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Cyclic polygons in non-Euclidean geometry

LienhardWimmer

Lienhard Wimmer studierte Mathematik an der Paris-Lodron-Universität in
Salzburg. Nach einem Studienaufenthalt in Marseille promovierte er in Salzburg über die
gleichm äßige Verteilung von Punkten auf der Einheitskugel. Er arbeitet als
Softwareentwickler in München.

It is well-known that in Euclidean geometry among all quadrilateralswith prescribededges
the cyclic quadrilateral, i.e. the quadrilateral whose vertices all belong to a single circle,
has largest area. In fact this theorem is valid for every polygon. But does it also hold in
non-Euclidean geometry?

In this note we answer this question for hyperbolic and spherical polygons. Of course
we are only interested in non-degenerate triangles. Therefore in the hyperbolic plane H2
we study only polygons consisting of non-asymptotic triangles, i.e. triangles with vertices
belonging to the finite part of the plane, and on the sphere S2 we study only polygons
which do not exceed the half-sphere and consist of Eulerian triangles, i.e. triangles whose
angles and edges are < p.

1 Area of a non-Euclidean triangle
A good method to handle plane non-Euclidean geometry is the use of trigonometry. It
is therefore appropriate to point out some elementary formulas concerning triangles in
hyperbolic and spherical geometry.

1.1 Hyperbolic geometry

We start with the trigonometry of the hyperbolic plane. Let ABC be a non-asymptotic
triangle, let a := BC, b := CA, and c := AB be its edges and a := CAB, ß := ABC,

Ein Sehnenviereck ist ein Viereck, dessen Eckpunkte auf einem Kreis liegen. Bekanntlich

besitzt unter allen Vierecken mit gegebenen Seiten das Sehnenviereck die größte

Fläche. Doch gilt diese Aussage auch in der nicht-euklidischen Geometrie? Im vorliegenen

Beitrag beantwortet der Autor diese Frage vollständig für Vierecke der
hyperbolischen und der sphärischen Geometrie.
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and := BCA be its angles. Then, the theorem of sine for the non-asymptotic triangle
ABC is given by

sin a
sinha

sin ß

sinh b

sin

sinh c
and there are two theorems of cosine

cosh c cosh a · cosh b - sinh a · sinh b · cos

cos - cos a · cosß + sin a · sin ß · coshc.

Lemma 1. In hyperbolic geometry the edges and angles of a non-asymptotic triangle fulfil
the following equations

sinh a · sinh b · sin 2 · cosh2
c

2 ·
cos + cos(a + ß)

sin
1)

tan
a + ß

2

cosh a-b
2

2
· cot

cosh a+b 2
2)

Proof. We start with the addition theorems of the hyperbolic functions

cosh(x ± y) cosh x · cosh y ± sinh x · sinh y.

From these equations we get

coshx + cosh y 2 · cosh
x + y

2 · cosh
x - y

2

cosh(2x) sinh2 x + cosh2 x 1 + 2 · sinh2 x,

together with the two half-angle-relations

cosh x · cosh y cosh2
x + y

2 + cosh2
x - y

2 - 1,

sinh x · sinh y cosh2
x + y

2 - cosh2
x - y

2

For a non-degenerate triangle in the hyperbolic plane we get immediately from the second

theorem of cosine

cos + cos a · cos ß
sin a · sinß

cosh c 1 + 2 · sinh2
c

2

resp.

2 · sinh2
c

2

cos + cos(a + ß)
sin a · sin ß

With the theorem of sine this gives the first equation of the lemma because of

sinh a · sinh b · sin
sin a · sin ß

sin · sinh2 c.
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For the proof of the second equation we need

cosh a + coshb) · sin sin(a + ß) · 1 + cosh c). 3)

We get this equation from sin(a + ß) sina · cosß + cosa · sin ß, if we replace sin a
and cos a, resp. sinß and cosß by the terms we get from the theorem of sine and the first
theorem of cosine.

From 3) and the second law of cosine we get

sin(a + ß)
cosh a + coshb) · sin

1 + cosh a · coshb - sinh a · sinh b · cos

By the half-angle-relations this is equal to

sin(a + ß)
2 · cosh a+b

2 · cosh a-b
2 · sin

cosh2 a+b
2 · 1- cos + cosh2 a-b

2 · 1 + cos

resp.

2 · tan a+ß
2

1 + tan2 a+ß
2

sin(a + ß)

2 ·
cosh a-b

2

2
· cot

cosh a+b 2

1 +
cosh2 a-b

2
· cot2

2
cosh2 a+b 2

;

the second equation of the lemma follows directly.

1.2 Spherical geometry

In spherical geometry we use the same notations for the edges and angles of an Eulerian
triangle. By similar considerations as in the hyperbolic case we get

- sin a · sin b · sin 2 ·
cos2 c

2 ·
cos + cos(a + ß)

sin
4)

tan
a + ß

2

cos a-b

2

2
· cot

cos a+b 2
5)

2 Quadrilaterals with maximal area

Let #ABCD be a quadrilateral in non-Euclidean geometry, let its edges be given by a :=
AB, b := BC, c := CD, and d := DA, and let t be the diagonal BD. The angles

of the quadrilateral shall be given by a := DAB, ß := ABC, := BCD, and

d := CDA; furthermore let := ABD + BDA and := CDB + CBD.

Theorem 1. Among all non-Euclidean quadrilaterals with given sides there is a quadrilateral

with largest area; it is characterized by a + ß + d.
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A

B

C

D

t

b

a

c

d

Fig. 1 Cyclic quadrilateral

Proof. The area of the quadrilateral is given by the sum or the difference of the area of
the triangles ABD and BCD see Fig. 1); of course the largest area can only be given
by the sums. We consider to be a continuous function of t. The smallest possiblevalue of
t is given by the maximum of a-b and c-d. Startingat this valueand increasing t the area

obviously also increases. In converse, the area decreases if we start at an appropriate value
of t near the maximal possible value i.e. the minimum of a + b and c + d) and decrease

t. Between the smallest and largest possible values for t the area of the quadrilateral is

continuous as a function of t. It attains its maximum for a value t0 between the minimal
and maximal possible value; at t0 the first derivative necessarily has to vanish.

It is easy to express the area of the quadrilateralby its angles, because the area of ABD
is given by

1 :=
a + - p ABD S2,

p - a + ABD H2,

and the area of BCD is given by

2 := + - p BCD S2,

p - + BCD H2.

Thus 1 + 2 depends linearily on

p a + 2 · arctan Kad · cot
a
2 + + 2 · arctan Kbc · cot

2

with constants Kad and Kbc only depending on a and d, resp. b and c. This follows
immediately from 5), resp. 2).

Our aim is to find the extremal value of p, resp. under the condition

cosa · cos d + sina · sin d · cos a cos BD cosb · cos c + sin b · sin c · cos 6)
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We assume that a and depend strictly monotone on t. Thenwe get

d

dt 1
d

dt a + 2 · arctan Kad · cot
a
2

1-
Kad ·

csc2 a2

1 + K2ad · cot2 a2
·

da
dt

d

dt 2
d

dt + 2 · arctan Kbc · cot
2

1-
Kbc ·

csc2
2

1 + K2 2
·

bc · cot2

d.
dt

Reexpressing Kad by tan 2 · tan a2 and Kbc by tan .2 · tan 2 we find for the first derivative
of p, resp.

dp
dt

1-
sin

sina ·
da
dt + 1-

sin.
sin ·

d.
dt

7)

From condition 6) we get

sin a · sin d · sina ·
da
dt

sinb · sin c · sin ·
d.
dt

Because of 4), resp. 1) this is equal to

cosa + cos

sin a ·
da
dt -

cos + cos.
sin ·

d.
dt

0. 8)

Therefore the first derivative of p, resp. can only vanish under the given condition, if
sin a- sin

cos a + cos +
sin - sin.
cos + cos.

0,

resp.

2 · cos a+
2 · sin a-

2

2 · cos a+
2 -2 · cos a-

2 · cos .+2 · sin .-2
2 · cos .+2 · cos .-2

Thus

tan
a -

2 - tan -
2

tan -
2

resp.

a + + ß + d.

3 Non-Euclidean cyclic quadrilaterals
Among all quadrilaterals with edges of given length the quadrilateral with largest area

necessarily fulfils the condition of Theorem 1. This condition is valid for all cyclic
quadrilaterals.

Lemma 2. The angles of a cyclic quadrilateral #ABCD fulfil the equation

a + ß + d. 9)

Proof. Let M be the center of the circumcircle of the quadrilateral. Then the triangles
MAB, MBC, MCD, and MDA are isosceles and the angles at A and B etc. are

equal. The equation follows immediately.
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But does the quadrilateral with the largest area always have to be cyclic? In Euclidean and

spherical geometry the answer is “yes”, but in hyperbolic geometry the answer cannot be

as clear as that, because even triangles do not necessarily have a circumcircle there.

Lemma 3. InEuclidean and spherical geometry a convex quadrilateralwith a+ ß+d

is cyclic.

Proof. In Euclidean geometry the angles of a quadrilateral #ABCD sum up to 2p; from
the assumed equality we get thereforeß+d p and a+ p. Consider the circumcircle
k of ABC and consider AC to be a chord of it. The vertex D cannot belong to the same

side of AC as B, because the quadrilateral would not be convex in that case. By the
converse of the Common Chord Theorem and because of d p - ß we find that the
vertex D has to be a part of the second arc of k.

In spherical geometry two great circles always intersect. Therefore we can use the following

construction:

Case 1: a ß. Without loss of generality we may assume that a > d and ß > We
construct the line f passing through A with DAP d for each point P f and the

line g passing through B with QBC for each point Q g. Let h be the great circle
defined by C and D. Then let C be the intersection of g and h, let D be the intersection
of f and h, and let E be the intersection of f and g see Fig. 2).

A

D

C

E
D

B C

f

g

h

Fig. 2 Spherical quadrilateral

AD D and CC B are isosceles triangles because they have the same angle at the
bottom line AD, resp. BC. Thus the angle bisector at D resp. C is the median line of AD,
resp. BC.

Let us study the triangle ABE : its angle at A is given by a - d and its angle at B is

given by ß - By assumption these angles are equal and ABE is therefore also an

isosceles triangle; thus the angle bisector at E is the median line of AB.
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The points C D and E form a triangle. The bisectors of the angles of a triangle intersect
at the incenter of C D E which we name U. The distance from U to B and C is equal
because the bisector of the triangle at C is – by construction – the median line of BC. By
the same argument we get that U has equal distance from A, B, C, and D; i.e. #ABCD is

cyclic with center U.

Case 2: a ß, i.e. d. Then the quadrilateral is a convex isosceles trapezoid and

therefore the median line of AD is also the median line of BC. Let U be the intersection
point of AB and AD; then U is equidistant to A, B, C, and D.

To understand the hyperbolic geometry we use the Poincaré disc model. In this model the
hyperbolic plane is given by the interior of a circle C, hyperbolic lines are represented by
arcs of circles that are orthogonal to C plus diameters of C. This model has three important
properties: angles in the model and angles in the hyperbolic plane are equal, a circle in the
hyperbolic plane is represented by a Euclidean circle, and circumcircles of the Euclidean
triangles are also circumcircles of their hyperbolic counterparts.

All Euclidean triangles have a circumcircle. In the hyperbolic context this circle is a

circumcircle if it is completely contained in the interior of C,
horocycle if it touches the boundary of C,
hypercycle if it intersects the boundary of C.

Lemma 4. In hyperbolic geometry a convex quadrilateral #ABCD with a + ß + d
is inscribed into a circle, a horocycle, or a hypercycle.

Proof. We use the Poincaré disc model with boundary circle C. Within this model we

draw the quadrilateral #ABCD. Then we may consider the drawing as Euclidean and

add the Euclidean lines joining the vertices A and B, B and C, C and D, resp. D and

A s. Fig. 3). In the Euclidean context hyperbolic lines are Euclidean circles intersecting
orthogonally the boundary of C. Thus the Euclidean angles p and p at A and B defined
by the hyperbolic line AB and their Euclidean counterpart are equal. The same is valid for
the other lines. If we name these angles between the Euclidean and the hyperbolic lines
with p p q q r r and s s we get for the Euclidean angles at A, B, C, and D

aE s + a + p s + a + p,

ßE p + ß + q p + ß + q,

.E q + + r q + + r,
dE r + d + s r + d + s,

resp.

aE + .E s + a + p + q + + r p + ß + q + r + d + s ßE + dE.

Therefore the vertices form a cyclic quadrilateral in Euclidean geometry, i.e. there is an

Euclidean circle k joining the vertices. This circle also passes through the vertices A, B,
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A

B

D

C

Fig. 3 Hyperbolic quadrilateral

C, D if we regard them as points of the hyperbolic plane. The actual meaning of k in
the hyperbolic context, i.e. if it is a circle, a horocycle, or a hypercycle, depends on its
intersection with the boundary of C see the notes above concerning the circumcircle of
the hyperbolic triangle).

4 Applications to spherical geometry
4.1 Cyclic polygons

In Euclidean and spherical geometry we can summarize our results as follows.

Proposition 1. In Euclidean and spherical geometry among all quadrilaterals with given
sides the cyclic quadrilateral has largest area.

Following the proof of van der Waerden [3] it is easy to extend this theorem to polygons
with n given sides.

Theorem 2. In spherical geometry among all polygons with n given sides, contained in a
half-sphere, the polygon inscribed into a circle has largest area.

Proof see [3]). From a vertex we draw the diagonals x, y, etc. see Fig. 4). Then we
get n - 2 triangles a,b, x, x, c, y, etc. The area of the polygon is the sum of the areas

of these triangles. Of course some of them may have negative area, but it is clear that for
given x, y, the area is maximal if the area of all triangles is positive. The area is thus
the sum of a continuous function depending on x, y, These parameters are taken from
a closed region defined by the triangle inequalities

a + b x, x + y c, etc.

The function therefore has a maximum.
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a

b
x

y

c

Fig. 4 Cyclic polygon

What does this maximum look like? If we only change the parameter x we get from the
already proven result that the vertices A, B, C, and D are on the boundary of a circle.
By the same argument we get that B, C, D, E are also on the boundary of a circle. The
vertices B, C, and D belong to both circles and thus these circles are equal, i.e. the vertices
A, B, C, D, and E belong to the boundary of the same circle. If we apply this argument
to all other vertices of the maximal polygon we get that the maximal polygon has to be

cyclic.

4.2 Tangential polygons

The polar counterpart of a cyclic polygon is the tangential polygon, i.e. a polygon which
is circumscribed an incircle. If a, b, c, and d denote the sides of the quadrilateral, it is

characterised by
a + c b + d,

and without any further proof we get from the duality of spherical geometry:

Theorem 3. Among all polygons with n given angles the polygon circumscribing a circle
has smallest area.
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