Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 25 (1970)

Heft: 6

Artikel: Uniqueness theorems for power equations

Autor: Klamkin, M.S. / Newman, D.J.

DOI: https://doi.org/10.5169/seals-27362

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 30.01.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Uniqueness Theorems for Power Equations

The uniqueness of the solution for the system of power equations

$$\sum_{i=1}^{n} x^{k} = 0, \quad k = 1, 2, \dots, n$$

is well known. Flanders [1] in a classroom note states that the Newton formulae are not quite so elementary and gives a more elementary proof using the Vandermonde determinant. In this note, we give an elementary proof of a generalization which uses only part of the Newton formulae. Then by use of the complete set of Newton formulae, we give further extensions.

If T_1 , T_2 , ..., denote the elementary symmetric functions of x_1 , x_2 , ..., x_n , i.e.,

$$P(x) = \prod_{i=1}^{n} (x - x_i) = x^n - T_1 x^{n-1} + T_2 x^{n-2} - \cdots + (-1)^n T_n$$

and if

$$S_k = \sum_{i=1}^n x_i^k ,$$

then the Newton formulae [2, 3] are

(A)
$$S_k - T_1 S_{k-1} + T_2 S_{k-2} - \cdots + (-1)^{k-1} T_{k-1} S_1 + (-1)^k k T_k = 0 \ (k \le n),$$

(B)
$$S_k - T_1 S_{k-1} + T_2 S_{k-2} - \cdots + (-1)^n T_n S_{k-n} = 0 \ (k > n)$$
.

To obtain (B), we merely sum over the roots x_i of the equation

$$x^{m} (x^{n} - T_{1} x^{n-1} + T_{2} x^{n-2} - \cdots + (-1)^{n} T_{n}) = 0 \text{ (here } k = m + n).$$

To obtain (A) requires considerably more work. The proof in [2] is based on knowing the formula and using properties of the elementary symmetric functions to confirm it. The proof in [3] derives the formula by an expansion of the identity

$$P'(x) = \sum_{i=1}^{n} \frac{P(x)}{x - x_i}.$$

We now give a considerable simplification of the latter proof and obtain both (A) and (B). We start from the different expansion

$$\frac{P'(x)}{P(x)} = \sum_{i=1}^{n} \frac{1}{x - x_i} = \frac{n}{x} + \frac{S_1}{x^2} + \frac{S_2}{x^3} + \cdots$$
 (1)

Changing x to 1/x and simplifying, we obtain

$$\frac{T_1 - 2 T_2 x + \dots + (-1)^{n-1} n T_n x^n}{1 - T_1 x + T_2 x^2 - \dots + (-1)^n T_n x^n} = S_1 + S_2 x + S_3 x^2 + \dots.$$

Now by multiplying both sides by the denominator and equating coefficients of like powers of x, we obtain both (A) and (B).

Using just (B), we can establish

Theorem 1: If $S_k = 0$ (k = r + 1, r + 2, ..., r + n), then $x_i = 0$ (i = 1, 2, ..., n). Proof: From (B) with k = n + r, it follows that $T_n S_r = 0$. Thus either T_n or $S_r = 0$. If $S_r = 0$, then (B) with k = n + r - 1 implies that $T_n S_{r-1} = 0$. It now follows inductively that $T_n = 0$ or equivalently that at least one of the x_i 's is zero. Repeating the same argument for the set of the remaining $(n - 1) x_i$'s, we get inductively that all the x_i 's are zero.

We could have also proven Theorem 1 in the manner of Flanders using the Vandermonde determinant. Another proof is based on the somewhat interesting elementary

Lemma: If P(x) denotes a polynomial of degree n > 0, then the power expansion of $\exp[P(x)]$ does not have n consecutive zero coefficients.

Proof: Suppose otherwise that

$$e^{P(x)} = A_0 + A_1 x + \cdots + A_m x^m + O(x^{m+n+1})$$

where $A_m \neq 0$ and $P(x) = a_0 + a_1 x + \cdots + a_n x^n$, $a_n \neq 0$. Differentiating, we obtain

$$P'(x) e^{P(x)} = A_1 + 2 A_2 x + \cdots + m A_m x^{m-1} + O(x^{m+n})$$

and that the coefficient of x^{m+n-1} is zero. On the other hand,

$$P'(x) e^{P(x)} = \{a_1 + 2 a_2 x + \dots + n a_n x^{n-1}\} \{A_0 + A_1 x + \dots + A_m x^m + O(x^{m+n+1})\},$$

so that the coefficient of x^{m+n-1} is $n a_n A_m \neq 0$. This contradiction completes the proof. Corollary: If the expansion of $\exp\{a_1 x + a_2 x^2 + \cdots + a_n x^n\}$ has n consecutive zero coefficients, then $a_1 = a_2 = \cdots = a_n = 0$.

For our alternate proof of Theorem 1, we integrate (1) to give

$$\log \frac{P(x)}{x^n} = C - \frac{S_1}{x} - \cdot \cdot \cdot - \frac{S_r}{r \cdot x^r} + O(x^{-r-n-1})$$

so that

$$P(x) = A x^{n} \exp - \{S_{1}/x + \cdots + S_{r}/r x^{r}\} + O(x^{-r-1}).$$

Since P(x) is an *n*th order polynomial, the terms in x^{-n-1} , x^{-n-2} , ..., x^{-n-r} , must be absent from the expansion of

$$\exp - \left\{ S_1/x + \cdots + S_r/r \, x^r \right\}.$$

By the previous corollary, $S_1 = S_2 = \cdots = S_r = 0$. Consequently, $P(x) = A x^n + O(x^{-r-1})$, and again since P(x) is a polynomial, $P(x) = A x^n$, which entails that $x_i = 0$, i = 1, $2, \ldots, n$.

The proof of the next generalization uses both (A) and (B).

Theorem 2: If $\sum_{i=1}^{n} x_i^k = \sum_{i=1}^{n} a_i^k$ (k = 1, 2, ..., n), a_i -given, then aside from permutations $(x_1, x_2, ..., x_n) = (a_1, a_2, ..., a_n)$.

Proof: It follows from Newton's formulae that S_k is given uniquely as a function of T_1, T_2, \ldots, T_k and also that T_k is given uniquely as a function of S_1, S_2, \ldots, S_k . Explicit representations in the form of determinants is given in [2]. Consequently, the

elementary symmetric functions of the a_i 's must be identical to the elementary symmetric functions of the x_i 's. Whence,

$$\prod_{i=1}^{n} (x - x_i) = \prod_{i=1}^{n} (x - a_i)$$

which gives the desired result.

Theorem 2 is not unexpected in light of Bezout's theorem [4], i.e., 'N polynomial equations of degrees n_1, n_2, \ldots, n_N in N variables have in general $n_1 n_2 \ldots n_N$ common solutions. When the number is greater than this, it is infinite.' If the a_i 's are distinct, then counting all the permutations there are 1, 2, 3 ... n solutions. If some of the a_i 's were equal, then the number of permutations would be less than n! solutions or else each solution could have a multiplicity. An example where there are less than $n_1 n_2 \ldots n_N$ solutions is given by the system

$$x + y = 1$$
, $x^3 + y^3 = 1$.

The only two solutions are (1, 0) and (0, 1) and these cannot have any multiplicity. We cannot extend the validity of Theorem 2 by changing the range k = 1, 2, ..., n to k = r + 1, r + 2, ..., r + n as in Theorem 1. A simple counterexample is given by the system

$$x^2 + y^2 = 1$$
, $x^3 + y^3 = 1$.

The 2.3 solutions of this set are given by

$$x = 0$$
, $y = 1$; $x = 1$, $y = 0$; $x = \frac{1 + \lambda^2}{1 + \lambda^3}$, $y = \frac{\lambda (1 + \lambda^2)}{1 + \lambda^3}$; $x = \frac{\lambda (1 + \lambda^2)}{1 + \lambda^3}$, $y = \frac{1 + \lambda^2}{1 + \lambda^3}$

where $3 \lambda = 1 \pm 2 i \sqrt{2}$. Again this is not unexpected since by Bezout's theorem, there are (r+1) (r+2) ... (r+n) solutions in general.

As an application of Theorem 2, we give a solution to Aufgabe 591 (El. Math. 24, 20 (1969): For which real values of α is the implication

$$\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} x_{i}^{2} = \cdots = \sum_{i=1}^{n} x_{i}^{n} = \alpha \rightarrow (\forall r \in N) \sum_{i=1}^{n} x^{+r} = \alpha$$

valid if the x_i are real?

It follows, as in the proof of Theorem 2, that the set of equations

$$\sum_{i=1}^{n} x_{i}^{k} = b_{k}, \quad k = 1, 2, ..., n$$

has a unique solution, aside from permutations.

From (A) and (B) with k = n and n + 1, we get

$$S_n - T_1 S_{n-1} + \cdots + (-1)^n n T_n = 0$$
,

$$S_{n+1} - T_1 S_n + \cdots + (-1)^n S_1 T_n = 0$$
.

Since $S_i = \alpha$ for all i, we get by subtraction that $T_n(n-\alpha) = 0$. Thus, either $\alpha = n$ or $T_n = 0$. If $\alpha = n$, then by Theorem 2, $x_i = 1$, $i = 1, 2, \ldots, n$. If $T_n = 0$, at least one of the x_i 's is zero. We cancel this x_i out and repeat the argument. Thus, $\alpha = 0, 1, 2, \ldots, n$. And for these α 's, $x_1 = x_2 = \cdots = x_\alpha = 1$, $x_{\alpha+1} = x_{\alpha+2} = \cdots = x_n = 0$.

A simpler solution can be gotten by considering $\sum x_i^{2r}$ as r increases without bound. It then follows easily that the x_i 's can only be 0 or 1. However, in the former solution it follows without any further argument that there was no need to restrict α and the x_i 's to be real.

We now consider systems of equations where there are more variables than equations.

Theorem 3: If $\sum_{r=1}^{n} x_r^k = 0$, k = 1, 2, ..., n-1, then aside from permutations, $x_r = A e^{2\pi i r/n}$.

Proof: From A, it follows that

$$T_1 = T_2 = \cdots = T_{n-1} = 0$$
.

Thus, $x^n + (-1)^n T_n = 0$ and the x_r 's are proportional to the *n*th roots of unity.

Corollary: If $\sum_{r=1}^{n} x_r^k = 0$, k = 1, 2, ..., n-1, m n, then the x_r 's are zero.

Theorem 4: If $\sum_{r=1}^{n} x_r^k = 0$, k = 1, 2, ..., n-2, $(n \ge 4)$ then $S_p = \sum_{r=1}^{n} x_r^p = 0$ where

$$p = \begin{cases} n+1, n+2, \dots, 2n-3, \\ 2n+1, 2n+2, \dots, 3n-4, \\ \vdots \\ rn+1, rn+2, \dots, (r+1)n-r-2 & (r \leq n-3). \end{cases}$$

Proof: Since $T_1 = T_2 = \cdots = T_{n-2}$,

$$x^{n} + (-1)^{n-1} (x T_{n-1} - T_{n}) = 0.$$
 (2)

Multiplying (1) by x, x^2, \ldots, x^{n-3} and summing over the roots x_i , we get

$$S_p = 0$$
, $p = n + 1, n + 2, ..., 2n - 3$.

We now multiply (2) by x^{n+1} , x^{n+2} , ..., x^{2n-4} and sum over the x_i 's to give

$$S_n = 0$$
, $p = 2n + 1, 2n + 2, ..., 3n - 4$.

We then continue in the same manner to obtain the remaining values of p. In a similar way, we can extend Theorem 4 to

Theorem 5: If
$$\sum_{r=1}^{n} x_r^k = 0$$
, $k = 1, 2, ..., n - m$, $(n \ge 2m)$, then $S_p = 0$ where
$$\begin{cases} n + 1, n + 2, ..., 2n + 1 - 2m, \\ 2n + 1, 2n + 2, ..., 3n + 2 - 3m, \\ ..., ..., ..., ... \\ rn + 1, rn + 2, ..., (r + 1)n + r - (r + 1)m, \end{cases}$$

and

Our last theorem will concern consecutive odd power sums. As to be expected, we cannot give comparable uniqueness results as before.

Theorem 6: If $\sum_{r=1}^{2n} x_r^{2k-1} = 0$, k = 1, 2, ..., n, then aside from permutations, the roots occur in pairs such that $x_i + x_i = 0$.

Proof: Using the Newton formulae

$$S_{2m-1} - T_1 S_{2m-2} + T_2 S_{2m-3} - \cdots + S_1 T_{2m-2} - (2m-1) T_{2m-1} = 0$$

for m = 1, 2, ..., n and the hypothesis, it follows by induction that

$$T_1 = T_3 = \ldots = T_{2n-1} = 0$$
.

Thus,

$$T_1 = T_3 = \dots = T_{2n-1} = 0.$$

$$\prod_{i=1}^{2n} (x - x_i) = x^{2n} + T_2 x^{2n-2} + T_4 x^{2n-4} + \dots = 0.$$

Since the equation is even, the theorem is proved.

As an application, the only solutions, aside from permutations, of the system of equations

$$x + y + z + w = a + b + c + d,$$

$$x^{3} + y^{3} + z^{3} + w^{3} = a^{3} + b^{3} + c^{3} + d^{3},$$

$$x^{5} + y^{5} + z^{5} + w^{5} = a^{5} + b^{5} + c^{5} + d^{5},$$

$$x^{7} + y^{7} + z^{7} + w^{7} = a^{7} + b^{7} + c^{7} + d^{7}.$$

where a, b, c, d are given and none of the sums a + b, a + c, a + d, b + c, b + d, c + dare zero, are

$$(x, y, z, w) = (a, b, c, d).$$

If $c + d = 0 \neq a + b$, then x = a, y = b, z + w = 0.

M. S. KLAMKIN and D. J. NEWMAN

Ford Scientific Laboratory and Yeshiva University

REFERENCES

- [1] H. Flanders, An Application of the Vandermonde Determinant, Amer. Math. Monthly, Dec. 1953, p. 708.
- [2] A. Mostowski, M. Stark, Introduction to Higher Algebra (Pergamon, London 1964),
- [3] S. BARNARD, J. M. CHILD, Higher Algebra (MacMillan, London 1949), p. 297.
- [4] J. L. COOLIDGE, A. Treatise on Algebraic Plane Curves (Dover, N. Y. 1959), p. 10.