On a discrete Dido-type question

Autor(en): Bezdek, A. / Bezdek, K.
Objekttyp: Article
Zeitschrift: Elemente der Mathematik

Band (Jahr): 44 (1989)
Heft 4

PDF erstellt am:
22.07.2024

Persistenter Link: https://doi.org/10.5169/seals-41615

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Der Satz über die Division mit Rest läßt sich auf die Partialbruchzerlegung anwenden. Hat man in der Produktdarstellung (4) quadratische Faktoren $q(s)=s^{2}+\beta s+\gamma$ und ist dort etwa $Q_{1}=q^{m}$, dann läßt sich der zugehörige Partialbruch $\frac{P_{1}}{q^{m}}$ in (5) mit $\operatorname{deg} P_{1}<2 m$
durch Division mit Rest in die bekannte Form

$$
\begin{equation*}
\frac{P_{1}(s)}{(q(s))^{m}}=\frac{b_{m} s+c_{m}}{(q(s))^{m}}+\frac{b_{m-1} s+c_{m-1}}{(q(s))^{m-1}}+\ldots+\frac{b_{1} s+c_{1}}{q(s)} \tag{8}
\end{equation*}
$$

mit eindeutig bestimmten Konstanten $b_{1}, c_{1}, \ldots, b_{m}, c_{m}$ bringen. Das Verfahren wird am folgenden Beispiel erläutert.

Beispiel. Ist etwa $P_{1}(s)=2 s^{5}-s^{4}+4 s^{3}+1$ und $Q_{1}(s)=\left(s^{2}+1\right)^{3}$, so führt wiederholte Division durch $s^{2}+1$ auf

$$
\begin{aligned}
& 2 s^{5}-s^{4}+4 s^{3}+1=\left(2 s^{3}-s^{2}+2 s+1\right)\left(s^{2}+1\right)-2 s, \\
& 2 s^{3}-s^{2}+2 s+1=(2 s-1)\left(s^{2}+1\right)+2,
\end{aligned}
$$

und damit lautet die Partialbruchzerlegung (8) in diesem Fall

$$
\frac{2 s^{5}-s^{4}+4 s^{3}+1}{\left(s^{2}+1\right)^{3}}=-\frac{2 s}{\left(s^{2}+1\right)^{3}}+\frac{2}{\left(s^{2}+1\right)^{2}}+\frac{2 s-1}{s^{2}+1} .
$$

Ray Redheffer, University of California, Los Angeles, z.Zt. Gastprofessor am Mathematischen Institut I der Universität Karlsruhe Alexander Voigt, Mathematisches Institut I, Universität Karlsruhe

On a discrete Dido-type question

We start with the following well-known fact [1]. If D is a simply connected domain of the Euclidean plane with area $\mathscr{A}(D)$ whose boundary is divided into a segment and a simple curve Γ of length $L(\Gamma)$, then $\mathscr{A}(D) \leqq \frac{1}{2 \cdot \pi} \cdot L^{2}(\Gamma)$ with equality if and only if D is a hemicircle. In other words if we have a simple curve Γ of given length $L(\Gamma)$ in the Euclidean plane, then the area of its convex hull is maximal if and only if Γ is a hemicircle i.e. $\mathscr{A}(\operatorname{conv} \Gamma) \leqq \frac{1}{2 \cdot \pi} \cdot L^{2}(\Gamma)$. Reading these sentences we immediately thought of the following discrete version of the above problem. We call it a discrete Dido-type question since it is related to the well-known Dido-problem of Hajós ([3], [4], [5]) and also it is related to the problem of [2], but we believe it to be a new question.

Definition 1. A subset S of the Euclidean plane is polygonally connected if given any two points X and Y in S there exist points $X_{0}=X, X_{1}, \ldots, X_{k-1}, X_{k}=Y$ such that $P=\bigcup_{i=1}^{k} \overline{X_{i-1} X_{i}}$ is contained in S, where $\overline{X_{i-1} X_{i}}$ is the segment joining X_{i-1} and $X_{i}(1 \leqq i \leqq k)$. The set P is called a polygonal path from X to Y.

Problem. Suppose that we have a finite number of segments in the Euclidean plane such that they form a polygonally connected subset of the plane (Fig. 1). Provided that we may not change the lengths of our segments find the polygonally connected arrangement the area of the convex hull of which is maximal.

Figure 1
Conjecture. The extremal arrangement is the polygonal path of the segments which is inscribed a hemicircle (Fig. 2a).
Of course the order of the segments in this polygonal path can be arbitrary. Also, it seems to be true that the polygonal paths mentioned above are the only extremal arrangements except the case of three segments (Fig. 2b).

Figure 2a

Figure 2b

In the present note we are going to prove the following two theorems, the first of which supports our conjecture and the second of which shows that our problem can lead to some interesting configurations in the higher dimensional Euclidean spaces as well.

Definition 2. A graph is simple if it does not contain loops or parallel edges, and a graph is connected if for any two vertices there exists a path of the edges from one vertex to the other.

Theorem 1. Let G_{n} be an arbitrary connected simple graph of n edges ($n \geqq 4$) embedded in the Euclidean plane such that the edges are segments. If $G H_{n}$ is the polygonal path of n segments which is inscribed a hemicircle and the segments of which are congruent to the n segments of G_{n}, then the area $\mathscr{A}\left(\operatorname{conv} G_{n}\right)$ of the convex hull conv G_{n} of G_{n} is smaller than or equal to the area $\mathscr{A}\left(\operatorname{conv} G H_{n}\right)$ of the convex hull conv $G H_{n}$ of $G H_{n}$ with equality if and only if G_{n} is a polygonal path inscribed a hemicircle (Fig. 3).

Figure 3

Remark 1. In Theorem 1 the set G_{n} of n segments is obviously a polygonally connected subset of the Euclidean plane. However the converse is not true i.e. there are polygonally connected arrangements of n segments in the plane which cannot be represented as G_{n}-sets. This shows the difference between Theorem 1 and our conjecture.

Theorem 2. Let G_{d+1}^{d} be an arbitrary connected simple graph of $d+1$ edges embedded in the d-dimensional Euclidean space ($d \geqq 2$) such that the edges are segments. If $G S_{d+1}^{d}$ is the star formed by the $d+1$ segments of G_{d+1}^{d} where the center of the star $G S_{d+1}^{d}$ is in the interior or conv $G S_{d+1}^{d}$ and is the center of the altitudes of the simplex the vertices of which are the endpoints of $G S_{d+1}^{d}$ (Fig. 4), then for the d-dimensional volumes of conv G_{d+1}^{d} and conv $G S_{d+1}^{d}$ we have the inequality

$$
V\left(\operatorname{conv} G_{d+1}^{d}\right) \leqq V\left(\operatorname{conv} G S_{d+1}^{d}\right)
$$

Remark 2. It is easy to see that the inequalities $\mathscr{A}(D) \leqq \frac{1}{2 \cdot \pi} \cdot L^{2}(\Gamma), \mathscr{A}(\operatorname{conv} \Gamma) \leqq$ $\leqq \frac{1}{2 \cdot \pi} \cdot L^{2}(\Gamma)$ of the introduction are simple corollaries of Theorem 1 . So also the wellknown isoperimetric property of the circles follows from Theorem 1.

Figure 4

First let us see the proof of Theorem 1. It is an easy exercise to show that

$$
\begin{equation*}
\mathscr{A}\left(\operatorname{conv} G_{3}\right) \leqq \mathscr{A}\left(\operatorname{conv} \mathrm{GH}_{3}\right) . \tag{1}
\end{equation*}
$$

Let $\mathscr{C}_{n}=\left\{G_{n} \mid G_{n}\right.$ is a connected simple graph of n edges embedded in the Euclidean plane such that the edges are segments of the given n lengths $\}$. Because of the theorem of Weierstrass there exists a $G_{n}^{*} \in \mathscr{C}_{n}$ such that $\mathscr{A}\left(\operatorname{conv} G_{n}\right) \leqq \mathscr{A}\left(\operatorname{conv} G_{n}^{*}\right)$ for any $G_{n} \in \mathscr{C}_{n}$. We are going to show that G_{n}^{*} is a polygonal path inscribed a hemicircle.
Furtheron we suppose that $n \geqq 4$ and because of (1) we may suppose the inequality

$$
\begin{equation*}
\mathscr{A}\left(\operatorname{conv} G_{n-1}\right) \leqq \mathscr{A}\left(\operatorname{conv} G H_{n-1}\right) \tag{2}
\end{equation*}
$$

also. From those we prove that G_{n}^{*} is a polygonal path inscribed a hemicircle, which then proves Theorem 1.

Proposition 1. G_{n}^{*} is a tree.
Proposition 2. If V is a vertex of degree one of the graph G_{n}^{*}, then V is a vertex of the convex hull of G_{n}^{*}.
The proofs of these two propositions are easy exercises which can be left to the reader.
Proposition 3. If V_{1} and V_{2} are two vertices of degree one of the graph G_{n}^{*}, then they are consecutive vertices (of $\operatorname{conv} G_{n}^{*}$) on the boundary of conv G_{n}^{*}.

Proof: Suppose on the contrary that V_{1}, V_{2} are two vertices of degree one of the graph G_{n}^{*} which are not consecutive vertices of conv G_{n}^{*} on the boundary of conv G_{n}^{*}. This means that there are vertices $U_{1}^{(1)}, U_{1}^{(2)}, U_{2}^{(1)}, U_{2}^{(2)}$ of the convex hull of G_{n}^{*} such that $U_{1}^{(1)}, V_{1}, U_{1}^{(2)}$ is a triplet of consecutive vertices and also $U_{2}^{(1)}, V_{2}, U_{2}^{(2)}$ is another triplet of consecutive vertices of $\operatorname{conv} G_{n}^{*}$ (Fig. 5).

Obviously the edge $\overline{V_{1} W_{1}}\left(\overline{V_{2} W_{2}}\right)$ of G_{n}^{*} is orthogonal to the line $U_{1}^{(1)} U_{1}^{(2)}\left(U_{2}^{(1)} U_{2}^{(2)}\right)$. Without loss of generality we may suppose that the lengths of the segments $\bar{U}_{1}^{(1)} U_{1}^{(2)}$, $\overline{U_{2}^{(1)} U_{2}^{(2)}}$ satisfy the inequality $\overline{U_{1}^{(1)} U_{1}^{(2)}} \leqq \overline{U_{2}^{(1)} U_{2}^{(2)}}$. Now let V_{2} be the interior point of the segment $\overline{W_{2} V_{1}^{\prime}}$ such that $\overline{V_{2} V_{1}^{\prime}}=\overline{V_{1} W_{1}}$. In other words we put the segment $\overline{V_{1} W_{1}}$ in a new position namely, in $\overline{V_{2} V_{1}^{\prime}}$, which obviously yields a new graph $G_{n}^{* \prime} \in \mathscr{C}_{n}$. It is easy to see that

$$
\begin{equation*}
\mathscr{A}\left(\operatorname{conv} G_{n}^{* \prime}\right)-\mathscr{A}\left(\operatorname{conv} G_{n}^{*}\right) \geqq \frac{1}{2} \cdot \overline{V_{1} W_{1}} \cdot\left(\overline{U_{2}^{(1)} U_{2}^{(2)}}-\overline{U_{1}^{(1)} U_{1}^{(2)}}\right) \geqq 0 \tag{3}
\end{equation*}
$$

But $G_{n}^{* \prime}$ is a connected simple graph of $(n-1)$ edges in the Euclidean plane where the edges are segments of the given $(n-1)$ lengths, since the degree of V_{2} was one in G_{n}^{*}. Hence, because of (2), we have

$$
\begin{equation*}
\mathscr{A}\left(\operatorname{conv} G_{n}^{* \prime}\right) \leqq \mathscr{A}\left(\operatorname{conv} G H_{n-1}\right) \tag{4}
\end{equation*}
$$

where $G H_{n-1}$ is the polygonal path formed by the $(n-1)$ segments of $G_{n}^{* \prime}$, inscribed a hemicircle such that the last segment is $\overline{W_{2} V_{1}^{\prime}}$ (Fig. 6)

Figure 6

Let $V_{1}^{\prime \prime}$ be the other endpoint of the diameter of the hemicircle of $G H_{n-1}$. Here $\Varangle V_{1}^{\prime} W_{2} V_{1}^{\prime \prime}=\frac{\pi}{2}$ and so $\Varangle V_{1}^{\prime} V_{2} V_{1}^{\prime \prime}>\frac{\pi}{2}$ consequently we can rotate $\overline{V_{2} V_{1}^{\prime}}$ about the point V_{2} into the new position $\overline{V_{2} V_{1}^{\prime \prime \prime}}$ such that the arising polygonal path $G_{n}^{* \prime \prime} \in \mathscr{C}_{n}$ satisfies the inequality

$$
\begin{equation*}
\mathscr{A}\left(\operatorname{conv} G H_{n-1}\right)<\mathscr{A}\left(\operatorname{conv} G_{n}^{* \prime \prime}\right) . \tag{5}
\end{equation*}
$$

Thus on account of (3), (4), (5) we get that $\mathscr{A}\left(\operatorname{conv} G_{n}^{*}\right)<\mathscr{A}\left(\operatorname{conv} G_{n}^{* \prime \prime}\right)$ with $G_{n}^{*}, G_{n}^{* \prime \prime} \in \mathscr{C}_{n}$ which is a contradiction.

Proposition 4. The total number of the vertices of the graph G_{n}^{*} the degree of which is equal to one is two.

Proof: Because of the Proposition 3 the total number of the vertices of the graph G_{n}^{*} the degree of which is equal to one is at most three (and of course is at least two). Now

Figure 7

suppose that G_{n}^{*} possesses three vertices of degree one. On account of the Proposition 3 the convex hull of the graph G_{n}^{*} will be the triangle $\triangle V_{1} V_{2} V_{3}$ where V_{1}, V_{2}, V_{3} are the vertices of degree one in G_{n}^{*} (Fig. 7).
Because of the Proposition 1 and 2 the graph G_{n}^{*} possesses one vertex V with degree three and each vertex different from V_{1}, V_{2}, V_{3}, V has degree two. Considering the path of the graph G_{n}^{*} from V to $V_{i}(i=1,2,3)$ it has to be the segment $V V_{i}$ otherwise we could increase the area of the convex hull of G_{n}^{*}. Also, the segment $\overline{V V_{i}}$ is perpendicular to the side $\overline{V_{j} V_{k}}$ of the triangle $\triangle V_{1} V_{2} V_{3}(\{i, j, k\}=\{1,2,3\})$. Finally at least one of the segments $\overline{V V_{1}}, \overline{V V_{2}}, \overline{V V_{3}}$ consists of at least two edges of G_{n}^{*} because $n \geqq 4$ (Fig. 8). This clearly yields a contradiction, namely it is enough to apply the method of Fig. 6 to the configuration of Fig. 8.

Now the rest of the proof of Theorem 1 is more or less a routine exercise. Namely,

Proposition 5. G_{n}^{*} is a convex polygonal path of n segments.
Proof: From the Proposition 4 we get that G_{n}^{*} has two vertices V_{1} and V_{2} with degree one and all the other vertices have the degree two. In addition V_{1} and V_{2} are consecutive vertices of $\operatorname{conv} G_{n}^{*}$ on the boundary of $\operatorname{conv} G_{n}^{*}($ Proposition 3$)$. We claim that

$$
\begin{equation*}
\left.G_{n}^{*}=b d\left(\operatorname{conv} G_{n}^{*}\right) \backslash\right] V_{1}, V_{2}[\tag{6}
\end{equation*}
$$

where $b d(\ldots)$ means the boundary of the corresponding set and]..... [means the corresponding open segment. If (6) were not true, then as the Fig. 9 shows a simple reflection about a point or any other transformation which preserves the lengths of the edges of G_{n}^{*} and the connectivity of G_{n}^{*} could increase the area of the convex hull of G_{n}^{*} which would yield a contradiction.

Figure 9
Proposition 6. G_{n}^{*} is a polygonal path of n segments of the given n lengths which is inscribed a hemicircle.

Proof: Using the notations of the previous proof it is enough to show that if X is an arbitrary vertex of G_{n}^{*} different from V_{1}, V_{2}, then $\Varangle V_{1} X V_{2}=\frac{\pi}{2}$. Because of the Proposition 5 the path from V_{1} to X of G_{n}^{*} is a convex polygonal path and also the path from X to V_{2} is a convex polygonal path. If $\Varangle V_{1} X V_{2} \neq \frac{\pi}{2}$, then a rotation about X can move the path from V_{1} to X into a new position when the area of the convex hull of the new G_{n}^{*} will be larger than in the starting case which is a contradiction (see Fig. 10).

This completes the proof of Theorem 1.
Now let us turn to the proof of Theorem 2. We sketch the main steps only without going into details.
First of all it is not hard to show that $G S_{d+1}^{d}$ is uniquely determined up to congruent transformations if we know the lengths of the $d+1$ segments. On the other hand let $\mathscr{C}_{d+1}^{d}=\left\{G_{d+1}^{d} \mid G_{d+1}^{d}\right.$ is a connected simple graph of $d+1$ edges imbedded in the d -

Figure 10
dimensional Euclidean space such that the edges are segments of the given $d+1$ lengths $\}$. Because of the theorem of Weierstrass there exists a $G_{d+1}^{* d} \in \mathscr{C}_{d+1}^{d}$ such that $V\left(\operatorname{conv} G_{d+1}^{d}\right) \leqq$ $\leqq V\left(\operatorname{conv} G_{d+1}^{* d}\right)$ for any $G_{d+1}^{d} \in \mathscr{C}_{d+1}^{d}$. We claim that $V\left(\operatorname{conv} G_{d+1}^{* d}\right)=V\left(G S_{d+1}^{d}\right)$. We prove this with the help of the following transformation which transforms $G_{d+1}^{* d}$ into a graph of \mathscr{C}_{d+1}^{d} which is a star of $(d+1)$ segments of the given $d+1$ lengths and the volume of the convex hull of which is equal to $V\left(\operatorname{conv} G_{d+1}^{* d}\right)$. From this it follows immediately that the center of the star is in the interior of the convex hull of the star and so it must be the center of the altitudes of the simplex whose vertices are the endpoints of the star. Finally because of our first observation we get that the star in question is congruent to $G S_{d+1}^{d}$ and so $V\left(\operatorname{conv} G_{d+1}^{* d}\right)=V\left(\operatorname{conv} G S_{d+1}^{d}\right)$ really, which yields Theorem 2.
The promised transformation is the composition of finite many transformations which increase the maximal degree of the graphs in question by one. Now let us see how it happens. We have a graph of \mathscr{C}_{d+1}^{d} say $G_{d+1}^{* d}$, the volume of the convex hull of which is maximal in \mathscr{C}_{d+1}^{d}. Suppose that V is a vertex of the maximal degree in $G_{d+1}^{* d}$. We may suppose that there exists an edge $U_{1} U_{2}$ of $G_{d+1}^{* d}$ whose endpoints U_{1}, U_{2} are different from V, otherwise we are done. Also we may suppose that $G=G_{d+1}^{* d} \backslash \overline{U_{1} U_{2}}$ is a connected simple graph of d edges imbedded in the d-dimensional Euclidean space ($d \geqq 2$) such that the edges are segments i.e. we may suppose that the degree of U_{2} is one. If $\operatorname{dim}(\operatorname{conv} G) \leqq d-1$, then we translate the edge $\overline{U_{1} U_{2}}$ by the vector $\overrightarrow{U_{1} V}$ to the vertex V, which obviously yields a graph G^{*} of \mathscr{C}_{d+1}^{d} the maximal degree of which is larger than the maximal degree of $G_{d+1}^{* d}$ by one and finally $V\left(\operatorname{conv} G^{*}\right)=V\left(\operatorname{conv} G_{d+1}^{* d}\right)$. If $\operatorname{dim}(\operatorname{conv} G)=d$, then conv G is a d-dimensional simplex because it is the convex hull of d (line) segments forming a connected simple graph G of d edges in the d-dimensional Euclidean space ($d \geqq 2$). Now V is a vertex of conv G. Consider the parallel illumination of the simplex conv G determined by the direction $\overrightarrow{U_{1} U_{2}}$ (Fig. 11).
Let V_{f} be the facet of conv G opposite to V. If the facet V_{f} is illuminated (i.e. for any interior point of V_{f} there exists a ray of the illumination parallel to $\overrightarrow{U_{1} \overrightarrow{U_{2}}}$ which intersects V_{f} at the given interior point going into the interior of conv G), then we translate the edge $\overrightarrow{U_{1} U_{2}}$ of the graph $G_{d+1}^{* d}$ by the vector $\overrightarrow{U_{1} V}$ to the vertex V otherwise we translate $\overrightarrow{U_{1} U_{2}}$ by the vector $\overrightarrow{U_{2} V}$ to the vertex V. Let $\overline{V V^{*}}$ be the new edge (segment) at the vertex V in both cases forming a new graph G^{*} of \mathscr{C}_{d+1}^{d} together with G. Finally let us denote the orthogonal projection of conv G onto the hyperplane H by $P(\operatorname{conv} G)$ where H is a hyperplane orthogonal to the line $U_{1} U_{2}$. It is not hard to show that

Figure 11

$$
\begin{aligned}
V\left(\operatorname{conv} G^{*}\right) & =V(\operatorname{conv} G)+\frac{1}{d} \cdot \mathscr{A}[P(\operatorname{conv} G)] \cdot \overline{V V^{*}} \\
& =V(\operatorname{conv} G)+\frac{1}{d} \cdot \mathscr{A}[P(\operatorname{conv} G)] \cdot \overline{U_{1} U_{2}}
\end{aligned}
$$

where $\mathscr{A}(\ldots)$ means the $(d-1)$-dimensional volume of the corresponding set) and $V\left(\operatorname{conv} G_{d+1}^{* d}\right) \leqq V(\operatorname{conv} G)+\frac{1}{d} \cdot \mathscr{A}[P(\operatorname{conv} G)] \cdot \overline{U_{1} U_{2}}$. Hence $V\left(\operatorname{conv} G^{*}\right)=V\left(\operatorname{conv} G_{d+1}^{* d}\right)$ where G^{*} is a graph of \mathscr{C}_{d+1}^{d} the maximal degree of which is larger than the maximal degree of $G_{d+1}^{* d}$ by one.
This completes the proof of Theorem 2.
A. Bezdek, Math. Inst. of the Hungarian Acad. of Sciences, Budapest K. Bezdek, Eötvös Lorand University, Department of Geometry, Budapest

REFERENCES

1 Bandle C.: Isoperimetric inequalities, Convexity and its applications, edited by P. H. Gruber, J. M. Wills. Birkhäuser Verag, Basel-Boston-Stuttgart (1983).
2 Bezdek K.: On a Dido-type question. Annales Univ. Sci. Budapest, Sect. Math. XXIX 241-244 (1986).
3 Fejes Tóth L.: Über das Didosche Problem. Elemente der Mathematik 23, 97-101 (1986).
4 Fejes Tóth L.: Research problem No. 6. Period. Math. Hungar. 4, 231-232 (1973).
5 Pach J.: On an isoperimetric problem. Studia Sci. Math. Hung. 13, 43-45 (1978).

