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Inner Illumination of Convex Polytopes

1. Introduction. An «-polytope P is said to be illuminated by its vertices, if for

every vertex x of P there is another vertex y of P such that the line segment joining
x and y meets the interior of P. Hadwiger in [1], introduced the notion of polytopes
illuminated by their vertices and asked whether such polytopes must have at least

2 n vertices. Recently, Mani [2], proved that for n < 7 the answer to Hadwiger's
problem is affirmative, while for higher dimensions he showed that there are «-polytopes

P, that are illuminated by their vertices having about n + 2 \i n vertices. Mani

obtained the exact lower bound k(n) for the number of vertices in an «-polytope P
which is illuminated by its vertices. Mani's proof is based on the notion of a set of
vertices lying opposite a given vertex of P. The proof proeeeds by showing that if
for some vertex x of the «-polytope P there is more than one vertex lying opposite x

then /°(P) > k(n), while if for every vertex x of P there is at most one vertex lying
opposite x then /°(P) > 2 «. For the second part of the proof, results and tools from

algebraic topology as well as some combinatorial lemmas (Propositions 4 and 5) were

used. In this note, we present an alternative proof to this part that avoids using the
lemmas and the algebraic topology.

The notation used in this note will be the same as Mani's; we will only repeat
those definitions and notation that are used in our proof.

We denote by A°P the set of vertices of the polytope P and by/°(P) their number.

A set V CA°P illuminates itself if for every v in V there is another vertex v' in V

that illuminates v in P.
A set Y CA°P lies opposite the vertex x, if x illuminates every vertex y in Y

and A°P ~ ({x} u Y) illuminates itself.
We set y(x, P) max{card Y: Y lies opposite x in P}.

2. Proof of the Theorem.

Theorem: If P C E" is illuminated by its vertices, then either y(x, P) > 2 for

some vertex x of P or /°(P) > 2 n.
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Proof. Assume first that for some vertex x of P, y(x, P) 0. Since P is illuminated
by its vertices there is a vertex x' of P that illuminates x. Since y(x, P) 0, the set
C A°P ~{x, x'} does not illuminate itself. Let A be the set of all vertices in C that
are not illuminated in C. Let Y be the set of all vertices y in A that are illuminated
in P by x, and let Y' A ~ Y. Obviously, if y' is in Y', then „' illuminates y'. If
Y' is empty, then the set {x'} u {Y} C zJ°P lies opposite x, in contradiction to the
assumption that y(x, P) 0. If Y 4= 0, then the set Y lies opposite x and again we
obtain a contradiction. Hence Y must be empty. Since A 4= 0, and since the set
{#} u A lies opposite „', we have y(x', P) > 2.

We may therefore assume that y(x, P) 1 for every vertex x in P. Let G be a
graph with vertex set V(G) A°P, and (x, y) in £(G) if {y} lies opposite at. (Obviously,
if {y} lies opposite x then {„} lies opposite y.) We will show that G has a 1-factor. This
will be done in two steps.

(1) We show first that the valence of every vertex x of G is at most two. Indeed
if {%, xk}, k > 2, is the set of all vertices of G which are connected by an edge
to x0, the set D A°P ~{x0, xx, xk) cannot illuminate itself. Let A C D be the
set of vertices in D that are not illuminated in D and not illuminated by x0. If A 0
then we would have y(#0, P) > k (the set {„.,, ,xk) and the vertices of D illuminated
by x0 would lie opposite „„), hence we may assume that A 4= 0. Let „ be in _1. Since
% lies opposite x0, d must be illuminated by some x}, 1 < j < k. Since ^ also lies
opposite x0, d must be illuminated by some xm with m 4= 7. Without loss of generality,
we may assume that d is illuminated by {xx, x2}. If A {d}, then it is easily seen that
{xx, x2} lies opposite d and we would have y(d, P) > 2, in contradiction to the assumption

that y(x, P) 1 for every vertex in P. Hence A ={i,e, z). If every vertex
in A other than d is illuminated by some X] with j > 2, then again {xx, x2} would lie
opposite d. We conclude that A must contain a vertex c that illuminates {xx, x2). It
is a simple matter to check that {d, c] lies opposite *j and we would have y(xx, P) > 2.
This establishes our claim.

(2) Let #0 have valence 2 in G. Let xx, x2 be the two vertices such that xi lies
opposite x0, i 1,2. The set D A°P ~{x0, xx, x2} does not illuminate itself. Let
A CD be the set of vertices in D that are not illuminated in D and not illuminated
by x0. If A 0, we would have y(x0P) > 2, hence ^4 4= 0. Since x2 lies opposite x0,
and since for every d in A, d is not illuminated in D and not illuminated by #0, „
must be illuminated by xx. Hence A lies opposite xx and by a similar argument, _l
lies opposite x2. If card ^ > 1, then we would have y(xx, P) > 2. Therefore A {_}
and d is connected by an edge to xx and #2.

From (1) and (2) it follows that G is the disjoint union of edges and 4-cycles.
Therefore G has a 1-factor. Let F be a facet of P. P contains at least « vertices of P.
Since no two vertices of F illuminate each other, zl0P is an independent set of vertices
in G. Since G has a 1-factor, G must have at least 2 « vertices.
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