there is one step, the construction of
(a j, ß \), whose solution is not unique up to homotopy. For each of the two functions
involved, the possible choices form an affine space over

H\Pl,dPSi) s Z. (3.41)

To make this more concrete, let's spell out the k 1 case of (3.38) and (3.39),

using Lemma 3.3 and a suitable identification Pf S1 x S1 x [0,1]: the functions

(af,ßi) then have prescribed boundary behaviour

Uotf(ri,r2,0),ßs1(ri,r2,0)) (ag(ri) + ai(r2), ßs0(ri)),

((cef (ri, r2,1), yöf (rx, r2,1)) (ai(r2) + ag(n + r2), -ai(r2) + ßs0(n +r2)).
(3.42)
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Suppose that we deform a\ by adding a constant cel. That can be extended to a

deformation of ß\) as follows:

(n,r2,t) I—» (asi(ri,r2,t) + c, ß{{n, r2, t) - ct). (3.43)

Specializing to c 1, we see that we have changed the homotopy class of ß>\ rel

boundary by a generator of (3.41). Hence, if one considers the constructions of the
functions from the second proofs of Lemmas 3.5 and 3.6 as a single process, then ß\
is homotopically unique in that context.

There is no such trick for a')', but one can at least single out a preferred homotopy
class (which is the same as in the first proof of Lemma 3.6). Consider the forgetful
map

Pi — P\ — pi- (3.44)

On the boundary faces I\ x T(, and P^x Pi, this is projection to the P\ component.
We can then ask that ctj should be homotopic (rel boundary) to the pullback of ot\

via (3.44).

Ultimately, this entire issue is not really important for our applications. The
difference between two choices of (af, ß\), with the same boundary behaviour, can
be thought of (by gluing together two copies of P() as a map (S1)3 -» (S1)2. What
matters for the construction of Floer-theoretic operations is not the homotopy class

of this map, but only its fundamental cycle in l~h((S1 )2), which is of course zero.

Finally, some orientation considerations will be needed. The interior of Pk can
be thought of as a locally closed complex submanifold of CP00, and we orient it in
the standard way. Again at an interior point [u], the space Pk comes with a short
exact sequence

0 -> mdsv —> Tv pP — T[v] Pk 0. (3.45)

We choose our orientation of Pk so that, for a splitting TVPk M © ï\v] If of (3.45),

it is compatible with the orientation of P£. For P£ and P£, we use a similar strategy,
based on the long exact sequences

0 -> M(iw, 0) —> T(WtV)Psk —> Tv P£ -> 0, (3.46)

0 —> C(u(0), 0) —» T{wPbk —> TvPi -» 0. (3.47)

As an example, consider P\. In (3.27), (dsv,drv) is a positively oriented basis

of TvpP; hence, that parametrization is compatible with our overall choice of
orientations. Likewise, the orientation coming from (3.46) is compatible with the

identification P£ ^ S1.

Lemma 3.8. (i) The orientations of Pk are compatible with (3.15). This means
that the boundary orientation induced by that of Pk agrees with the product
orientation of Pk[ x Pkj.
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(ii) The orientations of Pk are compatible with the product orientations of the

boundaryfaces Pkl x P^, whileforfaces of theform P^ x Pk2 the orientations
are opposite.

(iii) The orientations of Pk are compatible with (3.17).

(iv) The orientations of Pk are compatible with the product orientations of the

boundary face P£. The same holds for boundary faces Pky x Pk, while for
those of the form P^ x l\2 the orientations are opposite.

Proof. We find it convenient to temporarily introduce another space P'k, which is

the compactification of the space of flow lines v equipped with two marked points
,s'i < s2. More precisely, we divide by the common M-action, so points in the interior
of P'k are equivalence classes [.sq, s2, u]. Among the boundary strata of this space are

U Ut' \ \ «£) C (3.48)
k\ +k2—k

where one thinks of the boundary points as trajectories broken into two pieces, each

of them carrying one marked point, which fixes the parametrization. Let's suppose
that we have oriented P'k by mapping (on the interior)

[Vi A2, v] i—> (s2-suv(- + -vO) G M x P£,

and using the complex orientation of (the interior of) Pk Then, it is easy to see

that (3.48) is compatible with orientations.
Consider the M2-action on P'k by moving the two marked points. On the interior

of the moduli space, this is given by

Ol, r2) • [0, s2, d] [ri, s2 + r2, u] [0, s2 + r2-ru v(- + rq)].

Assuming that v is not constant, one gets a short exact sequence

0 -» M © R —» T[0;il ;l)] Pk —» T[v] Pk -> 0, (3.49)

where the first map takes the standard generators of M2 to (0, —1, dsv) and (0,1,0).
In order for the resulting splitting

T[o,Sl ,v]pk ® ® ® Tlv] pk (3.50)

to be compatible with the chosen orientations, the two M summands would have to

appear in the opposite order; hence, (3.49) is incompatible with orientations. In the

limit where [äi,ä2, u] degenerates to a point (tq, v2) in a boundary stratum (3.48),
the IR2-action becomes the reparametrization action on both factors. Again assuming
that neither flow line is constant, we have another short exact sequence,

0 -> M © E —> TVl © TV2P£2 T[vi]Pkl ® T[V2] Pk2 -> 0, (3.51
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where the first map has image generated by (9Slui,0) and (0, dS2V2). In order for the

resulting splitting

TV] P^ © TV2P£2 M © M © T[Vi]Pk\ © T\V2]Pk2 (3.52)

to be compatible with the chosen orientation of Pkx and Pk2, the second and

third summands in (3.52) would have to swap positions, leading to a Koszul sign
(— l)11^]) _ —l, which agrees with that in (3.50). Using our previous observation
about orientations in (3.48), we can now obtain (i).

We derive (ii) by a similar argument. Take a point (iq, [«2]) Pi X Pk2 C dPP,
and suppose for simplicity that is not constant (to deal with the constant case, one
would have to go back to the spaces P'k). The R-action by reparametrization yields
an analogue of (3.52),

TV\ Pk] © T[V2]Pk2 s M © T[Vl]Pkl © T[V2]Pk2, (3.53)

which is compatible with orientations. In the parallel case with ([iq], v2) G Pkx

one acquires a Koszul sign (— l)dim^il — 1. This explains the sign difference
between the two kinds of boundary faces of Pp. To get the correct result, we need

one more observation: the operations of dividing by an R-action, and passing to
the boundary, don't commute in their effect on orientations (quotienting by R and

then passing to the boundary yields the opposite orientation of first passing to the

boundary and then quotienting by R).
The proof of (iii) is similar to that of (i), and that of (iv) similar to that of (ii).

In fact, only the spaces Pk and Pk will play a significant role in our application.
We have included P£ since it appears as an obvious intermediate step in the

discussion; and Pk because another, similarly defined, space will be important
in the next section.

3.d. Trajectories with evaluation constraints. Spaces of trajectories going through
a fixed submanifold are a well-known concept, usually arising in the definition of
the cap product on Morse homology (see e.g. [7, p. 177]). We will use the following
specific instances.

- Let Qk be the compactification of the space consisting of trajectories v, with
the usual limits, such that «(()) lies on the hypersurface H from (3.8). This is of
dimension 2k — 2, and satisfies

dQk { U pki*Qk2) u( U ßixf4 (3-54)

k\+k2=k k \+l<2=k

This description of the boundary strata relies on the compatibility of H with the

coordinate shift map (3.5); more precisely, we use the fact that the intersection
H fl {icq 0} is the image of // under the shift.
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- Consider the space of pairs (w, v), where v is a trajectory and w e S q~l(H)
a point such that q(w) u(0). This is a circle bundle over the previous space. Its

compactification Qsk has dimension 2k — 1, and satisfies

m U ^ x Qk) U U QktxPk2). (3-55)

k\+k2—k k\+k2=k

- One obtains spaces Qbk by instead allowing any point w e B, for B as in (3.10),
which lies on the complex line determined by u(0). The resulting spaces are

2&-dimensional, and satisfy

dQk ôfc U IJ Pk,xQbk2) u( (J Qbkl*pk2). (3.56)

k\+k2=k k\+k2=k

The smoothness of (3.54) depends on the fact that the evaluation maps Pk -> CP00

are transverse to //; and that of (3.55) follows immediately. For (3.56), one needs

the projection q\B: B -> CP00 to be transverse to Pk —> CP00. At an interior
point of B, this is obvious since there, q\B is locally a diffeomorphism; and along
the boundary, it reduces to the previous argument for (3.54).

In low-dimensional instances,

Q\ point,

Q\^S\ (3.57)
h h

Q0 point, Qx pair-of-pants.

Explicitly, the unique point of Qq consists of the constant trajectory v [1 : 0 : •••] G

CP00 together with the point w (—1,0,...) e B. The condition for trajectories
in the interior of Qb is that u(0) should lie in C* C CP1, and should come with
a w (wo, wi,0,...) e B \dB such that w\/w0 u(0). There is one such w
for any n(0), with the exception of t'(0) —1, where one would necessarily have

w e dB. Hence

Q\ \3fi? C*\{-l} (3.58)

is a three-punctured sphere, which implies the statement about the compactification
made in (3.57).

Lemma 3.9. There is a sequence of compact manifolds with corners Rk, k > 0,

satisfying

K el U u U f*,xK£) u( U <x/>i2), (3.59)

k\+k2=k k\+k2—k

and these identifications ofboundary strata are compatible with (3.16) and (3.54).
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Proof. Consider pairs of half-flow-lines (v_, v+):

v : (—oo, 0] —» CP00, dsv +Vh 0, lim^-^-oo v (s) cv (0) x

|u+: [0, oo) —» CP00, dsv+ + Vh 0, lims^+00 v+(.v) c0, u+(0) x+.
(3.60)

The endpoints (x~, x+) can be any points in CP00 satisfying

xk

Xk+1 ~~ Xk+2 — " ' " — 0»

v +
(3.61)

/0.

One obtains the interior of QPk by additionally imposing the coincidence conditions

x0 + Xj + • • • — 0,

r — -V +

\Xi — X,
(3.62)

Originally, these equations took place in CP00 so we should say that xj Axt
for some À G C*. However, it is notationally a bit simpler to ask for A 1, and

correspondingly consider the x± up to rotation by a common factor.

Let's introduce a parameter 0 G C, and deform the conditions in (3.62) as follows:

' Xq + x j + • • • — 0,

Xq X+,

Xj xf — Oxq (3.63)

I X0 X^ 0X+,

Note that if one sets xj" 0 in these equations, it follows that Xq 0 as well,
and then the equations for the remaining Xj reproduce the original ones after an

index shift j j — 1. There is a minor issue here, which becomes evident
when combining (3.63) with the convergence conditions (3.61): for general 9, we
have to allow the point x+ to lie outside CP00, since it satisfies xt 0xt_j for
all j > k. This means that the solutions also lie outside CP00. In practice, this
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is unproblematic: it is still possible to write the combined conditions in terms of
finitely many variables (xg,..., xk), as

x0 + • • • + xk — 0,

Xn xn

xf - 0x+,

2 x£ — Oxf,
(3.64)

xk =4 ~ 6xk-v
x0+ + 0,

\xk 7^ 0.

Define R?'e to be the compactification of the space of solutions of (3.60) and (3.63)
by broken trajectories. This is smooth for any 6, and satisfies

>K' U n,<)u( U RkfxF^y (3.65)

k\ +k2=k k\ +k2=k

If we set 0 0, (3.63) reduces to the original (3.62), and correspondingly

Qu. On the other hand, for 9 1 the sum of all equations in (3.64)p,6—0R

says that xk 0, hence xj 0 for all j > k and we land back in CPk 0, hence xt
We want to introduce another parameter-dependent set ofcoincidence conditions:

to + r\x^ + f]2X2 +
I xf + r/X2 + ?72xJ +
IX2 + VXJ + V2x4 +

0,

- -x,+0 '

— _v+
(3.66)

—x l >

This has the same property as before: if xjj" 0, then a linear combination of the first
two equations in (3.66) shows that x(y 0, and the remaining equations reproduce
the original ones up to index shift. The analogue of (3.64) is

x0 + Vxi + '

xf + TjX2 + '

0 -X+
x0+ ^ 0,

xk 7^

+ rj xk — 0,

+ n
,k—1 v— v +-x,o '

(3.67)
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(The remaining coordinates xt, j > k, are also always zero.) One defines

spaces RPk^ as before, and those satisfy the analogue of (3.65). If we set q 1,

then (3.66) becomes equivalent to the 9 1 case of (3.63), so Rk'v~l Rp'9~l
On the other hand, if we set rj 0, (3.66) says that Xq 0, and that the rest of x~
agrees with x+ up to index shift (and a —1 sign, which is of course irrelevant in

projective space), so Rpri~0 Pp_r
To define Rp, one takes the union of Rp'e for 9 lying on a path in the complex

plane from 0 to 1 ; the same for Rk'v and another path of the same kind; and the two
pieces are then glued together by identifying 9 1 and q 1 (to make the smooth

structures match up, one chooses paths whose derivatives to all orders vanish as one

approaches the endpoint 9 1 or q 1).

Taking circle bundles into account yields the following analogous statement:

Lemma 3.10. There is a sequence of compact manifolds with corners Rsk, k > 0,

satisfying

t>K e'icur;_lu( (J Pi,x«;2)u (J /„,), (3.68)

k\+k2=k k\+k2=k

and these identifications are compatible with (3.17), (3.55).

Proof. The proof is as before, only requiring minimal clarifications. To define the

counterpart of Rk°, one starts with a point Rp'e and additionally chooses a preimage
w~ S00 of [x~] G CP00 (this choice avoids the problem ofx+ not lying in CP00 for
general 9). The same applies to R^71, and for q 0 one can shift coordinates to obtain

a preimage of [x+], which is used in the identification of that space with Pk_v

From the proofs of these two lemmas, one sees that the interpolating spaces are

in fact fibrations over the parameter space (consisting of 9 or rj). Using a version

of Ehresmann's theorem for manifolds with corners (whose proof follows the same

strategy as for closed manifolds), one concludes that

QÏ P£-v Qk Pk-v (3-69)

Rpk S [0,1] x Pp_v Rsk s [0, 1] x Psk_x. (3.70)

One could choose such diffeomorphisms for all k, so that they are compatible with the

recursive nature of the boundary strata (however, they are still non-canonical). There

can be no analogue of (3.69) relating Qk and Pk_x, since the topologies differ even

in lowest nontrivial dimension (in fact, the combinatorial structures of the boundary
are also different, hence one can't even have a sensible cobordism type statement).
Instead, we will determine the topology of Qk directly:

Lemma 3.11. H*(Qbk, dQbk) 0 far *<2k-2.
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Proof. By definition,

Q\ \ 3Qbk {w (two, U7jt) e S2k+l C Ck+1 :

w0 / 0, wk ± 0, wj < 0}- (3.71)

This is clearly a quotient of

C^+1 \ {w0 0 or Wk 0 or ]TZ wj 0}

by the diagonal action of C*, hence isomorphic to

CPk \ {three hypersurfaces in general position} C* x C* x Ck~2.

One now argues by Poincaré duality as in Lemma 3.4.

Lemma 3.12. The real part of Qb (the fixed part for the involution induced by

complex conjugation on C°°j has four connected components. Their interiors are
distinguished by having points w, as in (3.71) but with real coordinates, with signs

(sign(wo), sign(w2)) (±,±). (3.72)

Each component is homeomorphic to a disc, and generates H2( Ö 2 >
9Qb) Z.

The (++) component is a triangle with

(one side lying in each of: Q\, Pi x (Q\, Q\ x P\ : ^ ^)one corner lying in each of: P\ x gj x Px, P\ x Q\, Q\ x P\.

Proof. By the same argument as in Lemma 3.11, we have H2(Qb) Z. In terms
of (3.71), this is generated by the homology class of the torus

{|w0| I1U2I c} C Qb2 \ 302 f°r sufficiently small e > 0. (3.74)

Again using (3.71), the interior of the real part, denoted by (Qb \ is

diffeomorphic to

MP2 \ {three real lines in general position}.

It is then obvious that the components are distinguished by (3.72). Moreover,
each component intersects (3.74) transversally in a single point, hence generates

H2(Ô2 ' àQi) by Poincaré duality.
The boundary of the (++) component of (Qb)R contains exactly one interval

which belongs to (QS2)R. Because of the way in which the boundary components
intersect, it then also contains exactly one interval each in (Q\ x Px )R and (Pi x Q\)M.
It contains no points belonging to the other codimension one boundary faces QqX P2

and P2 x <2o (because on those faces, w2 —1 or w0 — 1).
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Our main application of moduli spaces with evaluation constraints is to construct
certain other spaces, which bound the previous P£_1- Namely, take Qk and Rsk, and

glue them together along their common boundary face Qsk. This yields a sequence

of manifolds with corners, denoted by Rk, satisfying

*4 ?k-iu( U ^ix<)u( U <x^2). (3.75)

k\+k.2=k k\+k2=k

In the lowest-dimensional cases,

(«5 2 i= point,
(376)

P\ — Qi big-j Rsk pair-of-pants Usi annulas pair-of-pants.

In fact, from the second part of (3.70) it follows that Rb ~ Qk for all k.

Lemma 3.13. Suppose that (a,t) and (ak, ßk) have been chosen, as in Lemmas 3.5
and 3.6. Then, there are smooth maps

whose restriction to (3.75) is given by

[41 't-i
m I pu=n-i

as well as
\<41 x "!'j "t. +-<-
WE I (ft, +<-

and

\«\ I (Ri, X ft,) ="{, +«2-
Wl(<Xft2) ft',-

Proof. In view of the more complicated construction of the /^, we will use an

abstract topological argument, along the line of the second proofs of Lemmas 3.5

and 3.6.

Let's start with k 1. Equip the interior of Q\, thought of as in (3.58), with
its complex orientation. The boundary circle corresponding to the puncture at —1

is identified with Q\, but its boundary orientation is the opposite of the natural

orientation of Q\ (by which we mean, the orientation Q\ V inherits from being
a fibre of S°° CP00). By definition, Rb is obtained by attaching R\ to that

boundary circle of R\. Now, R\ is a circle bundle over the interval R^. Hence,
the previous observation carries over: the boundary orientation of P^ C dR\ is

opposite to its natural orientation. The same orientation behaviour appears at the

(3.77)

(3.78)

(3.79)

(3.80)
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boundary circle coming from the puncture at 0 in (3.58), which corresponds to

PixQo Pi x Rbx c dRx. In contrast, on the boundary circle coming from
the puncture at oo, which corresponds to <2o x Pi ~ x Pi C 3Rb, the two
orientations agree. With that taken into account, the condition (3.78) says that on

Pq C dRx (equipped with its boundary orientation), af has degree 0, while ßx has

degree —1. From (3.79) one gets that on P\ x Rß (again, equipped with its boundary
orientation), ax has degree —1, and ßx has degree 1. Similarly by (3.80), on Pq x Pi,
ctx has degree 1, while /if has degree 0. Given functions on the boundary with these

properties, one can therefore extend them to all of Rx.
By the recursive conditions, these choices determine the values of our functions

on 3P* (S1)3- A generator of H2(R2, dRb) can be constructed as in Lemma 3.12.

Namely, take the (++) component of (ö*)®, anc' then attach to part of its boundary
the corresponding component of (Rs2)r (this makes sense provided that Rs2 carries
an appropriate real involution; this can be ensured by taking the parameters 9 and rj
from the proof of Lemma 3.9, or rather their counterparts in Lemma 3.10, to lie on
the real axis). The outcome is a triangle in Rb which, because of (3.73), has:

!one
side each lying in P(, P\ x Rb and Rb x P\\

(3.81)
one corner each lying in P\ x Pg x Pu Px x Pq> PS x Pi.

If we take the two last-mentioned sides in (3.81) and project them to the Rb factors,
we get two paths, one going from RX) x P\ to PX), and the other from P\ x P(j
to Pq. Because all three boundary circles of Rx appear in this way, our two
paths generate H\(RX, 3Rx) s Z2. Now let's go back to the previous step: when

defining ax and ßx, we were free to add arbitrary functions Rb -» S1 which vanish

on the boundary. By modifying our choice in such a way, one can always achieve that

a2 and ß2 have degree zero along the boundary of our triangle. This is a necessary
and sufficient condition for extendibility to Rb.

Finally, suppose that, for some I > 3, we have defined (ct£, ßbk) for all k < I,
with the desired properties. This determines the values of (ab, ßb) on 3Rb.

By construction, Rb ^ Qb. From this and Lemma 3.11, one sees that

H2(Rb, dRb) — 0; hence, the extension of our circle-valued functions over Rb is

always possible.

We will also we need to consider orientation issues for the higher-dimensional
moduli spaces. Equip Q£ with their complex orientations. For the circle bundles

Qsk -> Qk, we then choose orientations in the same way as in (3.46). Choose

orientations of Qbk which are compatible with those of Qsk C 3Pk, and extend them

to orientations of Rb. Then, we have the following statement, whose proof we omit:

Lemma 3.14. The orientations of Rb are compatible with the orientations of the

boundary faces Pk_v The same holdsfor boundaryfaces P/il x Rb^, whilefor those

of the form Rb^ x l\2 the orientations are opposite.
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Finally, we need to discuss the analogues for our moduli spaces of the tautological
families (3.19). Clearly, the spaces Qk, Qsk and Qhk each carry such a family, with
a distinguished section as in (3.25), and with the usual kind of compactification.
Slightly less obviously, the same holds for the spaces Rk, Rsk and Rk, except that the

total spaces of the tautological families no longer come with maps to CP00. Take

for instance one of the spaces Rk appearing in the proof of Lemma 3.9, and a point
in its interior, represented by a pair of half-flow-lines (u~,i;+). Over this point,
the fibre of the tautological family can be a point on either half-flow line, which

means either .v- G (—oc, 0] or .v+ G [0, oo), with the convention that we identify
s~ 0 with ,v+ 0; but the evaluation maps w-(.v~) and v+(s+) fail to respect that

identification, for 0/0. The tautological family over Rk restricts to that for Qk
on the appropriate boundary face. One then defines the (most complicated) family
over Rhk by gluing together those on Qk and Rk, just as in the definition of the

space Rhk itself.

4. Floer cohomology background

This section reviews Hamiltonian Floer cohomology and some of its properties,
selected with a view to their usefulness later on. The technical choices made in
presenting the construction largely follow classical models, specifically [9,16,22,24],

4.a. Geometric setup. Let (M, &>) be a 2/?-dimensional compact symplectic
manifold with boundary. We assume that (2.1) holds. We also fix oriented
codimension two submanifolds £2j,...,£2y c M (which are allowed to have

boundary on 3M), and multiplicities m\ ,mj G A, such that the cycle
£2 m i £T21 -1 + mjQj satisfies

[£2] mi[£21] + --- + my[£2y] G H2(M;A) > [a] G //2(M;R). (4.1)

On the complement of £2, there is a one-form 0 satisfying dd a>, and with the

following property. Whenever S is a compact oriented surface with boundary, and

u: S ^ M a map such that u(dS) fl £2 0, then

That concludes the topological part of our setup, and we now turn to Hamiltonian
dynamics and holomorphic curve theory. We assume that M comes with a function
such that:

(4.2)

M is locally constant on dM, with the gradient pointing outwards;
in particular, there are no critical points on 3M.
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Let X be the Hamiltonian vector field of JC. We also assume that A4 comes with a

compatible almost complex structure ft, such that the following holds:

9A4 is weakly Levi convex with respect to ft. This means that
—d(d3t oft) is nonnegative on each ft,-complex line in T(dM).
Additionally, we assume that Lx(dJ{ o ft,) vanishes along the

boundary.

The use of this kind of convexity condition in pseudoholomorphic curve theory is

classical, but for convenience, we will describe its implication in a basic form:

Lemma 4.1. Let S be a connected Riemann surface, with complex structure j,
equipped with a one-form ß G

1

(S. M) such that dß < 0. Consider maps
u: S A4 which satisfy

{Du-X® ß)0'1 \{Du + ftoDuoj-X®ß-ftX®ßoj) 0. (4.5)

Ifsuch a map meets 3A4, it must be entirely contained in it.

Proof. It is well known that one can rewrite (4.5) as the property of u(z) (z, u(z))
to be a pseudo-holomorphic map into A4 S x A4, with respect to the almost

complex structure ft defined by

for £ G TA4,

\ft(t] + Xß{i])) ft] + Xß(jri) for r, G TS.

Let M be the pullback of Jf to M. The Levi form at a boundary point of M is

- d{dM o ft)(rj + Xßirj) + t jr, + Xß(jrj) + ft%)

—co(X, ftX)dß(r,, jrj) - d(dM o ft)(%, ftf) (4.7)

for q G TS, f G T(dM) D ftT(dM). By assumption, (4.7) is nonnegative. One now
applies [6, Corollary 4.71 to show that if m meets 3A4, it must be entirely contained
in it.

Application 4.2. The most commonly studied situation where (4.3) and (4.4) hold
and the one we adopted when stating our results in Section 2 is that ofa symplectic

manifold with convex contact type boundary, where one takes the Hamiltonian flow
to be an extension of the Reebflow on the boundary (see e.g. [33]). Let M be such

a manifold, and Z a Liouville vector field, defined near 3A4. We then define M
near 3A4 by asking that

3£\3M 1,
(4.8)

Z.M ft-,
the associated X restricts to the Reeb vectorfield on 9A4. One chooses ft so that

-dd( oft =0){Z,-) (4.9)

is the primitive of the symplectic form near 3A4.
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We will only really use the Taylor expansion to second order of M along the

boundary, and the corresponding first order expansion of which are enough in
order for (4.3) and (4.4) to make sense. Those data are considered to be part of the

structure of M, and will be kept fixed. From now on, when we use Flamiltonian
functions H on M, these are always assumed to agree with some multiple edt to
second order along 3M. Here, e > 0 is such that:

X13M has no -periodic orbits. (4.10)

Similarly, all almost complex structures J will be assumed to agree with $ to first
order along 3M.

4.b. Floer cohomology. Choose a time-dependent Hamiltonian H (Ht)t<£sl
(in the class defined above, for some t-independent e), and let X — (Xt) be the
associated vector field. Consider 1-periodic orbits, which means solutions

(4.11)
\dx/dt — Xt.

All such orbits lie in the interior of M, by construction, and we additionally assume
that they should be nondegenerate and disjoint from Q. From now on, we will only
use 1-periodic orbits which are nullhomologous, meaning that

[x] 0 e H\{M) (4.12)

(for a version involving non-nullhomologous orbits as well, see Remark 5.5). We
also choose a time-dependent almost complex structure J Jt The construction
of Floer cohomology is based on solutions of

irlxS1 —» M,

dsu + Jt(dtu- Xt) 0, (4.13)

linwioo u(s, t) x±(f).

Here, x± are orbits (4.11) satisfying (4.12). (There is a budding notational clash,
between pseudo-holomorphic maps u on one hand, and the formal variable u in the

equivariant theory on the other hand. Since the objects involved are so different,
chances of confusion are hopefully minimal.) The operations on Floer groups that
will appear use more general "continuation map equations", of the overall form

'

u: M x S1 —>- M,

\dsu + J*t(dtu-Xlt) 0,

liniç-^-oo u(s, t) — x_(f),
liniç-^+oo u(s, t) x+(t + t).
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Here, we have chosen r E S1, and a family of functions and almost complex structures

(H*t, //t), with associated vector fields X*t, such that:

(H*t, j;t)
s << °'

(4. J5)s'tJ \{Ht+z,Jt+x) s » 0.

(Later, when many different choices of (H*t, J*t will occur, the superscript * will
be replaced by the name of the Floer-theoretic operation under construction.) The
basic analytic aspects of (4.13) and (4.14) are familiar:

- No solution can reach 9M. To see that, one follows the argument from Lemma 4.1,
for S R x S ' and ß edt. The almost complex structure on M constructed
from (H*t,J*t) still satisfies (4.7). Because the limits of u lie in the interior,
it is impossible for that map to be entirely contained in dM, and this concludes
the argument. The same property holds for the nodal pseudo-holomorphic curves
produced from sequences of solutions by sphere bubbling.

- Let i(x) E Z be the Conley-Zehnder index of a 1-periodic orbit, which is well-
defined thanks to (2.1). The linearization of our equation is a Fredholm operator Du
with

index(£>„) /(x_) — i(x+). (4.16)

- Transversality issues can be dealt with by varying the auxiliary data, as in [9,16|
(and the same applies to "transversality of evaluation"). The fact that those data have

to be kept fixed along dM does not affect our argument, since solutions remain in the

interior.

- One defines the action of a 1-periodic orbit to be

Ah(x) f -x*9 + Ht(x(t))dt. (4.17)
7s '

Then, the energy of any solution u can be written as

E(u) f \\dsu\\2 Ah(x-)-AH(x+)+ U-Q, + f (dsH*t)(u(s,t)).
7mxs' 7MXS'

(4.18)
The last term is bounded independently of u, because of (4.15). Hence, an upper
bound on the intersection number u £2 E A yields a bound on the energy.

The Floer cochain complex is

CF*(//) ® Ax. (4.19)

Here, the sum is over all 1-periodic orbits x, each of which contributes a one-
dimensional summand Ax (identified with A in a way that's canonical up to a sign,
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and placed in degree i{x)\ we will usually write ±x for the preferred generators of
that summand). The differential

d:CF*(H) —> CF*+1(H),

dx+ YJMu'Ux-, (4-20)

U

is obtained by counting solutions of (4.13). More precisely, one counts non-stationary
solutions which are isolated up to .v-translation, with signs (given more intrinsically
by an isomorphism Ax+ -> Ax_ for each u). Up to canonical isomorphism, the

resulting Floer cohomology depends only on e; we denote it by HF*(M, e).

Example 4.3. As a very simple instance of the well-definedness property, let's see

how, (//, J) being kept fixed, Floer cohomology is independent of Suppose
that we have two choices with associated 0±. Take a cycle in JR. x M with
A-coefficients, which interpolates between the two, meaning that it equals E± x £2± at

infinity. Then, the associated map between Floer cochain complexes simply rescales

each generator by a suitable power of q\

r(x) qÄ{x)x, (4.21)

where

Ä(x) (R x x) • fi — [ x*9+ + f x*d_. (4.22)
Js I Jsi

The two expressions for A(x) show that it lies in the subgroup A, and also that it is

independent of the choice of £2; the equivalence of those expressions is shown by

capping off x± with surfaces in M (hence uses the fact that x± is nullhomologous).

4.c. Operations. The general structure of operations on Floer cohomology is

roughly as follows. Suppose that we have an equation (4.14), where the data

(H*t, J*t) can depend on additional parameters. The simplest case is when the

parameter space is a compact oriented manifold with boundary, denoted by P. Then

(assuming suitably generic choices to ensure transversality), counting isolated points
in the parametrized moduli space of solutions of (4.14), in the same way as in (4.20),

yields a map
cpP: CF*(H) CF*~inm(p)(H), (4.23)

which is related to its counterpart for the restriction of the parameters to 3P by

(_l)dim(P)d(pp _ (j)pCl + 0gp o. (4.24)

If P is closed, (j)p is a chain map of degree —dim(P). A standard generalization is
where

dP Pi x P2 (4.25)
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is a product, and the family of equations (4.14) does not smoothly extend to the

boundary, but instead asymptotically decouples into two equations parametrized
by Pi and P2, which are limits over parts of the cylinder that are separated by
an increasingly long neck. In that case, the modified formula for the boundary
contribution in (4.24) is

hp (-1 )dim(Pl )dim(/>2
cpP2. (4.26)

There are further generalizations of those basic setups, involving parameter spaces
that are manifolds with corners. These are all routinely used in Floer theory, and we
will not spell out the details; the very short discussion here was intended merely as

an indication of our notation and sign conventions.

Remark 4.4. The Koszul sign in (4.26) may deserve some explanation. Points
in a parametrized moduli space are pairs (r, u) consisting of some r 6 P and

a map u satisfying the appropriate r-dependent equation (4.14). Linearizing the

equation (with variable r) yields an operator which is an extension of the ordinary
linearized operator Du, with the domain enlarged by TrP. The top exterior power
of the tangent space of the parametrized moduli space is the determinant line of this
extended operator, which can be identified with

Xtop(TrP) <g> det{Du). (4.27)

In the limit where r degenerates to a point (rj, r2) P\ x P2, and u converges to a

limit consisting of pieces (u j, u2), the corresponding expression along the boundary
would be

A,op(Tn P^ ® det(DUl) ® Xtop(Tr2P2) <g> det{DU2). (4.28)

To compare (4.27) and (4.28), one uses the isomorphism

X'°P(TP)\dP s Atop(TPx) <g> A,op(TP2)

induced by (4.25), as well as the gluing formula for determinant lines,

det(Du) ^ det(Di) <g) det{D2).

When applying those two results to (4.28), one exchanges the middle two factors in
the tensor product, and that comes with a Koszul sign (—l),ndex(D»i

construction of determinant line bundles (see [37] tor a comprehensive exposition).
But since the relevant argument considers isolated solutions (r\, ui) and (r2, n2), the

index of DUl is minus the dimension of Pi.
As a warmup for later considerations, we want to discuss certain specific

operations. The simplest of these is the quantum cap product with the class

q~l [£2] e H2(M ; A). To define the underlying chain map

l: CF*(H) —> CP*+2(//), (4.29)
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choose some (//',/') which satisfies (4.15) with r 0, meaning
that it reduces to (Ht, Jt) for |.v| 0. Then, consider solutions of the associated

equation (4.14) which satisfy the incidence condition

m(0,0) eq~xtl. (4.30)

(There is nothing special about (0,0): any other point on the cylinder could be used

instead. Similarly, we could have used any fixed value of r.) The notation (4.30) is

shorthand for the following. For each component Q,j, we count solutions such that

w(0,0) e Q j with weights ±qu'a, and then take the sum of those contributions with
multiplicities q~xm j taken from (4.1). Obviously, one has to assume that the space
of solutions satisfies suitable transverse intersections conditions with the Qj, but that
is easy to achieve, given the freedom to choose (//j t, J's t). Instead, one could also

opt for amore restricted choice, which is to just use the given {HLst, Jlst) (//,. Jt).
This would require an additional transversality argument for the original (Ht, Jt),
which is again within the scope of standard methods.

There is a similar operation where one allows the evaluation point to move,

A: CF*(H) —CF*+1(H). (4.31)

For that, one introduces a parameter r e S1, and replaces (4.30) with

u(0,-r) £ q'1^. (4.32)

As before, one implements this by choosing a family (H,s t, J^Stt)
which, for each value of r, satisfies (4.15) with r 0. Alternatively, the special
choice (H, t, j£st) (Ht, Jt) also still works, assuming suitable transversality
properties. The advantage of adopting this special choice (which will be crucial later

on) is that then, (4.29) can be viewed as a sum over the same solutions as in the Floer
differential, but with modified multiplicities:

A(x+) ^ (u Œ)x_. (4.33)
U

The idea is that, if u(s, t) e £2, one can translate u in .v-direction so that (4.32) holds,
with r —t. The sign in (4.32) may seem puzzling in view of (4.33); we refer to
[29, Section 8a] for a detailed explanation.

The final operation we want to consider is the BV operator

A: CF*(H) —» CF*~\H). (4.34)

Again, this is based on a moduli problem with one parameter r e S1, but where that

parameter now affects the rotation of the end s —> oo. Concretely, this means that

one chooses (//A, J A) (H^s t, J^s t) satisfying (4.15) for

r r, (4.35)
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and uses the resulting parametrized space of solutions of (4.14) (more generally, one
could let r r (r) be any degree 1 function S1 A1). This time, there is no option
to use the original (//, J), because they are not time-independent (there are special
cases where this is possible, leading to vanishing of A; see Section 4.d below).

Lemma 4.5. There is a chain homotopy

A ~ At — iA. (4.36)

Proof. We begin by rewriting the two terms on the right hand side in a more compact
manner, up to chain homotopy. Namely, consider a setup which still has a parameter
r G S1, with r — r, and additionally the incidence condition (4.32). This gives rise

to an operation
A+ ~ At. (4.37)

To get the homotopy in (4.37), one uses a neck-stretching argument in which our
family degenerates to that for A, glued together with the surface underlying l (one
can also think of this argument as moving the marked point towards s —> +oo). This
works because (to put it in the simplest terms) after a coordinate change ü(s, t)
u(s, t — r), part of the original conditions looks like this:

w(0,0) G q~x£l,
(4.38)

linij-^+oo u(s, t) x+(f).

On the other hand, one can consider another parametrized moduli problem, where
still r r, but the incidence condition is the /--independent one (4.30). By a similar
argument, this gives rise to an operation

A_~tA. (4.39)

There is another family of equations (4.14) parametrized by the compact pair-of-pants,
whose restrictions to the three boundary circles are: the family underlying A+; that

underlying A_, with the orientation of the circle reversed; and the family underlying A,

again with reversed orientation. From that, one gets a homotopy

A+ — A_ ~ A. (4.40)

By combining (4.37), (4.39), and (4.40), one obtains (4.36). We have divided the

construction of (4.36) into three parts for ease of exposition. However, one can
also implement it as a single homotopy given by a combined parametrized moduli
problem, where the parameter space is a modified pair-of-pants (with one boundary
circle and two ends; equi valently, a closed disc with two interior points removed).

Lemma 4.6. There is a nullhomotopy

AA + AA ~ 0. (4.41)
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Proof. Each of the two terms in the equation is chain homotopic to what one would

get from a moduli problem with parameters in A1 x S1. For A A, we denote the

parameters by f/* r£), and the conditions are

t =t1+, u(0, -r+ - r+) e (4.42)

For AA, we denote the parameters by (rj~, rf) and the counterpart of (4.42) is

r rf, u(0, —rj~) e q~l£l. (4.43)

(More precisely, these families give operations homotopic to —AA and —A A, because

of the sign in (4.26), but that ultimately makes no difference to our argument.) The
conditions (4.42) and (4.43) are related by an orientation-reversing parameter change

(r+, r+) (rf, rf - rf). (4.44)

One can therefore combine the two chain homotopies to get (4.41). As before, one
could also encode the entire argument in a single parametrized moduli problem, with

parameter space M x S1 x S1.

Lemma 4.7. There is a nullhomotopy

A2 ~ 0. (4.45)

Proof. This is the most familiar among our relations. As before, A2 is chain

homotopic to what one gets from a moduli problem with parameters (ri,r2) e
S1 x S1, and which has

x n + r2. (4.46)

Since only rx + r2 appears, one can extend the relevant family over the solid torus,
and that yields the nullhomotopy.

The preceding three lemmas are not independent; in view of (4.45), (4.36) clearly
implies (4.41 Nevertheless, we have explained them separately, since each argument
forms the toy model for one of the constructions later on.

4.d. Relation with Morse theory. Our next task is to review the isomorphism
between ordinary cohomology and Floer cohomology, which holds when the

Hamiltonian is sufficiently small. Ordinary cohomology will be realized through
Morse theory. Let / be a Morse function which is locally constant on dM, with
the gradient pointing outwards. After choosing a metric g which makes V/ Morse-
Smale, one can associate to it the Morse complex CM*(f) (with A-coefficients),
whose cohomology is canonically isomorphic to H*(M; A).

First approach (direct isomorphism). There is a classical argument [9] which allows

one to identify the Morse complex and Floer complex on the nose, assuming
precise coordination of the choices involved in defining each of them. The main
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technical result from [9] (with minor adaptations to our context) says that there is

a function H and compatible almost complex structure J (not depending on any
additional parameters), with the following properties:

- Along the boundary, H e3Î to second order, for some small e > 0, and J #
to first order.

- H is Morse, and its gradient flow with respect to the metric a>{-. J) is Morse-
Smale.

- All 1-periodic orbits of the Hamiltonian vector field X of H are constant.

- Any non-stationary solution of Floer's equation (4.13) (with the given t-inde-
pendent choice of H and J) has nonnegative expected dimension, meaning that

index(Z)„) > 0. Moreover, the solutions with index(Du) 1 are all f-independent,
and regular (this means that they are negative gradient How lines of H ; since H is

small, they will also be regular in the Morse-theoretic sense).

- All (non-constant) J-holomophic spheres avoid the critical points of H, as well
as its isolated gradient flow lines.

Note that we are not claiming that all u are regular (it might be possible to get
such a stronger statement using more sophisticated techniques [35], and that would

simplify our argument a little; but it is not necessary). In spite of that, one can
define HF*(M, e) using the given (//, J), and it will be canonically isomorphic to
the standard definition, by a continuation map argument. Obviously, for this special
choice, we have an identification of chain complexes

and hence H*{M\ A) e). A weakness of this approach is that it is not a

priori clear whether this isomorphism is canonical; but as we will see, one can work
around this issue, at the price of imposing additional conditions on (H, J).

Second approach (PSS map). In the construction of the PSS map [221, the Morse and

Floer sides are a priori unrelated. We work with some choice of (/, g) to define Morse

cohomology; and some e, which can be arbitrary except for (4.10), and (Ilt, Jt) to
define Floer cohomology. Consider solutions of the following equation:

CM* {FI) CF*(H), (4.47)

'
u: (R x S1) U {+00} —> M,

z: [0,00) —> M,

u{+00) z(0),

< dsu + jsBt(dtu - xft) 0,

dsz + ygB.fsB 0,

(4.48)

lim^-y-oo u(s, •) x,

k
lim^-y+oo z(s) y.
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Here, (R x S1) U {+00} is a partially compactified cylinder, which is a Riemann
surface isomorphic to the complex plane. The limit x is a 1-periodic orbit of H,
while y is a critical point of the Morse function /. The auxiliary data appearing
in (4.48) have the following form:

- (HBt, jft) for .v <<C 0. For s 0, the family JBt extends

smoothly over +00, and HBt vanishes. The boundary behaviour of the almost

complex structures is as usual. For the functions, we require that (to second order)

II Bt y(s)'M, where y(s) is a nonincreasing function, equal to e for j « 0 and to 0

for x » 0.

- The function fB equals / for s 0, and also agrees with / near 3M. Similarly,
the metrics satisfy gB g for s 0.

By arguing as in Lemma 4.1 (with S (IxS')U {+00} and ß y(s)dt), one
sees that any solution u remains in the interior of M. Therefore, the point z(0) lies in
the interior, which implies that the same holds for all of z. By counting (for generic
choices of all the auxiliary data) isolated solutions of (4.48), with the usual signs and

powers of the Novikov variable q, one defines a chain map

B: CM*{f) —> CF*(H). (4.49)

A similar construction, with an added parameter, shows that (4.49) is independent
of all choices up to chain homotopy. In the same sense, it is compatible with the

continuation maps that relate different choices of (/, g) and (H, J). Hence, the
induced cohomology level map is canonical. Obviously, in this generality, it is not
an isomorphism.

Lemma 4.8. For sufficiently small e > 0, there is a choice of time-independent

(If J) to which (4.47) applies, and for which the composition of that isomorphism
and the Morse-theoretic continuation map CM*(f —> CM*(FI) recovers (4.49) up
to chain homotopy.

Sketch ofproof The argument is essentially a retread of [9], hence will only be

outlined. We consider time-independent (H,J), and similarly choose (HB,JB)
in (4.48) to be t-independent, while not imposing any constraints on the Morse

theory side. One can achieve that:

- (H, J) has all the conditions required for (4.47);

- Any solution of (4.48) has nonnegative expected dimension. Moreover, the

solutions with expected dimension zero are all t-independent, and regular.

- For any sëRU {00}, all //-holomorphic spheres avoid the points u(s, t), where
m is a solution of (4.48) with expected dimension zero.
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(4.50)

If one adopts such a choice, isolated solutions of (4.48) reduce to broken flow lines,
of the form

/iclU { + 00} —> M,

dsu — 0 for s 5>> 0,

z: [0,00) —» M,

w(+00) z(0),

lim^-^-oo u(s) x,
limä_v+00z(j) y.

We have omitted the ODE which u and z satisfy (both are .v-dependent gradient
equations). While (4.50) may not be the standard definition of a Morse-theoretic
continuation map, it is chain homotopic to that map.

As a consequence of Lemma 4.8, the PSS map in that particular instance is an

isomorphism on cohomology; on the other hand, it follows that then, (4.47) agrees
with the PSS map on cohomology, hence fits into the general framework of canonical

isomorphisms.

5. The q-connection

This section is the core of the paper. We introduce operations on S1 -equivariant
Hamiltonian Floer cohomology, which constitute a rudimentary Cartan homotopy
formalism. Just like in the classical definition of the Gauss-Manin connection, or in
Getzler's noncommutative geometry version, the ^-connection arises by combining
that formalism with "naive" differentiation.

5.a. Structure of the equivariant theory. We continue in the geometric setup of
the previous section. Define

CF*eq(H) CF*(H) H, (5.1)

where u is a formal variable of degree 2. We will introduce A \u J-linear endomorph-
isms of this space, of the form

deq d + uA + 0(u2): CF*q(H) — CF*+l (//), (5.2)

Xeq X + 0(u): CF*q(H) —> CF*eq+1(H), (5.3)

ieg i + 0(u): CF*q(H) CF*eq+2(H). (5.4)

They will satisfy a kind of Cartan homotopy formalism:

d2q 0, (5.5)

deq^eq H~ Aeqdeq — 0, (5.6)

deq^eq ^eqdeq uXeq. (5.7)
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These equations are higher-order extensions of (4.45), (4.41), and (4.36), respectively;
the higher-order correction terms include our original chain homotopies, which is

why we get equalities.
Before discussing the construction, let's note some consequences. Define

HF*q(M,e) to be the cohomology of deq. This clearly sits in a long exact

sequence (2.4). By (5.6), Xeq induces an endomorphism of HF* (M, e), and (5.7)
shows that this endomorphism vanishes after multiplication with u. In fact, (5.7)
implies that for an equivariant cocycle x x0 + ux\ H

— W (leqLeq(xo) 4" deqleq(x\ T UX2 T '). (5.8)

This shows that the cohomology level map induced by Xeq is the composition of two

maps from (2.4) and the map induced by i, in the following order:

HF*q(M, e) ^ HF*(M, e) —^ HF*+2(M, e) > HF*+l (M, e). (5.9)

In a sense, this is disappointing, since it means that (on the cohomology level) Xeq is

not a genuinely new operation in the equivariant theory, but rather derived from its
relation with ordinary Floer cohomology.

Remark 5.1. For the arguments so far, we could have used any cohomology class

on M instead of g-1[f2]. More systematically, one can generalize (5.3) and (5.4) to

operations

C* ® CF*eq(H) —> CF*'1 (H), (5.10)

C* <8 CF*eq(H) — CF*q(H), (5.11)

where C* is a suitable chain complex underlying H*(M; A) (to strictly generalize
our approach, this complex should admit submanifolds as cycles; however, other

choices, such as Morse homology, may be technically easier). The first of these is a

chain map, and the second satisfies an analogue of (5.7).
A short digression may be permitted at this point. Let's place ourselves in the

context of Application 4.2. Consider symplectic cohomology SH*(M), and its

underlying chain complex SC*(M), as well as the equivariant versions SH*q(M) and

SC*q(M). Then, one can construct operations

[•, -U"SC\M) ® SC*q(M) SC*~\M), (5.12)

*eq-SC*(M) 0 SC*eq(M) -* SC*eq{M), (5.13)

which satisfy

deq[Xl,X2\eq + [dXl,X2\eq + (-1)1*11 [Xl, deqX2]eq 0, (5.14)

u[x\,x2\eq - deq(x\ *eq X2) + dx\ *eq *2 + (-l)1*1'*! *eq deqX2 0. (5.15)
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One recovers (5.10) and (5.11) (in a suitable chain homotopy sense) from these by
composing with PSS maps C* -> SC* (A/) in the first entry. On the cohomology
level, the outcome is that SH*+1(M) acts on SH*q(M via (5.12); and that
action becomes trivial after multiplying with u. This parallels the situation in
noncommutative geometry, involving Hochschild cohomology acting on (negative)
cyclic homology.

5.b. The equivariant differential. Each construction in equivariant Floer
cohomology amounts to setting up an infinite hierarchy of parametrized moduli spaces
with suitable recursive properties. Our basic organizing principle will be to use the

spaces of Morse trajectories from Section 3 as parameter spaces. At least in the case

of the equivariant differential, the construction is not new, but we reproduce it here

since it serves as the model for all subsequent arguments. We will give two versions
of the definition, where the difference is mainly one of the language used.

First definition. (This is close to the approach in [3].) At each point w e S°°, choose

a Hamiltonian and almost complex structure

W,-C), (5-16)

smoothly depending on w, and subject to the following conditions:

- The choice should be invariant under shift: (He^\wy (Hw > Jw)-

- With respect to q~l(co) «S1, the restriction of (Heq, Jeq) to that fibre should

agree with the previously chosen (Ht, Jt).

- In a neighbourhood of each ck, the family (HyJ. Jw should be preserved
by parallel transport for our chosen connection A (this makes sense because the

connection is assumed to be flat locally near c&).

Let v be a negative gradient flow line, going from (k > 0) to c0. By
parallel transport for the connection A, we get a trivialization of (3.6) over v. This
trivialization is a map v fitting into a commutative diagram

RxS1 ^S°° (5.17)

R > CP00.

Then,

<5J8>

satisfies (4.15) for r (Xk{v), where are the functions defined in the first proof of
Lemma 3.5. We consider the moduli space of pairs (u, u), where v is allow line and u

a solution of the equation (4.14) associated to the data (5.18), divided by common
translation (which reparametrizes v and u simultaneously). Counting points in this
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space (with signs and powers of q, as in the definition of the Floer differential) yields
an operation

deq,k-CF*(H) — CF*+i~2k (H). (5.19)

By the first part of Lemma 3.5, deq>i is indeed (a valid choice for) the BV operator.
Because of the inductive structure of the boundary (3.15), the maps (5.19) satisfy the

equations

ddeq,k deq,kd ^
a

deqkldeqk2 — 0- (5.20)

ki+k2=k
k\,k2>0

Concerning the signs in (5.20), the first two come directly from (4.24), and the last

one from (4.26) together with Proposition 3.8(i). It is natural to extend the definition
to k 0 by setting deq<o d. Then, (5.20) just says that the following expression
satisfies (5.5):

deq — deq,0 4~ tldeq^\ T (5.21)

Second definition. The second version is a little more detached from the specific
Morse-theoretic construction of the parameter spaces Pk. Instead of starting with
S°° and then pulling back data from there to the moduli spaces of flow lines, we use

the fact that the Pk carry tautological families (3.19), and make our choices directly
on the total spaces of those families. Fix arbitrary functions ak which satisfy the

properties from Lemma 3.5. Suppose that for each [i>] Pk and preimage y G Pk,
we have chosen a family

(<?• •#),„, (5-22)

with the following properties:

- If y is sufficiently close to some point z G Pk \ Pk, (5.22) should agree

with (Ht,Jt) up to a rotation in S1-direction, which means that {Hy'j, Jy]t) —

(//?+T(y), Jt+Z(y))\ and the amount of rotation r(y) G S1 should be locally constant
under the R-action on -Pk. In the case z y_([i>]), this amount of rotation should
be zero, while for z y+([u]) it should be equal to a&([i;]).

- If we consider a point ([v\], [v2]) e (Pk[ \ dPkx) x (Pk2 \ 3Pkl) C dPk, and a

preimage y G tPk in the R-component belonging to [iq], then (5.22) agrees with
the corresponding family associated to y as a point of fPk[. In the same situation,
if y lies in the R-component belonging to [^2], (5.22) agrees with the corresponding
family over <Pko up to rotation by ak] ([iq]) in 5'1-direction. The analogous property
holds for broken trajectories with more than two components.

These conditions can easily be met by a recursive construction. In a nutshell, because

of the second condition, the restriction of (5.22) to 3P/ is completely determined by
the choices made for Pk, k < /; and one then extends that to the interior, using the

fact that the space of overall choices is contractible (of course, additional care must
be exercised near tPj \ Pi).
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Fix [u] G Pk \ dPk, and choose a representative v. This is the same as fixing
a parametrization of the preimage of [u] in IPk, which we write as s h» y(.v).
From (5.22), we then obtain an analogue of (5.18), this time defined by

/ T,dt,q deq \ / jjdeq .deq \
\nv,s,t'Jv,s,t) — \ny(s),t' Jy(s),t)' (p.U)

which again satisfies (4.15) with r (^([v]). Suppose that we have a sequence [u!]
of such flow lines, which converges to a broken tlow line

([vi], M (Pkl \ dPkl) x (Pk2 \ dPk2).

Choose representatives v' and v\, i>2 as well as rr{, ai, £ M with a2 — a\ —> oo, such

that

\vl(s + (Jl2) —» V2(s)

(in the sense of uniform C00-convergence on compact subsets). The corresponding

convergence statement for (5.23) says that (in the same sense as before)

/Tj deq T^eq \ / jt dcq deq \
v vPs+o\,P v',s+a[,t> \"vi,s,t'Jvus,t)'

' 1

(5.25)
/ "eq j &eq \ ^

&eq j <*eq \
^ v',s+a^,t' v',s+a'2,t'

^ v2,s,t+ak{([v\])' v2,s,t+ak] ([f| ])/ "

If one fixes a sufficiently large L and restricts attention to i 0, then

(Plt, Jt) s £ (—oo.aj — L],

(Ht+ri, Jt+xi) s K + L, a* -L], (5.26)

{Ht+ak([«'"])' /f+a*([«'])) S G ta2 + L, OO),

where the r1 G S1 themselves converge to akl ([iq]). Each case in (5.26) corresponds
to a region where y'(.v) is close to a point of !Pk \ !Pk\ this point is y_([u']) in the

first case and y+([id]) in the third case, explaining the particularly simple nature

of the formulae given there. The combination of (5.25) and (5.26) describes the

limiting behaviour of (77^ uniformly on all of M x Sl. This kind of
description generalizes to limits which are broken flow lines with an arbitrary number
of components.

To define deq, we again consider pairs (v, u), where [u] £ Pk\ 'àPk, and u is a

solution of the equation (4.14) associated to (5.23). Given our previous discussion of
the limiting behaviour of (5.23) as one approaches 3Pk, it is clear how to implement
the necessary compactness argument; a similar strategy applies to gluing issues.

We end by comparing the two versions of the definition: the first one is a special
case of the second. Namely, take oik defined by parallel transport lor the connection A.

Supposing that (5.16) have been chosen, we define (5.22) by

(HP: Jy7)("Ix-ÎW (5-27)

I TT deq jdeq \
5 v',s,t' v',S,t'
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where v(y) e S00 is defined as follows: first use the evaluation map CP00

to associate to y a point v(y) e CP00, and then use parallel transport along the

flow line from c^ to u(j) to determine a preferred lift v(y) e S°°. Because the
evaluation map is smooth, this indeed yields a smooth family, which satisfies all our
desired properties; and if one then considers the associated data (5.23), those agree
with (5.18).

Remark 5.2. One can also ask the converse question, namely whether the

choice (5.18) is indeed less general than (5.22) (making the second definition
genuinely more flexible). The answer is yes, but a precise understanding of the

amount of additional flexibility hinges on tricky technicalities. Roughly speaking,
our first approach was to choose a (time-dependent) almost complex structure and

Hamiltonian for each point of CP00', and our second approach was to choose one
such structure for each point on a nonconstant gradient flow line. Ignoring critical
points (where we have extra constraints anyway), any point of CP00 lies on a unique
such flow line. However, the notions of smoothness used in the two versions are not
the same: in the first one the smooth structure of CP°° is used, while the second one
involves the smooth structures on compactified trajectory spaces.

5.c. The operation Xeq. The construction of this operation is entirely parallel to
that of deq, but using P£ instead of P/(. The additional information provided by

having Pas a parameter space is used to implement an incidence condition.

First definition. Let's suppose that the first construction of the equivariant differential
has been adopted, with data (5.16). Given a point (v, w) P£ \ 3P£, we use the

same associated data (5.18) as before, but (for consistency) change notation to

/ rr^eq j^eq \ / rjeq ,eq \ ,r
\ V ,W ,S ,t 1 v,w,s,tf — \nv(s,t)> Jv(s,t))'

One considers solutions of the associated equation (4.14), with the condition

u(0,ßsk(v,w)) (5.29)

Here, ßsk are the maps from the first proof of Lemma 3.6. For k 0 the flow line
is constant, (5.28) reduces to (Ht, Jt), and (5.29) to (4.32), except for orientations:
in (4.32), the point of evaluation on I x S1 goes in negative direction around the

circle, whereas in (5.29) it proceeds positively, assuming we have oriented Pq as in
Section 3.c. To account for that discrepancy, we will define Xeq using the opposite
orientation of Pk for all k. In parallel to our previous discussion of the differential,
this yields maps

Aeq,k:CF*(H)-+CF*+1-2k(H), (5.30)

of which the simplest (k 0) one agrees with A. These maps satisfy

deq,ki ^eq,k2 + E ^eq,k\deq,k2 — (5.31)

k\+k2=k k\+k2=k
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The geometry underlying that relation is the description of the boundary (3.17),
with signs coming from our general conventions and Lemma 3.8(iii). One combines
the Xeq>k into a it-Taylor series to define Xeq.

Second definition. Take functions {otsk,ßsk) as in Lemma 3.6. Suppose that the

equivariant differential has been defined using some choice (5.22). We then similarly
proceed to choose, for each (v,w) e P£ and preimage y £ Pk, data

(H%,J%)teS i, (5-32)

subject to conditions that are entirely analogous to the previous ones. The only
(fairly obvious) difference is that, on the preimage of a point of dP£, the behaviour
of (5.32) is governed by the previous choices of the same kind (for lower values of k)
on exactly one connected component (corresponding to the part of the broken flow
line which contains the marked point), and by (5.22) on the other components. For
(v, w) e Pk \ dPk one then defines, in analogy with (5.23),

ir^eq T^eq \ tir^-eq ,keq \ oo,
\nv,w,s,t> Jv,w,s,t) — \ny(s),t' Jy(s),t)' yo.JO)

where y (s) e is the preimage corresponding to the point v(s) on the gradient
flow line v. Equivalently but in slightly more abstract terms, the choice of y(s) is

normalized so that for s 0, it gives back the canonical section y*' Pk —* 3>k- The
evaluation condition is again of the form (5.29), and the rest of the construction
proceeds as before. In parallel with the situation of the differential, the first
construction is a special case of the second one (this time, a lot more flexibility
is allowed in the second approach; this was already true for the two proofs of
Lemma 3.6).

5.d. The operation ieq. This follows exactly the same method as for Xeq, but using
the spaces Rbk from (3.75). Because of the more abstract nature of those spaces,
the second approach works better at this point, so we will stick to that. Namely, we
choose functions as in Lemma 3.13, and consider the tautological family 3ihk. At
each point y G we choose

«"> #),«„ (5-34)

subject to the same conditions as before, and which of course must restrict to
the corresponding family on Pk l over that boundary face. The definition of the

associated maps (4.14) proceeds exactly as in (5.33), and we use the same evaluation
condition. This leads to operations

ieqy. CF*(H) —> CF*+2-2k(H), (5.35)

which reduce to i for k 0. Because of the boundary structure (3.75), these satisfy

^ ] deq,k\Leq,k2 ^ ^ ^eq,k\^eq,k2 ^eq,k— 1 ~ 0. (5.36)

k\+k2=k k\+k2=k



Vol.93 (2018) Connections on cquivariant Hamiltonian Floer cohomology 631

The Koszul signs (4.26) disappear, because one of the two parameter spaces involved
is always even-dimensional. What remains is a single —1 sign in front of the

Leq,k] deg>k2 term, for k2 > 0, which comes from Lemma 3.14. Finally, the sign
in front of Xeq^-i arises from the orientation-reversal convention we adopted when

defining that operation.

5.e. The differentiation property. At this point, we pick up the thread initiated
in (4.33), which justifies the special role afforded to the class <?_1[£2] in our setup.

Namely, let Bq be the operation of differentiation in ^-direction, acting on CF*(H).
This makes sense because, as a free A-module, CF*(H) carries a canonical basis

(up to signs). Differentiation does not commute with the boundary operator: instead,

we have

Bqd-dBq=X. (5.37)

To be precise, this holds exactly provided that A has been defined by counting solutions
of Floer's equation with the additional condition (4.32); in fact, the left hand side is

precisely (4.33). The property (5.37) is an instance of a general idea which, in [291,

was called the "differentiation axiom" (in Gromov-Witten theory, a corresponding
property is implied by the divisor axiom). There is also an equivariant refinement:

Bq deq deqBq A
eq. (5.38)

This assumes that the first version of the definition of deq and Xeq has been used.

Given that, the proof is exactly the same as for (5.37). As an immediate consequence
of (5.38) and (5.7), the homomorphism

rq-CF*q(H) CF*+2(H),
(5 39)

T9(x) udqX + Leq(x)

is a chain map. We define the ^-connection to be the induced map on cohomology,
using the same notation for it. This definition clearly satisfies the property from (2.6),
already on the chain level. The commutativity of (2.7) is also obvious, since Tq(x)
i(x) + 0(u). We can also immediately address the remaining properties mentioned in
Section 2.b. Namely, if co is exact, one can choose the cycle £2 to be empty, in which
case both Xeq and ieq vanish, yielding (2.8). Similarly, if œ H2{M\ Z) mZ for
some integer m > 2, one can choose £2 so that all its components have multiplicities
in mZ. Then, Xeq and ieq vanish modulo m, leading to (2.9).

Remark 5.3. Let's briefly explain the expected situation for symplectic cohomology,
continuing the discussion from Remark 5.1 (this is just an outline; the details, which
would require a combination of the techniques from here and [29], remain to be

carried out). One has a chain homotopy

^eq — [A, "]eq> (5.40)
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where k G SC2(M) is a cocycle representing the image of under the PSS

map. Denoting the chain homotopy in (5.40) by peq, one would then reformulate the

definition of the ^-connection on SH*q(M) in the following equivalent (up to chain

homotopy) way:
r9(jc) ~ udqx + upeq(x) + k •eq x. (5.41)

To tie that discussion to [29, Section 3], suppose that k is in fact nullhomologous,
say k dO. One can then further rewrite (5.41) as

rq(x) ~ u(dgx + peq{x) - [9,x\eq). (5.42)

At this point, one can divide the entire right hand side by u, which produces a

(degree 0) endomorphism Veq of SH*q satisfying

Veq(fx) .fVeqX + (3qf)x,
rq wV„,.

Furthermore, setting u 0 in the definition of Veq reproduces the connection V-1
from [29].

5.f. Well-definedness. In our discussion of (2.8) and (2.9), we have implicitly
made use of a property which requires justification, namely, independence of
the ^-connection from the choice of representative 0, within a fixed class

[£2] G H2(M;A). Generally speaking, the same issue arises with respect to all
the other choices made in the construction. Luckily, the necessary well-definedness
statements can all be proved in a uniform and fairly routine way; we will not give the

details, but we will explain how the construction is set up.
Suppose that we are given two choices (H±, J±, £2±) of data underlying the

definition of Floer cohomology. On M, choose a Morse function / /(p) with
exactly three critical points, namely local minima at p — ±1 and a local maximum
at p 0. Instead of (4.13), we now consider coupled equations involving a gradient
flow line of f :

|u:R x 51 —^ M,

z: M —> M,
~ ~ (5.44)

I 3SU T Jz(s),t(,9tU — 0,

(SiZ + f'(z) 0,

with the obvious asymptotics. The main point is that the almost complex structure J
and Hamiltonian H depend on the additional parameter p G ffiL We ask for

Jpj) to agree with (//-,(, J-,t) if p < e (for some small e > 0), and with

(//+,,,/+,/) for p > 1 — e. We also assume that a cycle £2 C M x M is given,
which equals M x on {p < e} and M x £2+ on {/? >1 — g}. We then consider

a Floer cochain space whose generators are pairs consisting of a critical point of /
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and a one-periodic orbit of the Hamiltonian associated to that critical point. The

differential counts solutions of (5.44) with weights given by the intersection number

of the cylinder
ExS1 —> IxM,

(5.45)
(s,t) I—» (z(s),u(s,t))

with Œ. The resulting complex, denoted by CF*(H), can be written as a mapping
cone

~ —id I continuation map i
CF*{H) {CF*(H-) —> CF*~\H-) < CF*(//+)}. (5.46)

Example 5.4. Let's consider the case where (H±,J±) (H,J) are the same

(and we choose (H, J trivially), but with different £2±. The solutions of (5.44)
relevant for the continuation map, as defined in (5.46), consist of a trivial cylinder
u(s, t) x(t) together with the unique (up to translation) z(s) connecting p 0

and p — 1. Hence, the resulting map is precisely (4.21).

As an immediate consequence of (5.46), we have a chain homotopy commutative

diagram
continuation map x ,„xCF (H-) * CF*(H+) (5.47)

projection

CF*{H)
in which both projections are chain homotopy equivalences. To see how this

viewpoint is useful for studying the well-definedness of various additional structures

on Floer cohomology, take for instance the operations (4.29) on CF*(H±), denoting
them by t±. One can define a similar operation t on CF* (//), using a suitable version
of (5.44) with evaluation constraints in q~l S2. By construction, this operation will be

strictly compatible with the projections in (5.47), which proves that the continuation

map relates i± up to chain homotopy (of course, there is nothing miraculous about
this: the desired chain homotopy is encoded into the definition off).

The same idea can be used to show that equivariant Floer cohomology is

independent of the choices made in its construction. One defines a version of the

equivariant theory that is coupled to Morse theory as in (5.44), denoted by CF*(/(H),
which comes with projections to CF*q(H±). A filtration argument (by powers
of the equivariant parameter u) shows that these projections are chain homotopy
equivalences. One defines the equivariant continuation map, up to chain homotopy,
by filling in the analogue of (5.47):

CF;,(H_) CF;(H+) (5.48)

cr:j ru
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Following the same strategy as before, one can show that CF*q(H) carries all
the same structures as CF*q(H±), including the g-connection, in a way which is

compatible with the projections. This implies compatibility of the g-connection with
the equivariant continuation map.

Remark 5.5. We have allowed only nullhomogous 1-periodic orbits, since that

simplifies the exposition a little. Let's see what modifications are necessary in order
to drop that restriction. The resulting Floer cohomology group will come with a

splitting

® HF*(M, e)a, (5.49)

aeH\ (M)

with the previous definition contained in this as the a 0 summand. The same

decomposition will apply in the equivariant case, and all the structures we are

considering, including the g-connection, are compatible with the splitting.
To obtain a Z-grading on (5.49), one needs to choose a trivialization of the

anticanonical bundle; in fact, only the homotopy class of the trivialization is

important. Changing that class by a E H1 (M ; Z) has the effect of shifting the

grading of each summand in (5.49) by an even amount 2 Ja a\ see e.g. [26J.
The other issue has to do with the maps (4.21) which relate different choices

of £2. Let's suppose that we define this map using intersection numbers with an

interpolating £2. Changing £2 by a x M\ A) — H1(M\ A) has the effect

of multiplying the map (4.21) with

x I—y q^a ax (5.50)

on each summand (5.49). Hence, the continuation maps are no longer quite canonical.
One can try to cure the ambiguity by adding more data, but that is irrelevant for our

purpose: Vq is compatible with those maps for any choice of £2.

The last-mentioned observation may seem paradoxical, and deserves some
further explanation. An equivalent statement is that F^ remains invariant under
the automorphism (5.50) of (5.49). By its connection property,

q~laCt Fq(qiaCl x) rq(x) + uq~l(faa)x. (5.51)

Hence, what we are saying is that the action of u faa e AfwJ on HF*q(M,e)a is

trivial for any a. Indeed, one can prove directly that this is the case (one possible proof
goes via the formalism mentioned in Remark 5.1). As a noteworthy consequence, if a
is a primitive non-torsion class, then u acts trivially on HF*q(M, e)a, and hence the

behaviour of on that summand is entirely determined by the cap action of q~l [£2]

on HF*{M, e)a (the forgetful map being injective).

5.g. Small Hamiltonians. Suppose now that we have time-independent (//, J),
satisfying the properties which are necessary for (4.47) to apply. When defining
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equivariant Floer cohomology, one can choose all the data involved (either (5.16)
or (5.22), depending on the approach chosen) to be equal to (H, J). This means that
all the equations (4.14) which appear reduce to the standard Floer equation for (H, J).
If one looks at the parametrized moduli space which underlies deq^ for some k > 0,

all its points have expected dimension

2k - 1 + index(Du) > 2k - 1 > 0. (5.52)

As a consequence, if we use this setup to define the equivariant differential, then

deq,k 0 f°r all k > 0, so that

deq d. (5.53)

This means that (5.1) is an isomorphism of chain complexes, and hence

HF*q(M, e) HF*(M, e)H. (5.54)

For Xeq and ieq, one can use a similar approach. Namely, take some family
(H^t, J^t), with (.v, t) e 1 x Sx as usual, and which agrees with our fixed (//, J)
for |.v I » 0. What one can arrange is that all equations which appear in the definition
of \eq and Leq are of the form

ti.u + ^+„(3,»-<;+#)3,» 0.

\u(0,d)eq~1Q.
1 ^

In words, all the (H*,J*) that we encounter in (4.14) are rotated versions of
(Hfe, ,/f"), and the amount of rotation is dictated by the position of the point at

which the incidence condition is imposed; this is possible only because the limiting
data (//, J) are ^-independent. As a consequence, parametrized moduli spaces again
can't have any isolated points, which means that

Xeq 0, (5.56)

leq I (5.57)

Hence, we have

Tq — udq + i. (5.58)

By construction, t is the quantum cap product with q-1 [f2]. We have therefore shown
that the isomorphism (5.54) identifies the ^-connection with udq + <7_1[S2] ^ •.

This establishes the last part of Theorem 2.1, but in a form that involves the a

priori non-canonical isomorphism (5.54). Following the same idea in Section 4.d,

we will now outline how to resolve that remaining issue. In general, one can (using

spaces of half gradient flow lines as parameter spaces) define an equivariant version
of the PSS map, which is a chain map

Beq B + 0{u)-. CM*(/)M CF*eq(H). (5.59)
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The induced map H*(M; A[w]) —> HF*q(M,e) is independent of all choices. It
is an isomorphism whenever the ordinary PSS map is, thanks to an easy spectral

sequence comparison argument. Now, one can find a time-independent (//, J) for
which all our previous argument goes through, such that the PSS map reduces to a

Morse-theoretic continuation map, and all the higher terms in (5.59) vanish, for the

same reason as in our discussion of (5.54). For that particular choice, it then follows
that (5.54) agrees with the cohomology level map induced by (5.59), hence is after
all part of the standard framework of canonical isomorphisms.

Remark 5.6. A natural next step would be to look at the following situation.
Suppose that M is a manifold with contact type boundary, such that the Reeb

flow on 3M is 1-periodic and extends to a Hamiltonian circle action on the whole
of M. Let's assume that the circle action is "Calabi-Yau", which means that
there is a trivialization of the anticanonical bundle which is S ^invariant. In that

case, a version of the isomorphisms from [25] (see more specifically [23]) yields
HF*(M, 1 + e) ^ HF*(M, e) for all e. In particular, if e > 0 is small, one has

HF*(M, 1 + e) H*(M; A). (5.60)

The S'-equivariant version of this story appears to be more interesting, and closely
related to the "shift operators" (studied e.g. in [4]). The analogue of (5.60) says that,
still for small e > 0,

HF*eq{M, l+e) H*(M; A), (5.61)

where the right hand side is equivariant cohomology for the circle action on M.
Given that, it seems plausible to conjecture that the g-connection on HF* (M, 1 + e)
should correspond to the equivariant quantum connection on the right hand side. That

equivariant connection is interesting even in cases where ordinary Gromov-Witten
invariants vanish (see e.g. [4,21]).

5.h. Finite analogues. To round off our discussion of the r/-connection, we would
like to mention a conjectural analogue in which S1 is replaced by a cyclic group Z/p
(this addresses a question raised by Ganatra). Cyclic symmetries exist for a much

wider class of (not necessarily Hamiltonian) symplectic Floer cohomology groups.
Our main point of reference is 127], which only considers the case p 2; hence, we
will ultimately restrict to that case, even though this can be a bit misleading.

Let <j>:M -» M be a symplectic automorphism, and M$ its mapping torus. We

require a strengthened form of (2.1), which is that the fibrewise tangent bundle of
M,), —> Sl should have vanishing first Chern class. This is equivalent to saying
that (p can be lifted to a graded symplectic automorphism [26]; we fix such a lift.
Similarly, we assume that the cohomology class of the fibrewise symplectic form
on A/0 is integral, and fix an integral lift [S2^]. Finally, one has to make certain

requirements on the behaviour near 3M, which we omit (but see e.g. [32]). One can
then define fixed point Floer cohomology HF* (([>), as a Z-graded module over Z((<7)).
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The Floer cohomology of iterates (pp carries a canonical action of Z/p. That action

can be refined to yield a Z//t-equivariant version of the theory. From now on,
assume that p is prime, and use (Z/p)({q)) rather than Z((t/)) as coefficients for Floer

cohomology. Let's denote the resulting version of the equivariant theory simply
by HF*q((j)p), omitting any mention of the coefficients for the sake of brevity. It is a

finitely generated module over H*(BZ/p; (Z/p)((q))). We denote by u the standard

degree 2 generator of that ring (for p 2, u is the square of the degree 1 generator,
which we denote by h; this is of course no longer true for p > 2, even though there
is a relation between the two via Massey products). The conjectural analogue of the

^-connection is an endomorphism satisfying the same condition as in (2.6),

We will not attempt to construct (5.62) here, but we can outline a bit of the formal
skeleton of the construction. For simplicity, suppose from now on that p — 2. Let
CF*(<p2) be the chain complex underlying HF*((p2). Using an incidence condition
with q~lÇl^, one defines

much as before. The operations (5.63) don't depend on having the square of a map,
but the next steps do: one has

The first of these maps induces an endomorphism on cohomology, and the second
shows that this endomorphism is an involution (recall that we are in characteristic 2,

so signs don't matter). We can introduce further operations, which can be seen as

measuring the failure of t to be compatible with the Z/2-action:

l:CF (<p — CF +1((p dÇ + Çd m + ia,
* o „ o (5.65)

a:CF*((j)2) — CF (</> d 3 + Ed aÇ + £cr + St + t£ + A.

The equivariant differential on CF*q{<p2) CF*(<j)2)\h\ is of the form

deq d+h(id+a)+h2S+0(h3): CF*?(02) —> CF*+\<f>2), d2q 0. (5.66)

One would then define the discrete analogue of the ^-connection on CF*q((p2) by a

formula

rq L + + h2(dq + 3) + 0(h3): CF*q(<p2) CF*+2(<t>2). (5.67)

Tq:HF*eq(<pp)-^HF*eq+2(<pp). (5.62)

t: CF*{(j)2) —> CF*+2(<p2), di — id 0,

A: CF*((f>2)—> CF*+1((f>2), dX + Xd=0,
(5.63)

rr: CF*(<p2) —> CF*{(f>2), da + ad 0,

S: CF*((p2) —» CF*~l(<t>2), d-£ + Y,d a2 + id.
(5.64)
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Let's conclude this sketch by mentioning why one might be interested in studying
such operations. On the algebraic side, the theory of differential operators in finite
characteristic is much richer than its characteristic 0 counterpart (see e.g. [17] for
applications to Gauss-Manin connections). On the geometric side, one has the

equivariant squaring map [28]

HF*(4>) HF2*{<P2). (5.68)

This satisfies Q{qx) q2Q(x), hence its image is a subspace over (Z/2)((g2)). The
kernel of Tq is a subspace of the same kind. One can speculate that the composition
of (5.68) and Tq should be zero, and then further consider the relation of such

statements with localisation theorems as in [281.

6. The «-connection

This section adapts the previous arguments to prove the results stated in Section 2.b.

To avoid repetition, much of the discussion will be presented in abbreviated form.
The main difference can be expressed as follows. Originally, we worked in a situation
where Floer cohomology groups were Z-graded, which was useful in simplifying
technical aspects of pseudo-holomorphic curve theory, but played no fundamental
role in our argument. This time, grading issues will be key to our discussion.

6.a. Floer cohomology revisited. We will again work with a manifold M and

(Jf, $) satisfying (4.3) and (4.4), but now assume (2.11). Choose a codimension two
cycleC m\C\-\ VmjCj, with mj G Z, which represents the first Chern class.

On the complement of C, we fix a trivialization of the anticanonical bundle K~j^,
such that the following holds. Suppose that S is a compact oriented surface with
boundary, w: 5 M a map such that «(35) 0 C 0, together with a section £

of«* AT"1 which is nonzero on the boundary. Then,

J2 ±l=u-C + w(£|35). (6.1)
Ç 1 (o)

Here, the left hand side is the count of zeros with the usual signs, and tu(£|35) is

the winding number (or degree) of £|35 as a map 35 -» 51, defined using the given
trivialization. (In an algebro-geometric context, one would get to (6.1) by taking a

rational section of K~j^ whose zeros and poles equal the divisor C, and using that
for the trivialization.)

When defining the Floer cochain complex, we choose (Ht,Jt) so that all

1-periodic orbits of H are disjoint from C. Then, each such orbit still has an

index i(x) G Z, but (4.16) should now be replaced by

index(Du) z'(x_) — i(x+) + 2(w • C). (6.2)
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Because of (2.11), one also has a one-form 9 on M \ C, such that for the resulting
actions Ah(x), the analogue of (4.18) holds:

E(u) f \\dsu\\2 AH(x-)-AH(x+) + y(u-C)+f (dsH*t)(u(s, t)).
JrxS1 JM.XS1

(6.3)

Equivalently, one can define the normalized action as

Ah(x) Ah{x) - ^i(x), (6.4)

and then a combination of (6.2) and (6.3) yields the familiar energy bound for
solutions with a given index:

E(u) ÄH(x-) - ÄH{x+) + ^index(D„) + [ (dsH*t)(u(s, t)). (6.5)
2 dExS1

Dropping Novikov coefficients, we define the Floer cochain complex as the Z/2-
graded group (with the grading given by i (x) mod 2)

CF*(//) 0 Zx. (6.6)
X

Let's define operations A and t in parallel with those in Section 4.b, but using C
instead of q~xQ. in all incidence conditions. In particular, the cohomology level map
induced by i is now the quantum cap product with ci (M). These operations, and the

BV operator, still satisfy Lemmas 4.5-4.7. Consider the endomorphism

ll: CF*(H) —> CF*(H),
< \ v\ (6"7)

H(x) i (x)x.

This is not compatible with the differential. Instead, assuming that A has been defined

using the same (H, J) as the Floer differential, one has an analogue of (5.37), namely

fid — dfi d — 2A. (6.8)

To see why this is the case, let m be a solution of (4.13) which contributes to the Floer
differential. Then index(Z)„) 1, and hence

i(x_) — t(x+) 1 — 2(w • C). (6.9)

With that in mind, we write

/id(x+) — dfi(x+) dx+ — 2 53±(m-C)x-. (6.10)
U

The term ±(u-C) counts (with signs) the possible ways of translating u in .v-direction,
and introducing some r e Sl, so that the incidence condition u(0,—r) C is

satisfied. Hence, that term is exactly the coefficient of x_ in A(x+).
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6.b. The equivariant theory. We define CF*q(II) CF*(H) [m] as a Z/2-gradcd
Z[m]-module. This carries the same formalism of operations as in Section 5.a, again
using C instead of q~l £2. Let's extend the operator (6.7) w-linearly to C*q(H). The

analogue of (5.38), which holds assuming appropriate choices in the definition of Xeq,

is
oo

ft deq deqH> — ^ ] (1 2/c )u deq^ 2Aeq. (6.11)
k=0

Solutions u which contribute to deq^ have index(Du) —dim(/Jyt) 1 — 2k,
which explains the occurrence of that term; the rest is exactly as before. One can
differentiate elements of C* in m-direction in the obvious way, and this satisfies

9udeq deqdu ^ 'kll deqjç. (6.12)
k

With that in mind, (6.11) can be rewritten as

(2lldu T [x2)deq deq(2ll '()u -f- /x) — deq 2Xeq. (6.13)

It follows that the map

ru--CF*eq(H) —* CF*q(H),
(6.14)

Vu{x) 2m dux + ufi(x) — 2ieq{x)

satisfies

rudeq deqTu — U deq. (6.15)

Even though (6.14) is not a chain map, it does induce a map on cohomology.
We define the M-connection to be that induced map, which clearly satisfies
the property from (2.14). Commutativity of (2.15) is also obvious, because

rM(x) —2t(x) + 0(u). The properties (2.16) and (2.17) follow in the same way
as their counterparts for the -connection.

Remark 6.1. In this context, it is unproblematic to drop the assumption that the

1-periodic orbits should be nullhomologous, leading to Floer cohomology groups as

in (5.49). One wrinkle of the resulting discussion deserves some mention. Namely,

suppose that c\(M) 0. Then, Floer cohomology admits a Z-grading, but that

grading is not unique if one includes all 1-periodic orbits, as already mentioned
in Remark 5.5. In spite of that, (2.16) holds for any choice of Z-grading: given
two choices, the difference between the resulting grading operators multiplies each

summand F!F*q(M, e)a by 2 fa a, for a £ H1 (M ; Z); and that operation becomes

trivial if multiplied by u. In particular, if a is primitive and non-torsion, then

T„ m deg 0 on HF*q(M, e)a. Similar observations apply to (2.17).
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Our next task is to explain (2.21). Let's change the dehnition of CF*(H) to make

it into a Z-graded module over C[q,q~l], where \q\ 2. In view of (6.9), this is

done by defining the differential to be

dx+ ^2 ±qu Cx-- (6.16)
U

The same principle will be applied to all other operations. For instance, the graded
version of the it-connection is an endomorphism of CF*eq(H) of degree 2, still given
by (6.14). The q-connection can be defined as

Tq(x) ~ udqx + q~lieq(x). (6.17)

If one assumes (2.18), then this is indeed the same as our original approach
towards defining the qr-connection (taking into account that we are using C, which

represents [od], instead than q~{ Q, which represented q~x [&>]). Clearly, one has

r„ + 2qTq u(fi + 2udu + 2qdq) itdeg, (6.18)

where deg is the grading operator, multiplying each element of CF*q(H) by its

degree, exactly as in (2.19). The relation (6.18) implies (2.21).
What remains to be discussed is the polynomial version of equivariant Floer

cohomology. For that purpose, we adapt the argument from [28, Section 7] to the

S'-equivariant case. Suppose as before that (2.18) holds, meaning that y 1. Let's
consider the dehnition of the equivariant differential. Maps u that contribute to deq^
have index (£)„) 1—2k. The key point is to govern the last term in (6.5), so
that it grows less slowly than the index term, yielding an energy which becomes

negative (implying that the relevant moduli spaces must be empty) for k 0. For
the equation (4.13) of the Floer differential itself, the problematic term vanishes;
in the dehnition of the BV operator (at least, as we have approached it, which
means avoiding Morse-Bott methods) it is necessarily nontrivial, but can be made

arbitrarily small by choosing the Hamiltonians to be close to time-independent ones.
More systematically, one has the following:

Lemma 6.2. Fix some constant S > 0. Then, one can choose the data underlying
the definition of the equivariant differential deq, such that the following holds. For

any equation (4.14) which contributes to deq^ (k > 0),

[ maxxeM(dsH*t(x)) < 8k. (6.19)
JRxS1

Proof. We follow the second construction of the equivariant differential. Suppose
that, when dehning Floer cohomology, one takes (Ht) to be a small perturbation
of a time-independent Hamiltonian. Then, one can certainly dehne deq>\ (the BV
operator) so that the k 1 case of (6.19) is satished. That prescribes what (5.22)
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does over 3P2. If we extend (6.19) to broken cylinders by adding up the relevant
terms for each component, then the given choice over 3P2 satisfies that condition.
Now, among all functions (H*t) satisfying (4.15) for some r, those for which the left
hand side of (6.19) is less than a given constant form an open convex subset. Hence,
when extending the choice of (5.22) from dPj over the whole of P2, one can arrange
that (6.19) remains true, by using partitions of unity. Openness is important since it
allows us to achieve transversality while still satisfying the necessary bounds. The

same inductive procedure is then repeated for higher k.

For us, it is sufficient to take 8 < 1. Then, (6.5) shows that deq is indeed

polynomial in u, hence yields a differential on CF*oly(H) — CF*(H)[u], The same

principle applies to Xeq and ieq, hence to the definition of the w-connection.
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