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A Criterion for #-Fold Transitivity of Transformation Groups

Let G be a group and let X be a nonempty set. An action * on X is a function *:
G X X -> X such that for every g,he G and xeX, (i) (gh) * x g * (h * x) and (ii)
1 * x x.

A triple (G, X, *) where * is an action of G on X is called a transformation group.
For SQX the stability subgroup of 5 is Gs {g e G \ g * s s for every s e S}. (We
will write Gx instead of G{x).)

If n is a positive integer, we say that G is n-fold transitive whenever for every
two sequences xx, x2, ,xn and yx, y2, yn each consisting of n distinct elements
of X, there exists g e G such that g * xt yt for every t 1, 2, n.

We note that if * is an action of G on X, then for any SQX,* induces an action
of Gs on X — S.

The next theorem is well known (see, for example, [1], Theorem 9.1).

Theorem 1: Let (G, X, *) be transitive. Then for n > 2, (G, X, *) is w-fold
transitive iff there exists an x e X such that (Gx, X — {x}, *) is (n — l)-fold transitive.

It is our purpose in this note to derive a corollary (Theorem 2) of this theorem
which is sometimes more convenient to use. The essential idea is to replace the
transitive condition on (G, X, *) by a restriction on the stability subgroups.

Lemma 1: If (G, X, *) is a transformation group, then (G, X, *) is 2-fold transitive
iff there exists an x e X such that Gx* G and (Gx, X — {x}, *) is transitive.

Proof: Clearly if (G, X, *) is 2-fold transitive then the given condition holds for
any xeX.

Now suppose x e X such that Gx 4= G and (Gx, X — {x}, *) is transitive. Let
y, z eX. If y, z e X — {x}, then there exists geGx such that g * y z. If y z x,
then 1 * y z. Ii y x and z 4= x, then since Gx 4= G, there exists he G such that
h* x * x.So there is an r e Gx such that r * (h * #) z and so (fA) * x z. If y + x,
z—x and A is as before, then there exists tsGx such that t* y h* x h* zso that
(Ä"11) * y z. Hence (G, X, *) is transitive so that by Theorem 1 it is 2-fold transitive.

Lemma 2: Let n > 2 and | X | > 1. Then (G, X, *) is w-fold transitive iff there
exists axixeX such that Gx* G and (Gxi X — {x}t *) is (n — l)-fold transitive.
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Proof: Assume Gx 4= G and (Gx, X — {x}, *) is (n — l)-fold transitive. Then by
Lemma 1, (G, X, *) is transitive and hence by Theorem 1 it is w-fold transitive. If
(G, X, *) is w-fold transitive, then the given condition holds for all x e X.

Theorem 2: For | X \ > n > 2, (G, X, *) is n-fold transitive iff there exists
SQX with S {tv t2, ^-J such that if Sk {tv t2, tk} for each & 1, 2,

n—l, then

a) Gt 4= G and Gc 4= Gc, for all k 1, 2,..., n — 1; and

b) (Gs, X — S, *) is transitive.

Proof: Since any w-fold transformation group clearly satisfies (a) and (b), we
need only show the other half.

The case n 2 is the content of Lemma 1.

Suppose the theorem holds for all integers greater than one and less than n.
Let S Q X be S {tlt t2,. ^J such that Conditions (a) and (b) hold. Then 5*
{h> • • • *„-_} satisfies the conditions of the theorem for the transformation group
(Gh, X — {tx}, *) and hence this transformation group is (n — l)-fold transitive. But
then by Lemma 2, (G, X, *) is w-fold transitive.

We next consider an application of this result. Let k be a field and let G be the

group GL (k, 2) of all nonsingular 2x2 matrices over k. Let * be the action of G

on k (j {oo} defined by

a

—, if z 4= oo, yz 4- 0 4= 0
yz + ö

oo if z 4= oo, yz + d 0

oc/y if * oo y 4= 0

oo, ifz oo,y 0.

We will apply the previous result to show that (G, X, *) is 3-fold transitive. First
we note the following special case of Theorem 2 obtained by letting n 3.

Theorem 3: For |X \ > 3, (G, X, *) is 3-fold transitive iff there exist x,yeX
such that Gx 4= G, G{XtJ/) 4= Gx and (G{Xty), X — {x, y), *) is transitive.

Note that G{Xty) Gx O Gr It is easy to see that

and

So

io c r'hf c G *'ac * °
I

G0 | L
^

U, 6, c e k, ac 4= 0 j.
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Hence GQ 4= G, G{0,<»} 4= G0. It is also clear that (G{o,<»}» * — {0}> *) is transitive, for if
x #= 0 and y 4= 0, then

.-'¦
Hence by Theorem 3, (G, X, *) is 3-fold transitive. We note that (G, X, *) is not

4-fold transitive, for then (G{0,oo}, k — {0}, *) would be 2-fold transitive.

David P. Sumner, University of South Carolina, USA
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On 1-Factorability and Edge-Colorability
of Cartesian Products of Graphs

There is no characterization of 1-factorable graphs. Thus, it is natural that many
of the results on this topic have been the determination of classes of 1-factorable
graphs. The object of this paper is to present a sufficient condition for the 1-factor-
ability of the cartesian product of two graphs. We begin with some notation and
definitions.

The vertex set of a graph G will be denoted by V(G) and its edge set by E(G).
In this paper we consider only finite, undirected graphs without loops or multiple
edges. Let G and H be two nonempty graphs for which V(G) V(H) and
E(G) O E(H) &', then the graph G' is the sum of G and Ht written G' G 4- H, if
V(G') V(G) and E(G') E(G) u E(H). A 1-factor of a graph G is a spanning 1-regular
subgraph of G. A graph is 1-factorable if it can be expressed as a sum of edge-disjoint
1-factors. The cartesian product (or product) of the graph G with the graph H, denoted
by G x H, is defined by: V (G x H) V(G) x V(H) ; £ (G x #) {[(ult vx), {u2, v2)] | ux
u2 and vtv2 6 E(H), or vt v2 and uxu2 e E(G)}.

An assignment of n colors to the edges of a nonempty graph G so that adjacent
edges are colored differently is an n-edge-coloring of G. The minimum n for which a

graph G is w-edge-colorable is its edge-chromaiic number %X(G). By a theorem of Vizing
[2], the edge-chromatic number %t(G) of a graph G is bounded by: A(G) < %X(G) <
A(G) 4-1, where A(G) is the maximum degree of G. If G is regulär, then G is 1-factorable

if and only if %X(G) A(G). Hence any theorem concerning the 1-factorability of
regulär graphs has as an immediate corollary a result concerning edge-colorability,
which is useful since there is also no characterization of those graphs which are
A (G)-edge-colorable. For other notations and definitions, we follow [1].

If Kt denotes the complete graph on two vertices, then K% x H, where H is any
regulär graph, is shown to be 1-factorable in the following lemma.
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