Methoden

Objekttyp: Chapter

Zeitschrift: Eclogae Geologicae Helvetiae

Band (Jahr): 79 (1986)

Heft 2

PDF erstellt am: 21.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

phie zu reinterpretieren und b) sowohl die vertikalen als auch die horizontalen «Trends» der sedimentologischen Faziesentwicklung im UMM-Becken aufzuzeigen. Ferner sollen die Paläoküstenverläufe an der Südküste, die Paläoschüttungen, die Paläowindrichtungen, die Regressionsgeschichte und die relativen Meeresspiegelschwankungen rekonstruiert werden.

2. Methoden

2.1 Feld- und Labormethoden

Die Sedimenttexturen und -strukturen (nach englischer Nomenklatur) wurden soweit als möglich direkt im Feld aufgenommen und vermessen. Einzig Korngrössen, welche für paläohydraulische Berechnungen Verwendung finden sollten, sind im Labor unter dem Binokular bestimmt worden. Ferner konnten die nicht immer ideal angewitterten kleinmaßstäblichen Sedimentstrukturen z. T. erst im Labor in Anschnitten und soweit notwendig durch Anätzen derselben mit 2n HCl oder durch Radiographie (BOUMA 1969) sichtbar gemacht werden.

Mit 20prozentigem H₂O₂ versetzte und anschliessend durch 2- bis 0,1-mm-Siebe gewaschene Mergelproben ließerten mit Mikrofossilien angereicherte Schlämmrückstände. Die Mikrofossilien wurden anschliessend unter dem Binokular manuell aussortiert. Das Aufbereiten und das Auszählen der Schwermineralien erfolgten nach den Mei hoden von Hoffmann (1957), Füchtbauer (1954) und Matter (1964).

2.2 Numerische Auswertung der Daten

Die Berechnung paläowellenklimatischer Parameter und der Paläowassertiefen aus steilen trochoidalen Wellenrippelmarken (Gleichgewichts-Wellenrippelmarken) erfolgte nach den Methoden von Miller & Komar (1980). Allen (1984) und Diem (1985). Richtungsdaten wurden nach vorangehender Horizontierung der Faltenachsen durch einfache Kippung in die Horizontale zurückgedreht. Für die numerische Auswertung der Schwermineraldaten wurde die Multinomial-Diskriminanzanalyse nach Cox & Brandwood (1959) sowie eine in der vorliegenden Arbeit modifizierte Version der Hauptkomponentenanalyse von Hotelling (1933) herangezogen. Hierbei wurden die ersten zwei Hauptkomponenten in Verhältnisse umgerechnet (vgl. Anhang). Da sowohl die «Cox-Brandwood scores» (Cox & Brandwood 1959) als auch die Schwermineralverhältnisse direkt aus Kornzahlen berechnet werden können, sind diese nicht von einer willkürlich gewählten 100%-Basis abhängig.

3. Stratigraphie und Tektonik

3.1 Die UMM zwischen der Ammer und der Ostschweiz

Im oberbayerisch-vorarlbergischen Raum tritt die UMM nur in den z. T. gefalteten inneren Schuppen der subalpinen Molasse («Faltenmolasse») zutage. Bis über 1 km mächtige UMM-Abfolgen, welche von den sehr wahrscheinlich unteroligozänen basalen Turbiditen (Deutenhausenerschichten = untere UMM) bis in die mitteloligozäne Küstenfazies (Bausteinschichten = obere UMM) reichen, sind hier auf die Südschenkel der Murnauer Mulde im Osten und der Steineberg-Mulde im Westen beschränkt (ZÖBELEIN 1962; FISCHER 1960, 1979; RESCH et al. 1979; HAGN 1981). Wegen der ausgezeichneten Aufschlussverhältnisse im Südschenkel der Murnauer Mulde (Ammer-Profil) war die lithostratigraphische Abfolge der UMM-Sedimente im oberbayerisch-vorarlbergischen Raum nie umstritten.

An der Ammer, wo im untersuchten Gebiet die UMM am vollständigsten aufgeschlossen ist (Fig. 3), beginnt die Sequenz, tektonisch an den nordpenninischen Flysch grenzend, mit einer nach oben grobkörniger werdenden Megasequenz turbiditischer Ablagerungen (Deutenhausenerschichten und unterste Tonmergelschichten = untere UMM). In den oberen Anteilen dieser turbiditischen Megasequenz, welche hier teils