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The mystery of the number 1089 -
how Fibonacci numbers come into play
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Choose any positive number a with three digits where the last digit is smaller than the first
one. Reverse the order of the digits and calculate a minus the reverse of«. Call the result
b and add to b the reverse of b. The result will always be 1089.

As an example consider a — 745. First we calculate 745 — 547 to obtain b 198. And
really one has 198 + 891 1089 as predicted1. One can prove this fact by using very
elementary arithmetic.

It has often been transformed to a mathematical prediction trick. One finds it in many
books concerned with magical tricks with a mathematical background, and GOOGLE
offers more than 1.6 million links when asking for "1089 trick".

'Note thai b has to be considered as a three digit number when we reverse if tor example, the reverse of 011

is 110 If one wants to avoid this somehow artihcul extra rule one could restrict oneself to numbers a where the

lirst digit minus the last digit is larger than one

Wenn man eine dreistellige Zahl xyz (mit x > z) spiegelt und das Ergebnis zyx
von xyz abzieht, erhält man eine Zahl def. Uberraschenderweise ist dann immer

def + fed 1089. Dieses Phänomen wird oft für einen Zaubertrick verwendet. In
der vorliegenden Arbeit wird untersucht, was passiert, wenn man statt mit einer
dreistelligen Zahl mit einer /7-stelligen Zahl beginnt, wobei n ganz beliebig sein kann. Es

ist dann nicht mehr richtig, dass man immer das gleiche Endergebnis erhält. In der

Regel werden - je nach Startzahl - am Ende verschiedene Zahlen herauskommen, die
Anzahl möglicher Endergebnisse ist aber immer bemerkenswert klein. Zwei Tatsachen

sind überraschend. Erstens treten bei der Formulierung des Ergebnisses die Fibonacci-
Zahlen auf. Und zweitens ist der technische Aufwand, den man für den Beweis
aufbieten muss, sehr viel höher, als man es bei so einem Problem aus der elementaren
Arithmetik vermuten würde.
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The aim of the present note is to investigate what happens if one replaces three digit numbers

by numbers of arbitrary length. More precisely we fix an n > 2, and we will consider

/i-digit numbers a — a\ci2 an with a, e {0,..., 9) and ay > an. Then we calculate

ay an — an .a i, and we write this positive number as by ,bn. Finally we calculate
by bn + b„ by, this number will be called <pn(a).

Suppose, e.g., that we consider in the case n 6 the number a 242141. Then by b(,

242141-141242= 100899, and <f>6(a) 100899+998001 1098900. In the case// =4
and a 8007 we calculate as follows: 8007 - 7008 0999, and 0999 + 9990 10989;
note that always (as in the case n 3) by b„ has to be considered as an //-digit number,

leading zeros have to be taken into account when passing from by bn to bn by.

Our investigations started with the observation that all <j)-y(ctya2a-y) equal 1089 when ayc^a-y

runs through the positive numbers with 3 digits such that ay > «3. It is not true, however,
that also for larger n all <fi,,(ay - a,,) coincide. But we will be able to show that there

are always surprisingly few different numbers in the range of <pn and that - completely
unexpectedly - Fibonacci numbers enter the scene.

We will also treat another generalization: up to now we worked in the decimal system, but

one could ask the same question if the numbers under consideration are represented otherwise.

What happens, e.g., with dyadic numbers or with numbers represented in the
hexadecimal system when we apply the same rules? In the sequel the number B e {2, 3,...)
will be fixed, and we will expand integers in the B-adic system. Those readers who are not
interested in the general approach should replace B by the number 10 in the sequel to stay
in the well-known decimal system.

Here are the relevant definitions:

• IB „ {(),..., B — 1}" denotes the set of Ä-adic expansions of the integers /// with
0 < in < B" — 1. The elements of Iß will be written as (r/[ a„)g. For example,
(20045) jo is "really" the number 20045, whereas (10011)2 is the dyadic expansion
of the number 19.

• Ig n
stands for the (//j ,a„)ße Iß „ such that <71 > an.

• The map pB.„ : h.n h „ reverses the order: pB_„ : (ay a„)B (-> (a„ .ay)B.

• : iß n
—* Ib n maps an (ay .a„)B to the B-adic expansion of the difference

(ai ,an)B minus pB,n((ay .a„)B).

• TB.n Ib.h — 1b h+i maps a (//] .bn)B to the B-adic expansion of the sum of
(by b„)B and pb n((by b„)B)\ it can happen that this number has n + 1 S-adic
digits. Example: <t<;_3((243)s) (243)s + (342)s (1140)s.

• And finally, ipBjl :/£„-> /ß.„+i is defined by := rrs,„ o<5ß,„. (Note that (f>y0jl

coincides with the map cf>n that was introduced above.)

Admittedly these are rather technical definitions, but they are necessary for a formal
generalization of the rule that we have described above when introducing the 1089 trick.

How many elements are there in the range of Here is our main result:

Theorem. Depending on whether the integer n > 2 i.s even or odd we write 11 at 2r or
2r + 1. The sequence Fy, F2, Ft,, denotes the usual Fibonact 1 sequence 1, 1, 2, 3, 5,...
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Then precisely Ifr different numbers will occur as (pB.n ((«I • • • <"'«)n) when (a\ an)g
runs through the elements of Ig : there is 1 F2 number for n — 2 and n 3 (this

corresponds to the original trick), the cases n 4 and n 5 give rise to 3 F4 different
numbers etc.

As two immediate consequences we note:

• The number of possible candidates for the fB,n((ai does not depend on B.

• This number is tiny when compared with the elements of Ig The proportion for

even n is of order F„/Bn sa (<p/B)" where tp — (1 + a/5)/2 1.618 is the

golden ratio.

The rest of this note is devoted to the proof of this theorem. It will depend on an elementary
but nevertheless surprisingly involved analysis of the arithmetic that is used to transform

(a i a„)ß Ig n
to 4>B,n{(a 1 • ß;i)ß)- At the end of this note one finds proposals how

to use our result for a mathematical magical trick.

Reminder 1: differences. Most readers will be surprised to be reminded of some very
elementary school arithmetic in a scientific mathematical paper, but this will be necessary
to explain a definition that will be important for our investigations.

Carries will play a crucial role here, three variants will be used in the sequel (the fy, the

m, and the m).

Let e (ei • • • e„)ß and d — (d\ dn)B in Ib.h with e > d be given. How does one
calculate e — d in ß-adic expansion? One works backwards from the last digit to the first

one, sometimes - when calculating the £th digit - it might be necessary to "borrow" a

1 from the (k — l)th digit. (It should be noted that school children are taught different
strategies: in Germany, e.g., one adds a "1" to d^-\ whereas in the USA one "borrows" a

1 from e^-\.)

The first family of carries /„+[, tn, r„_ 1,..., t\ is defined as follows: t„+1 := 0 and := 0

if ek > dk + hi+1 and f* := 1 otherwise. Then the kth digit of e — d in ß-adic expansion is

ß't +ei — (d,i +ht+i) e {0, 1, • •, ß — 1} (k n, n — 1,..., 1). We will use the notation

C(e,d) := t{ -t„.
Here are two examples for the usual decimal system to illustrate this definition: (5553) 10 —

(1223)io leads to 0000, i.e., C((5553)i0, (1223),0) 0000. And (555370)i0-
(499999)io yields C((555370)]0, (499999) 10) =011111.

Of particular interest will be the t\ tn when we calculate the difference <5s,n(a) a —

Pb.ii(h) for a (ai I*B n.

By Tg.n : Ig „ —» {0, 1}" we denote the map that associates to a (a\ an)B e Ig n

the pattern C((rq • • • an)ß, (an a\)B). (So that, e.g., rio,7((4555552) 10) 0111111.)
Tß.n C (0, 1)" stands for the range of rB,n.

Our strategy to prove the theorem will be as follows: first we will determine in Lemma 2

the cardinality of 7ß,„, and then we will show in Lemma 3 that there is a bijection between

Tß,n and the range of (j)Bjl.
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The following facts can easily be verified:

Lemma 1. Fix a (a i • -an)ß e Iß „ and put t\ ,t„ := Tßn{a).

(i) =0 and /„ 1.

(ii) If ak > an-k+\ then tk 0; if ak < an-k+\ then tk I; if ak a„-k+1 then

tk >k+1 (k 1, «)
(iii) For k — 1 n the kth digit of riß „ (a) is tkB + ak — (an-k+\ + fit+i); here, as

above, we put f„+i := 0.

In order to be able to calculate the cardinality of Tß „ by a recursion formula we will need

some further definitions:

1. Tg n (resp. Tg n) denotes the collection of the t\ tn e Tßj, such that t2 0 (resp.

tj 1). And (resp. T,',' resp. stands for the cardinality of T/t „ (resp. Tg n

resp. Tg We note that, by part (ii) of the preceding lemma, Tß does not depend
on B.

2. A map pßJt {0, 1)" (a variant of rs,„) is defined by a («i • -an)B m>

tt \ it„ := C((ai -an)ß, («„ • -fl20)ß): before calculating the difference of a
and the reverse of a the last digit of this reverse is changed to zero.

It is clear that always //„ 0 and it\ — 0 hold.

3. Mß n denotes the range of pb,„, and
n (resp Mgn) is the collection of the

u i e MßJ, such that «2 0 (resp. «2 1). And <!>„ (resp. <I>jj resp. O,')
denotes the cardinality of Mß,„ (resp. Mg n resp. Mgn).

Here are some concrete calculations. First we will restrict ourselves to the case of even n,
we will write n 2r.

1) We start with n 4. For the calculation of Tß 4(a) for a certain a — (air/2«3«4) e '54
one only needs to know whether ai < 03, «2 «3 or «2 > «3. And therefore, if one wants
to identify the elements of Tß 4, one only has to treat three examples. We choose (ß0ß0)ß,
(ß{)()0)ß and (ßßOO)ß, where ß := B — 1. The following table shows these a together
with the associated rß.4(«):

a (ß0ß0)B (ßOOO)ß (ßßOO)B

*BA 0101 Olli 0011

It follows that 1, Tj 2 and T4 3.

And here is the corresponding table for Mß 4:

a (flOßO )B (/J000)ß (ßß00)B

/' ß,4 0100 0000 0010

We conclude that 2, 1 and O4 3.
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2) Next we consider the case n 6. This time 9 different a e I*B 6
have to be treated in

order to exhaust all possibilities: a2 <, > «5 and «3 <, > 04. In the table one sees

our choice of a and the corresponding

a (ß00ßß0)B (ßOOOßO) B (ßOßOßO)B (ßOOßOO )B (/100000) B

re,6 011001 010001 010101 011011 011111

a (ß0ß000)B (ßß0ß00)B (ßß0000)B (ßßßOOO )B

TB,6 000111 001011 001111 000111

Thus 4^ 3, 4^ 5 and 4V, 8; note that the pattern 000111 appears twice in this
table, it has to be counted only once.

The range of BB contains the following elements:

a (ß00ßß0)B (ßOOOßO )B (ßOßOßO) B (ßOOßOO )B (ß00000)B

l'B. 6 011000 010000 010100 011000 000000

a (ß0ß000)B (ßß0ß00)B (ßß0000)B (ßßßOOO )B

l'B,6 000100 001010 001110 000110

It follows that tf>£ 5, (Dg 3 and d>6 8.

Lemma 2.

(i) The following recursion formulas hold for r > 1:

*2(,+1) ^' ^V+D *2, + ®2(r+I) °2, + ®2(,+ l) ®2r-

(ii) 4*2r — F2r, where F2r denotes the 2rtli element of the Fibonacci sequence F\,
F2, 1, 1,2,3,5,8,...

(iii) Write n 2r ifn is even and n — 2r+{ if n is odd. Then TBll has F2r elements.

Proof, (i) It will be convenient to write an a e l*B 2(,+ i) 'n ^e form

ci (a\aa2 a2r-\a'a2r)B

with a, a' e (0,..., B — 1} (so that, e.g., a2 denotes the third digit in a). Put a :=
(ai a2r)B e rB 2r, ti t2r := TB.2r(a) and «1 u2r := /.ib.2,(«) Then it follows
from elementary arithmetic that:

• If« < «' then TB.2(r+i)(«) 01w2 • • «2r-i01 and

PB.2(r+\){ä) — 01i<2"3 • • "2,-100;

• If a — a' then TB,2(r+i)(«) 0r2'2'3 • • • t2r-\ 11 and

Pß,2(r+l)(ä) 0«2"2"3 • «2,-100;

• If« > «' then rfl-2(,+i)(«) 00t2 • • '2,-1 11 and

PB,2(r+l)(ä) — OOt2t2 • '2,-1 10;
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The recursion formulas can now be deduced easily:

a) How many elements are there in T?(r+1)? They are generated only when a > a'

or when a a'. In the second case only the ä with 0 contribute, but these are

already part of the collection generated by a > a'. This proves 4*2r-

b) Only the ä with a < a' and the ä with a — a' and t2 — 1 count for 4,^r+1^, and all

these patterns are different: the last but one digit in the first family (from a < a') is

0 whereas it is 1 in the second. This shows that 4J2(,.+ I) + 0>2r-

c) and d) The recursion formulas for ®2(r+i) an^ ^(r+i) ire justified in a similar way.

(ii) By the above calculations we know that 4^ 7*2, T] <I>a F3 and T4
<J>4 F4. It follows easily from the relation F) + Fk+1 Fk+2 and the recursion formulas
from (i) that always — Fjr-i, Tj,. ^2r-i and 4V <X>2r F2r.
This proves the claim for r > 2; for r — 1 it is trivially true.

(iii) The case of even n 2r is covered by (ii) since 4V counts the elements of Tg 2r-
Now let 11 2r + 1 be odd. By Lemma 1 (ii) we know that any t\ t„ e Tg „ satisfies

tr+1 tr+2 since ak a„-k+1 for 7 — r + 1. Therefore t\ trtr+\_tr+2 t„ i->
11 • • • lrtr+2 • • hi is a bijection between Tgpr+\ and Tg,2r- O

Reminder 2: sums. Summation in ß-adic expansion is easier than subtraction. Let d
(d\ ,dn)g and e — {e\ e„)g in IgJt be given. Denote by uk the carry that occurs when

calculating the 7th digit of d + e. This means that we define ui,..., v„, vn+i recursively
by U/,+1 := 0, and vk 1 (resp. vk := 0) if dk +ek +nk+l > B (resp. dk + ek +vk+i < B);
k — 11,11 — 1,Then the 5-adic expansion of d + e is given by v\C\ c„, where

ck »k+1 +dk + ek - vkB fork 1,..., n.

It will be convenient for us to have an intermediate step in our calculation: first we
calculate the numbers Rk := dk + ek e {0,..., 2B — 2) (7 1,..., n), and from these we
determine the 5-adic expansion of d+e. For example, (34201)5+(44033)5 is calculated as

(34204)5 + (44033)5 (7, 8, 2, 3, 7) H* (133242)5;

here the carries are U1U2U3U4U5 11001.

Of particular interest will be the case d (b\ b„)g Sg_n(a) and e (bn b\)g for
a (ctf an)g e Ig Let such an a be given. We already know (Lemma 1 (iii)) that the
7th digit of b (b\ -b„)B := SBt„(a) is tkB + ak - (a„-k+1 + tk+i). Therefore 6* plus
the 7th digit of pg_„(b) is

Rk — bk + bn-k+1

tk B + ak — {a„-k+1 + tk+1) + hi-k+l B + — (ak + tn-k+2)

Uk + bt-k+l)B - (tk+\ + tn-k+2)-

(This is a crucial observation: the R\,..., R„ only depend on the tk and not on the ak.) In
order to calculate tpBj,{a) as a 5-adic number it remains to work from the right to the left:
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we define the v7 as the carries when determining (b\ bn)B + (b„ • b\)B as above2.

Then with Ck := Rk + t>7+i - »kB one has fB,n(a) — ("tci cn)B.

Here is an example, we consider a — (5677321) kj. Then <$io,7(fl) (4439556) io and

(R\,...,Rj) (10, 9, 8, 18, 8, 9, 10). Consequently 0io,7(a) (10998900) io with

oi---o7 1001011.

Lemma 3.

(i) Rk R„_k+[, andRk e (0, B -2, B - 1, B, IB -2) for all k.

(ii) Tlte map t\ t„ i-+ (R\,..., R„) (from TBn to {0, B — 2, B — 1, B, 2B — 2}") is

one to one.

(iii) The map (R\,..., R„) f—> a\C\ c„ (from the (Ri,..., R„) that are generated by
the (ai • • • an)B e Ig n

to IB.n+1) is one to one.

Proof, (i) The symmetry is a consequence of the definition: Rk — bk + bn-k+\ for k

I,... ,n. That Rk lies in {0, B — 2, B — 1, B, 2B — 2} follows from the formula Rk

(tk + tn-k+i)B — (tk+i + tn-k+2) and the fact that Rk is the sum of two elements in

{0, 1,..., ß — 1).

(ii) We have to show that it is possible to reconstruct 11 • • • tn from (R{,..., Rn). Always
?i 0 r„+i and tn 1 hold so that

R\ — (t\ + tn)B — (t2 + fij+l) — B — t2-

In this way we have identified 0,67/1- The remaining tk will be found by working
recursively "inwards"; from ti,t2,t„ to 0,6,0, tn-\,t„, then to 0, 6, 6,6, 0-2, 6-1,6
etc.

Suppose that we know for some k > 2 the 0, • 6, 6-/t+2, • • 6- What can be said
about tk+1 and 6-7+1 We consider four cases separately.

Case\:tk =6-7+2 0. In this case Rk (tk +6-7+1 )B- (6+1 +6-7+2) 6-7+1 B-
6+1 holds, where Rk is known. 0+1 and 6-7+1 can now be identified with the help of (i):
the number Rk is one of the numbers B, B — 1,0, and this yields 6-7+1 1, 6+1 0 or
6-7+1 1,6+1 1 or 6-7+1 6+1 0, respectively.

Case 2: 6 1, 6-7+2 0. Then Rk (1 + 6-7+1 )B — 6+1 • Rk equals B, B — 1, 2B or
2B — l,and in each case one can reconstruct 6+1 and 6-7+1 • (For example, if Rk =2B,
then necessarily 6-7+1 1 and 6+1 0.)

Case 3 (6 0, 6-7+2 1) and case 4 (6 6-7+2 1) are treated in a similar way.
This proves (ii).

(iii) How can one find R\,..., Rk if oici • • c„ are known? We have Rn — B — 6 so that
Rn B or R„ B — 1. Thus it follows in the case c„ 0 that Rn — B and vn — 1

whereas c„ B — 1 yields R„ B — 1 and t;„ 0. The number u\ is also known
by assumption so that we can start our recursion with the known numbers R\ Ru and

2I.e., o„+i := 0, and 1+ 1 (resp uk 0) if Rk + 1/7+1 > B (resp. < B).
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vi, vn. As in the proof of (ii) we work from the extreme left and right indices to the inner
ones: from 1, n to 1, 2, n — 1, n etc.

Suppose that R\(= R„), ß2(= R„-1), • • •, Rk(— Rn-k+i) anduj,..., Vk, «w+i,..., v„
are already found. We will determine Rk+\(= R„ as well as t>k+\ and vn-k. Write the
B-adic expansion of /(i+i as (aa')b ; here a G {0, 1} and «' G {0, B — \ B — 2).

Step 1: First we identify Uk+i. As an example consider a case where Rk ci B — 1.

Then v^+x necessarily is 0 since i>k+i 1 would imply q 0. Similarly U£+i 0 must
hold whenever Rk — ck or - in situations where Rk (10) ß or Rk (1, B — 2)b - when

Ck equals the second (counted from left to right) ß-adic digit of Rk. In all other cases one
knows that i-n+i 1.

Step 2: We determine a'. By assumption we know u„-k+i. If this number is zero then

a' c„-k- In the case 1 we consider two cases. If cn-k — Owe recall that cn-k
equals the second digit of a' + 1 so that a' B — 1 and n„_r 1 (a carry is necessary).
In the case cn-k > 0, however, we can conclude that a' — c„-k — 1.

Step 3: What about a? Suppose that q+i a'. This implies that a m+i. And what

happens if a' cj+i If Ck+\ 0 this is possible only if a' B — 1 and then necessarily
a 0 (since Rk+i <2B — 1). In the case ci+\ > 0 we can conclude that the carry, if
there is one, was generated by a, i.e., a Vk+1.

Step 4: vn-k again. For certain cases vn-k was calculated already in Step 2. But now
we know more: vn^k can be determined easily from a, a' and vn-k+1: if « 1 or a' +
u„_r+i B then t= 1, and otherwise it follows that v„-k =0.

The proof of the theorem is now easy: Write n 2r or « 2r + 1. By Lemma 2 there

are F2r elements in Tb.„, and by Lemma 3 there is a bijection between Tb.„ and the

range of cpB.„.

We conclude this note with some examples and remarks:

1. The numbers Rk lie in (2B — 2, B, B — 1, B — 2, 0), and the kth digit of the final
result is the last digit of Rk + ur+i- This explains why all digits of the <f>B,n{o) lie in

{0, l,B- 1, ß — 2}.

2. If one deals with 4 digits there will be F4 3 different numbers in the range of 4>b,4- In
the following table they are depicted for the case B — 10, and the associated /1 r2^3^4 are
also shown. For example, all a (<71(^0304)10 e /*0 4 for which the associated t\t2tit4
equals 0101 (i.e., all a with o2 < 03) give rise to ^>4,10(0) 9999.

'l'2'3?4 0101 (or: Ü2 < <73) 0011 (or: o2 > <73) 0111 (or: o2 <73)

9999 10890 10989

3. And here are the three numbers for n — 5:

11 '21.3'4'5 00111 (or: o2 < 04) 01001 (or: <72 > <74) 01111 (or: <72 <74)

99099 109890 109989
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4. The preceding tables can easily be transformed for the case of ß-expansions: 1,0, 8, 9

have to be replaced by 1,0, B — 2, B — 1, respectively.

5. Here are two proposals how to use the results of this paper for a mathematical magical
trick:

a) Let a spectator choose a number a «ifl2<L3"4 with 4 digits. (Unless one works
with mathematicians one should use the decimal system.) Two conditions should be

satisfied: a\ >04 and «2 > «3-

Then let him or her calculate tf>ia^(a). You, the magician, have prepared an envelope
with the prediction ^10,4(0) 10890 and you can be sure that it will be true. If you
prefer to impose the condition «2 < a3 then the result of the spectator's calculation
will be 9999.

b) The same idea can be used for integers of arbitrary length. We illustrate this idea for
numbers with 10 digits in the decimal system:

Your spectator chooses 5 pairs of digits: (xi, yi), • (*5, ys) (with x,, y, in the set

{0, 1, 9)). The only condition is that x/, > yr for all k. From these pairs we glue
together the number« x\xi xnyn y\ with 10 digits, i.e., we put together first
all xi, and then the y* in reverse order. Then we are sure that ti tio 0000011111,
and thus we can predict the result by calculating </>io, io(«) for any a of this type: one

can guarantee that we will arrive at 10999890000.

6. Readers who are interested in another connection between Fibonacci numbers and
mathematical magic should consult the paper "Fibonacci goes magic" by the author of this note
(Elemente der Mathematik 68, 2013, pp. 1-9).
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