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A SURVEY OF GOBORDISM THEORY1

by J. Milnor

This paper will start out with a discussion of known results
and then will taper off into a discussion of unsolved problems.

The theory of cobordism was initiated by L. Pontrjagin and
V. A. Rohlin [10, 12]. It came of age with the work of R. Thorn
[17]. The basic question in this theory is the following. Let Jt
be some class of compact manifolds. Given V e Ji how can
one decide whether or not V is the boundary of some other
manifold in M Of course a necessary condition is that V itself
must be a closed manifold: that is the boundary dV must be

vacuous.

1. The classical cobordism groups Nk and Qk.

As a first illustration of this problem let Q) denote the class

of all compact differentiable manifolds. The manifolds V e Q)

need not be connected or orientable, and are allowed to have
boundaries.

Theorem 1 (Pontrjagin, Thorn). — A closed k-dimensional
manifold V e Q) is the boundary of some (k + 1) -dimensional
manifold in Q} if and only if the Stiefel-Whitney numbers

wi± win [V] are all zero.

(Explanation: The StiefehWhitney cohomology classes2)

WiEffiV; J2) are defined for example in Steenrcfd [15]. If

\ + ••• + 4 7c is any partition of k then the cup product
wi± win is a top dimensional cohomology class. Applying the
canonical " integration " homomorphism

[ Vl.Hk(V;J2)->J2

we obtain a " Stiefel-Whitney number " win [V] e J2.)

1) Talk delivered at the Zurich Colloquium on Differential Geometry and Topology,
June 1960.

2) The notation J will be used for the integers and J2 for the integers modulo 2.
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The non-oriented cobordism group Nfc Hk{Viï) is constructed
as follows. Given two /c-manifolds V, V' e 2 the sum V + V'
will mean the (disjoint) topological sum, provided with a diffe-
rentiable structure in the obvious way.

Definition. Two closed manifolds V, V' e Q) are congruent
modulo if V + V' is the boundary of some manifold in St.

The set of all congruence classes of closed A-manifolds, under the

composition operation + forms the required group Nk. We
will also use the notation Hk (Sj) for this group since it is something

like a homology group. (The Russian term for " cobordism

" is " intrinsic homology ".)
It follows from Theorem 1 that each Nk is a finite abelian

group of the form J2 © © /2.
The cartesian product operation between differentiable

manifolds gives rise to a bilinear pairing

Nk © -> Nk+l

Thus the graded group N* (iV0, iV1? has the structure of
a graded ring.

Theorem 2 (Thorn). — The non-oriented cobordism ring N* has
the structure of a polynomial algebra

J2 \_x2, X4, X5, x6, x8, x9,...]
with one generator Xk e Nfe for each dimension which is not of
the form 2m —1.

If k is even then the real projective /c-space can be taken as

generator. For k odd generators have been constructed by
DoJd [4].

Thorn's proof of Theorems 1 and 2 involves a brilliant mixture
of algebra and geometry. A key step in the argument is his
proof that Nk is isomorphic to a certain homotopy group. I will
not try to give details.

Next consider the class Q)0 consisting of all oriented compact
differentiable manifolds.

Theorem 1'. — A closed manifold in Qi0 is the boundary of a
manifold in <30 if and only if both its Stiefel-Whitney numbers
and its Pontrjagin numbers are zero.

L'Enseignement mathém., t. VIII, fasc. 1-2. 2



18 J. MILNOR

This result is due to Pontrjagin, Thom, Milnor, Averbuh,
and Wall. (See [2, 9, 19].) For the definition of the Pontrjagin
numbers pi± pin [V] e J the reader is refered to Hirzebruch [6].
These numbers are defined only if the dimension k is a multiple
of 4.

The oriented eobordism ring £2* =* H* (@0) is defined as

follows. For V e Q)0 let — V denote the same manifold V with
the opposite orientation. We will say that

V V' (mod d@0)

if — V) + V' is the boundary of some manifold in Q)0. As an
example, for any closed manifold F we have V V (mod 7)@0)

since

- V) + V « ô (V x /)

where I denotes the unit interval. The set of ah such congruence
classes form the required group Qk. Again the cartesian product
operation makes (Q0, D1? into a graded ring.

It follows from Theorem 1' that Q,k is a finitely generated
group of the form

J ©...©«/ ® J2 ® " - ® d2

where infinite cyclic summands can occur only if k 0 (mod 4).

Theorem 2'. — The ring Q*, modulo the ideal consisting of 2-tor-
sion elements, is a polynomial ring J [Y4, Y8, Y12, ...] with one

generator in each dimension divisible by 4.

The complex projective space of real dimension 4m can be
taken as generator for m 1, 2, 3. However a different
generator is needed in dimension 16.

For a description of the 2-torsion in Q* the reader is referred
to Wall's paper.

2. Manifolds with Z-structure.

.In this section we will define the concept of an " Z-structure "

on the tangent bundle of a differentiable manifold; and study
the corresponding eobordism theory.
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First recall Steenrod's definition of a tensor field [15, § 6.4

and § 9.1 with mild alterations]. Every differentiable A-mani-
fold V can be made Riemannian and hence has a tangent bundle
with structural group 0k. Let X be any topological space on
which the group Ok acts. Then we can form the weakly
associated bundle with base space V and fibre X. This may be

called the " tensor bundle of type X " and its cross-sections are
" tensor fields ". As an example, if k — 2m, then 02m acts on
the coset space 02m\Um.

A cross-section of the corresponding bundle is called a quasi-
(or almost) complex structure on V. (See [15, § 41.10].)

We will modify this definition as follows, so that it makes
sense for all dimensions simultaneously. Let 0 denote the
union of the orthogonal groups 01 c 02 c Os c in the fine
topology. Then we require that this infinite orthogonal group Ö

act on the space X. It follows that each Ok acts on X. Hence
there is a tensor bundle of type X over any manifold V e Q).

Definition: A homotopy class of cross-sections of the tensor
bundle with fibre X over V is called an X-structure on V. A
manifold V e 3 together with an X-structure on V is called an
X-manifold. We will still use the single symbol V to denote
this pair.

Now if V is an Xmanifold then î) F is also. Given any closed
Xmanifold V one can define a second Xmanifold — V so that

d(V x J) * v+(~V)
Thus one can define a cobordism group for the class of Xmani-
folds. The resulting group will be denoted by Nk (X) and called
the X-cobordism group. (Following Atiyah [1] this could also
be called the k-th " bordism group " of the O-space X.)

Example 1. Let OjU denote the union of the spaces

02IU± c OJU2 c 06/U3 a

in the fine topology with 0 acting on OfU in the usual way.
Then a manifold with an OjU-structure will be called a weakly
complex manifold. (Compare Hirzebruch [7].) For example
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any complex manifold is quasi-complex and hence weakly
complex. Any sphere can be given an OfU-structure although
only S2 and SQ possess quasi-complex structures.

The following results are due to Milnor and Novikov.

Theorem 1". — A closed weakly complex manifold V is the

boundary of a weakly complex manifold if and only if its Chern
numbers c^ cin [V] are all zero.

(Explanation: an 0/[/-structure on V determines a preferred
[/-bundle over V. Hence Chern classes are defined.) It follows
that Nk (OfU) is zero for k odd and is free abelian for k even.

Theorem 2". — The graded group N* (O/U) has a natural ring
structure, making it into a polynomial ring J [Y2, Y4, Y6, ...]
with one generator in each even dimension.

As generators one can take certain algebraic varieties with
their natural complex structures. (Compare [7]. It is not
known whether connected varieties will suffice.)

Example 2. More generally one could use any subgroup G

of the infinite orthogonal group in place of U. For example
using the infinite symplectic group Sp we would obtain a

cobordism ring N* (O/Sp) which is appropriate for the study of

"weakly quaternionic manifolds". The following six groups
seem particularly interesting:

1 c Sp c S U c= U c SO c 0

Starting from the right, the ring N* (O/O) is just the non-oriented
cobordism ring N* and N* (O/SO) is the oriented cobordism

ring Q*. The rings /V* (OfSU) and N* (OfSp) are more or less

unknown. (Compare the concluding remarks in [9].)
The ring N* (0/1) N* (0) has essentially been studied by

Pontrjagin [11]. An O-structure on F is a trivialization of the

tangent O-bundle of V (the " stable " tangent bundle). Manifolds

which admit such a structure are called " 7r-manifolds ".

It turns out that Nk (0) is isomorphic to the stable homotopy
groups %k+n (Sn) of the ^-sphere, with n large. This fact is the
basis for Pontrjagin's method of studying homotopy groups.
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Example 3. Let X be a space on which 0 operates trivially.
Then an A-structure on V is just a prefered homotopy class of

maps F->A. As cases of particular interest X might be an

Eilenberg-MacLane space or the classifying space of a group.
How does one compute he groups Nk(X)

The above définitions can be modified slightly by admitting
only oriented manifolds. Thus one obtains groups Elk (A) where

X is any space on which the rotation group SO acts. Again
I do not know how to compute these groups. (Added in proof:
See Conner and Floyd [21].)

Example 4. Let P denote the infinite real projective space,
with the infinite rotation group SO acting in the natural way.
The cobordism groups Ylk (P) for oriented manifolds with
P-structure can be called the spinor cobordism groups. This
name is appropriate since a P-structure is roughly a " lifting "

of the structural group of the tangent bundle to the infinite
spinor group. A manifold admits a P-structure if and only if
its Stiefel-Whitney class w2 is zero. The groups Qk (P) have no
odd torsion, but otherwise I do not know much about them.

3. Miscellaneous cobordism theories.
So far we have concentrated on differentiable manifolds.

However one could equally well define a cobordism group based
on the class IT of all compact topological manifolds. (Compare
Brown [3, Theorem 3].) The natural correspondence Q) -> FT

induces a homomorphism from the differentiable cobordism
group Nk — Hk (@) to the topological cobordism group Hk (Sr).

Since Thorn [16] has shown that Stiefel-Whitney classes can
be defined topologically, we have:

Theorem 3 (Thorn). — The homomorphism Nk^Hk(ST) has
kernel zero.

Problem: Is this homomorphism onto
Another possibility would be to consider the class c0 of all

compact, oriented, combinatorial manifolds. Whitehead [20]
has shown that each differentiable manifold has a preferred class
of triangulations. Hence there is a natural homomorphism from
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Qk Hk (<30) to Hk (^0). Thorn, Rohlin and Svarc have shown
that Pontrjagin classes can be defined for combinatorial manifolds.

Therefore we have:

Theorem 3'. — The homomorphism Qk-> Hk (^0) has kernel
zero.

However examples show that this homomorphism is not
onto. The reader is referred to [13, 18].

Another interesting possibility would be to look at the class

of compact homology manifolds.
Returning to the differentiable case, interesting cobordism

groups can be obtained by restricting the connectivities of the
manifolds involved. As an extreme case we can consider only
differentiable manifolds which are either homotopy spheres or
homotopy cells. The resulting cobordism groups are closely
related to the problem of classifying differentiable structures on
spheres. The reader is referred to Milnor [8] and Smale [14].

As a final, quite different, example consider differentiable
imbeddings of the circle S1 in the 3-sphere S3. Such an object
(a knot) is said to bound if it can be extended to a differentiable
imbedding of the disk D2 in the disk Z)4. The resulting cobordism

group has been studied by Fox and Milnor [5]. This group
is not finitely generated.
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