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Distinct Distances Between Lattice Points

How many points (xt, yt), 1 < i < k, with integer coordinates 0 < xt, yt < n,
may be chosen with all mutual distances distinct? By countmg such distances, and

pairs of differences of coordinates, we have

1\
• 1 (1)

so that k < n, and for 2 < n < 7 such a bound can be attained e g for 2 < n < 5,

by the points (1,1), (1,2), (3,1), (4,4) and (5,3), ior n - 6 by (1,1), (1,2), (2,4), (4,6),
(6,3) and (6,6), and for n 7 by (1,1), (1,3), (2,3), (3,7), (4,1), (6,6) and (7,7)

However, the fact that numbers may be expressed in more than one way as the
sum of two Squares mdicates that this bound cannot be attained for n > 15 A result
of Landau [4] states that the number of integers less than x expressible as the sum of
two Squares is asymptotically cx x (log#)~1/2, so we can replace the right member of (1)

by c2 n2 (logw)~1/2 and we have the upper bound

k <c3n (logn)~1/4 (2)

where ct is m each case a positive constant
A heunstic argument can be given to support the conjeeture

k <cAn^(logn)m, (3)

but it lacks conviction since the corresponding argument in one dimension gives a
false result

On the other hand we can show

k > nm~e (4)

for any e > 0 and sufficiently large n, by means of the following construction Choose

points successively, when k points have been chosen, take another so that

(a) it does not he on any circle having one of the k points as centre and one of the I 1

distinct distances determined by these points as radius
(b) it does not form, with any of the first k points, a lme with slope b/a, (a, b) 1,

| a\ < nllB, | b\ < nllz Note that in particular no two points determine a distance less

than nllB
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(c) it is not equidistant from any pair of the first k points.
We may choose such a point provided that all n2 points are not excluded by these

conditions.

Condition (a) excludes at most k l nc&lloglogn points, since there arel j circles

round each of k points, and each circle contains at most nc&,log]ogn lattice points1).
Condition (b) excludes at most

k£*(p(a) ~ <ce*w*/3
a-l

points, since a line with slope b/a, b < a, (a, b) — 1, contains at most n\a lattice points.
/A\ /*

__
Condition (c) excludes at most 1 n213 points, since there are lines of equidistant

points, each of which has slope b/a, (a, b) 1, \a\ > n1/3 and such a line
contains at most n/\a\ < n213 lattice points.

Hence, so long as

-i- k3 nc*/loglog w + c6 k n^3 + \k2 n2l* < n2,

there remain eligible points, and this is the case if k <^ n2l3~e. The lower bound (4)
is thus estabhshed.

For the corresponding problem in one dimension, the existence of perfect difference
sets [6] shows that for n an even power of a prime,

k > n^2 + 1

so that generally

k>nl'2(l-6). (5)

On the other hand it is known [2, 5] that

* < n^2 + n1!* + 1 (6)

In d dimensions, d > 3, we may replace Landau's theorem by the theorems on
sums of three or four Squares, giving an Upper bound

k <c,d^2n, (7)

while the corresponding heuristic argument suggests the conjeeture

k <cgd2l3n213 (logn)1/3. (8)

The construction, with (hyper)spheres and (hyper)planes, corresponding to that
given above, yields the same lower bound (4) as before.

One can also ask for configurations containing a minimum number of points,
determining distinct distances, so that no point may be added without dupücating

x) It is well known that the number of Solutions of n — x2 + y* is less than or equal to d{n), the number
of divisors of n [3] and d{n) < »c/loglog » by a well known result of Wigert [3].
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a distance. Can this be done with as few as 0(n112) points; or with 0(n113) points in one
dimension ">

Another open problem [1] is given any n points in the plane (not necessarily
lattice points) [or in d dimensions], how many can one select so that the distances
which are determined are all distinct? P. Erdös and R. K. Guy, Budapest
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Note on a Diophantine Equation
Schinzel and Sierpinski [1] have given the general Solution of the diophantine

equation

(*> - 1) (y« - 1) [(£---* )2-l]S,
and Szymiczek [2] has given the general Solution of

The purpose of this paper is to obtain a complete Solution of the diophantine equation

(*» + «)(y» + _)=[_(-^)2+_»]2, (1)

where a and b are any two given integers.
Let X x — y, Y x + y; then X Y (mod 2) and (1) becomes

Z>4 (X2 + 2 X Y + Y2 + 4 a) (X2 - 2 X Y + Y2 + 4 a) (a X2 + 4 W)2.

This equation reduces to

64 ((Y2 - X2)2 + 8 a (Y2 - X2) + 16 a2) (a X2 + 4 64)2 - 16 a ö4 X2

and we have

b2 (Y2~ X2 + 4a) ±(aX2-4 b*)
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