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THE STONE SPACE OF A BOOLEAN RING

by Alexander Abian *x)

This is an expository paper reproducing some of the basic
results in [1] and [2].

Definition L— A ring B is called Boolean, if

x2 x, for every xeB. (1)

In what follows B shall represent a given Boolean ring.
The following are well known immediate consequences of

Definition 1.

x + x 0 (2)

xy yx (3)

xy(x+y) 0, (4)

for every two elements x and y of B.

Notation. — In what follows, for every non-zero element x of i?,

p (x) shall represent a prime ideal of B not containing x, i.e.,
x$p (x)

and

P (x) shall represent the set of all prime ideals p (x), for a given x.

Lemma 1. — Let I be an ideal of B and. x an element of B such
that x$I. Then there exists a prime ideal p (x) such that

lap (x).

Proof. — By Zorn's Lemma, in view of (1) and (3), there
exists a largest ideal M of B such that I c= M and x$M. It can
be easily verified that the ideal M is prime [3].

i)* Formerly, Smbat Abian.
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Let u.s observe that since 0 is an element of every ideal of i?,

hence, in view of Lemma 1,

P (x) <f) if and only if x 0. (5)

Now, we prove that for every two elements x and y of 5,

P (xy) P (x) n P (y) (6)

To prove (6), let us observe that since p (xy) is an ideal
not containing xy, hence, x£p (xy) and y£p (xy). Thus,
P (xy) c (P (x) fi P (y)). Conversely, since p (x) is a prime
ideal not containing x, hence, if y$p (x) then xy$p (x). Thus,
(P (x) n P (y))C P [xy).

From (6) it follows that for every two elements x and y of

xy x implies P (x) e P (y) (7)

Since p (x+y) is an ideal not containing x+y, hence (j;-j
implies y$p (,r- y).Therefore, for every two elements ,r and y
of B,

P(x+y)c(P(x) U POO) (8)

Furthere, in view of (4), (5) and (6),

P (xy) n P 4>

so that, in view of (8), for every two elements x and y of

P(x+y)<=(P(x)® P (y)), (9)

where © is the usual set-theoretical symmetric difference operator.
Also, let us observe that since p is an ideal not containing
hence, if p (x) $P(y)thenp (x) e P (x+y). Similarly, if
p (y) P (x) then p (y)eP(x+y).Thus,

P(x) © P(y)c P (x +y)

so that in view of (9), for every two elements x and of

P (x+y) P (x) ® P (y). (10)

Let us observe that since

P(y) -P (x) (P (y) © P (x)) 0 P (y),



— 196 —

hence, in view of (10), (6) and (1), for every two elements x and y
of B,

P(y) -P(x)P(y+xy).(11)

Also, in view of (8), for every positive natural number n,
n n

x Z ci implies P (x) <= UP (cf) (12)
i= 1 i=1

where ct is an element of B. Moreover, in view of (1) and (7),

P (ca) c P (a), (13)

where c and a are any two elements of B.

Now, let PP represent the set of all proper prime ideals of B.

Theorem 1. — The Boolean ring B is isomorphic to a subring
of the algebra of all subsets of PP.

Proof. — In view of (5), (6) and (10), the mapping /
from B into the power set of PP, given by

/ (x) P (x)

establishes the desired isomorphism.
Next, in view of (6), we introduce a topology PT in PP such

that, for every xeB the subset P (.r) of PP is a basis element of 2T.

Definition 2. — The topological space (£P, PT) is called the

Stone space of B.

Lemma 2. — In the space PT), every basis element is closed.

Proof. — Let P (x) be a basis element and let p (y) P {x).
Clearly, p (y) e (P (y) —P (:r)) and hence in view of (11),

p(y) s P (y+xy).

Thus, an element p (?/), in the complement £P — P (x) of P (x),
is contained in a basis element P (y-j-xy) which is disjoint
from P (x). Hence P (x) is closed.

Lemma 3. — The space (tP, 3T) is totally disconnected.

Proof. — Let p (x) and p (y) be two distinct elements of PP.

Thus, there exists zeB such that, say, zsp (x) and z$p (y). But
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then P (yz) is a basis element containing p (y) and not
containing p (x). Consequently, in view of Lemma 2, every two
distinct elements p (x) and p (y) of SP are contained in two
mutually disjoint closed sets of {SP, ST) whose union is SP.

Thus, {SP, ST) is totally disconnected (and in particular,
Hausdorff).

Lemma 4. — The space (SP, ST) is locally compact.

Proof. — It is sufficient to prove that every basis element
P {x) of [SP, ST) is compact. Now, let A a B and U P (y)

yeA

be a covering of P (x), i.e.,

P (,v) c U P (14)
y 8 A

Let (A) denote the ideal generated by the elements of A. Claim
that xs(A). Assume the contrary that x${A). But then, in
view of Lemma 1, there exists a prime ideal p (x) such that
{A) a p (x), and therefore, p (x) $ U P(y), contradicting (14).

yeA

Hence, our assumption is false and indeed, .re (A).
Consequently, there exists a natural number n such that

n

xY, (/H; + bj) Cli

i= 1

where mt is an integer, bteBand a{ But then, in view of (12)
and (13),

n

P(x) c: U P ((mi + bi) c u P (>>)
i l ysA

n

asserting that, in view of (14), U P ((/«;-f bt) a) is a finite sub-
i= 1

cover of an arbitrary cover U P (y) of (.r). Thus, indeed,
yeA

P (a?) is compact and {0>, ST) is locally compact.
Finally, in view of Lemmas 3 and 4, and Theorem 1, we have,

Theorem 2. — Every Boolean ring is isomorphic to a
of the algebra of allsubsets of its Stone space which is totally
disconnected and locally compact.

L'Enseignement mathém., t. XI, fasc. 2-3. 13
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