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MEROMORPHIC MAPPINGS

by K. Stein

Introduction

We study meromorphic mappings of complex spaces. The notion of
meromorphic mapping we use was introduced by Remmert [9], [ll]1. Some

part of the material dealt with in these lectures is contained in [15] and we
shall therefore not give proofs for all statements.

The first sections are preliminary. The concept of correspondence is

discussed and used to define meromorphic mappings (these are not mappings

in the usual sense). Extension problems are studied in Section 4.

Essential use is made of the extension theorem for analytic sets first proved
by Thullen [21] in a special case and later generalized by Remmert and
Stein [13]. The final section deals with maximal meromorphic mappings.

1. Correspondences

Let X and Y be sets. A correspondence, denoted f : X-+Y, assigns to

each xe X a subset / (x) c= Y, which may be empty, f : X^ Y is called
k

empty if f(x) 0 for all xeX.Forwe set /(A) u /(x). A

mapping cp : Yis looked upon as a special correspondence (we do not
distinguish between a set consisting of one element and the element).

Each correspondence f : X-* Ycan be characterized by its graph

G/ {(x,y)\xe X, y ef(x) } cXxY. The projection maps of Gf into X
V A

and Yare denoted by/ : Gf-+X and/ : Gf^ Y. Then, we have

f(f-*(*)) If f : X~£ Y, f : X~£ Y are correspondences, we say that

/ is contained in/' if GfczGfFor a subset del we define the restriction

Another notion of meromorphic mapping and related concepts were defined by W. Stoll [16], [17].
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f\A : A-+Y by setting G/M Gf n (Ax Y). To every correspondence

/: X-* Y there is associated the inverse correspondencef ~1
: YX whose

graph is Gf_x { (y, x) | (x, y) g Gf }. We have the rule C/-1)-1 f
The Cartesian product fxft : Xx X1-^ Yx Y1 of two correspondences

f:X-*Yand fx: X1-^ Y1 assigns, by definition, to (x, xx) e XxXx the set

/ (*) X f (x/. If X Xu we define the junction (ff1)\X-^YxY1 by

(//i) (X) / (xjx/j (x). The product go f: X-> Z of the correspondences
k

f Landg : Y-+Zisdefined by Hence, (/;/,)
(/x/i) ° Uxi ^x) where Ix is the identity mapping of X. We have the following
rules :(/x./i)-1=/_1x/i ho(gof) (h (go/)"1 f~log~1.

Definition 1. Let Z and 7 be topological spaces. A correspondence

f : X-+ Y is continuous at x g X ifJ k

1) / (x) is quasicompact, and

2) given a neighborhood V oïf (x), there exists a neighborhood £/ of x
such thatf(U)aV.

The correspondence / is continuous if it is continuous at every x g X.1

Proposition 1. Let/ : X-+ Y be a correspondence such that/ (x) is

quasicompact for all x g X. Then/ is continuous if and only if/ ~1 is closed

(in the sense that the images of closed sets are closed).

Proof. Let / be continuous and let TV be a closed set in Y. Assume

that/-1 (TV) is not closed, then there is a point xg/-1 (N) n (X—f~1(Nj).
We have /(x) g Y— N since xe X—f~x (A7), hence Y—N is a neighborhood

off (x). Because of the continuity of/ there exists a neighborhood U
of x such that /(U) <= Y—N. It follows t/n/-1 (A7) 0, but this

contradicts the assumption that xg/"1 (A7). Assume now that/-1 is closed.

Let x be a point of Xand Van open neighborhood of/(x). Thenf~1(Y—V)
is closed and does not contain x, therefore U X—f~1(Y—V) is a

neighborhood of x, and we have /([/)<= L. Hence /is continuous.

Remark. The statement of Proposition 1 becomes false if " closed "
is replaced by " open " as can be seen by simple examples.

1) This definition and some of the following developments are due to K. Wolffhardt [22].
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Proposition 2. If/: X-* Fis a continuous correspondence,/(X) is

quasicompact for every quasicompact set Ici
Proof. Consider a covering of/(71) by open sets J/. For each xeK

there are finitely many Vt which cover /(x), let Vx be the union of those Vp

f is continuous at x, hence there is a neighborhood Ux of x such that

f (Ux) cz Vx. Now finitely many Ux, say Uxv cover K, hence

VX1 u u VXn ZD f(K), therefore finitely many Vt cover /(.K).

Proposition 2. Let f: Y, A : Xt-> Yu f[ : X-+Yl9g: Y-* Z be
k k k k

continuous correspondences. Then /x/l5 (/,/!), g of are continuous.

Proof. For g of the assertion follows by applying propositions 1 and 2,

Furthermore, fxf (x, xx) / (x) Xf (xj) is quasicompact for all x e X.

xl e X1 since /(x) and f (xt) are quasicompact. Let F be a neighborhood
of f(x) x/i(xi); F contains a neighborhood IFX off{x)xf (xjl) where

W, W1 are neighborhoods of /(x) resp. f (xx). There are neighborhoods
£/, Ul of x resp. x1 such that f(U)cz IF,/ ((/Je jFl5 then/x/ (F x /) cz

cz WxW1; hence fxf is continuous. As for (//i) one has(fff)
(/x/i) ° (Ix, therefore (/,/') is continuous because /x/' and

(/z, /x) are continuous.

Proposition 4. A correspondence / : F is continuous if and only
V

if /_1 : X-^Gf is continuous.7 k J

A V V
Proof. Sinee/=/°/_1, the continuity of/-1 implies that of /by

V
proposition 3. Let /be continuous and let x be a point of X. Since /-1 (x)

V
is homeomorphic to/(x), it is quasicompact. Let W=>/_1(x) be open in Gf.

V
We can cover f1(x) by a finite number of sets of the form (C/;xF;)n
nGfczW, Ut 3xopenin X and Vt open in Y. Then V u Vt =>f(x) and
there exists a neighborhood U' of x such that f(U')<=V. If U=(r\Ut) nU',
f-'iOczW.

It follows that a correspondence /' is continuous if and only if the pro-
^ V \/

jection f is a proper map, that is, / is continuous, closed, and f'^x) is
always quasicompact.
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Proposition 5. If/ : X-+ Y is continuous and Y is a Hausdorff space,

Gf is closed in Ix f.
Definition 2. A correspondence /is proper if/and/-1 are continuous.1

Proposition 6. If / : X-+ Y, fi : X1 Yu g : Y-> Z are proper, then

fxfi and go/ are proper.
The junction of two proper correspondences need not, however, be

proper. The diagonal mapping (/z, Ix) serves as an example if X is not a

Hausdorff space. If X is Hausdorff, the junction (//') of proper
correspondences f:X^Y and /' : X->Y' remains proper.

k k

Proposition 7. Let /: X-* Y, fi : X-+ Yu g : Y -+ Z be continuous

where all the spaces are locally compact. Then we have:

1) If/is proper, then (/,/) and (./!,/) are proper,

2) If g o f is proper and g-1 surjective, then /is proper,

3) If g o/ is proper and / surjective, then g is proper.

2. Holomorphic correspondences

We consider reduced complex spaces (Z, 0) where X is assumed Haus-
dorff and where the structure sheaf 0 has no nilpotent elements. For the
definition and related concepts we refer to [8]. The structure sheaf is usually
omitted in the notation.

Definition 3. Let X and Y be complex spaces. A correspondence

/ : X-> Y is called holomorphic if

1) / is continuous,

2) the graph Gf is an analytic set in 1x7.
If only the condition 2) is fulfilled, / is said to be weakly holomorphic.

Let f : X-* Y be weakly holomorphic. Then/ -1 is weakly holomorphic;
k

furthermore, if AcXisanalytic in Xis weakly holomorphic. Since

/-1 (x) Gyn({;c}x Ft, xeX, is analytic in Gf, fix) =/(/_1(x))

l) Compare [3] where another notion of proper correspondence is defined.
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is analytic in 7. If /is holomorphic and A'a Y analytic in Y, then, since

/_1 (A') is analytic in Gf and/is proper,/-1 (A') /( f -1 /4')) is analytic

in Zby Remmert's mapping theorem [11] (see also [8], p. 129).

The correspondences /x/, (//1), and go/ are holomorphic if the

correspondences /,/,/i, an<^ £ are holomorphic.
A weakly holomorphic correspondence / : X-+ Y is called reducible

resp. irreducible if Gf is reducible resp. irréductible. Gf is always a union

of irreducible components G(0; let/ : X-^ Y be the (weakly holomorphic)

correspondence whose graph is G(l). Then the correspondences/ are called

the irreducible components of / and we write f — u/.

3. Meromorpiiic mappings

Let f:X-+Y be a correspondence where A is a topological space

A point xe lis called a distinguished point off if there is a neighborhood
U of x such that the restriction /1 G is a mapping (in the usual sense).

Definition 4. A holomorphic correspondence /: Y is called a
k

meromorphic mapping if the following holds. If X is irreducible, then

1) / is irreducible,

2) There exists a distinguished point x0 e X of/.
In the general case, if X ul(,) is the decomposition of Zinto irreducible

components, then there exist holomorphic correspondences ft : X
k̂.

Y such that

1) fi I X(l) is a meromorphic mapping and / | A—A(0 is empty,

2) f= vf,
A meromorphic mapping / is bimeromorphic if/-1 is meromorphic.

We use the notation / : 7 for a meromorphic mapping. Note that

a meromorphic mapping is in general not a mapping in the strong sense.
An example of a meromorphic mapping is the correspondence / of C2

onto the extended complex plane defined by f (zl5 z2) — if (zl5 z2) ^
*2

(0, 0), and /(0, 0) P,.

L'Enseignement mathém., t. XIV, fasc. 1 3
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Definition 5. A proper holomorphic mapping cp : X'-»X is called a

proper modification map if there exists an open subset UczX such that

1) UnX(l) =£ 0 and cp~1 (JJ) r\X'U) A 0 for all irreducible components

X(0<=Xand X'a)czX\
2) cp

~1
I U : U-+ X' is a holomorphic mapping.

It follows that a correspondence/ is a meromorphic mapping if an only
V

if / is a proper modification map.
A proper modification map cp : X'-»X is always surjective. The inverse

correspondence cp_1 : X-+X' is always a meromorphic mapping.

A normalization (X, v) of a complex space X is a normal complex

space X ([8], p. 114) and a proper modification map v : X-»X, such that
all fibres v_1 (x), x e X, are finite. To every complex space X there exists a

normalization (see [8]). Let X1 and X2 be complex spaces with normalizations

(Xl9 v1)> (X2, v2) where Xx X2. Then it can easily be shown that
v2 ° Vf1: XltX2 is a bimeromorphic mapping.

Definition 6. Let / be a meromorphic mapping of X. A point x0 e X
is called non-singular with respect to f if there exists an open neighborhood
U of x0 such that f\ U is a holomorphic mapping. Otherwise x0 is called

singular. The set of singular points of/is denoted by S (f).
The meromorphic mapping in the example on p. 5 has the origin as

a singular point.

Proposition 8. Let / be a meromorphic mapping of X. Then

1) S (f) is a nowhere dense analytic set in X,

2) If X is locally irreducible at x, / (x) is connected,

3) If X is normal at x, then x is singular if and only if dim /(x)> 0.

For the proof we refer to [15].

The set of singular points is of importance in connection with the

compositions of meromorphic mappings.Let/: X-^Y,f1: X1~^Yuf'1\ X->71?
m m m

g : T->Z be meromorphic mappings where all the spaces are irreducible.1
m

Then the correspondence fxfi is easily seen to be meromorphic. The junc-

l) This restriction is introduced here for the sake of simplicity.
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tion (ffj) need not, however, be a meromorphic mapping. Let f — f{
be the meromorphic mapping in the example on p. 5. Then the graph

G(/,/i) cC'xCPiXP,) is not irreducible. The product g of too, may be

reducible; moreover, it may happen that there is no distinguished point
of g of

We can always define a " meromorphic junction " in the following way.
There are distinguished points of (ff [), for example, all points of
X— (S (/)uS(/i)) A0. Now it can easily be shown: If a holomorphic
correspondence from an irreducible complex space into a complex space
has a distinguished point, then the graph of the correspondence has exactly
one irreducible component which is the graph of a meromorphic mapping.
It follows that there exists a unique meromorphic mapping contained in

(/,/i); this meromorphic mapping is called the meromorphic junction of/
and f[ and denoted by [ffi] : X-^Yx Y1. The meromorphic junction is

m

associative: [[/i,/2],/3] [/i [.//AI]» hence the meromorphic junction
[/, ...,/„] : X- A X... X Yn of n meromorphic mappings fv : X-^YV is

m m

defined in a unique manner.
Furthermore we can define a " meromorphic product " of / and g if

there is a distinguished point of g of: There is then again a uniquely
determined meromorphic mapping contained in g of This is called the
meromorphic product of/ and g and denoted by gAf : X->Z. A sufficient condi-

m

tion for the existence of a distinguished point of that/ (X) <£ S
This condition is, in particular, fulfilled if/ is surjective or if S (g) is empty
(i.e., if g is a holomorphic map; in this case we have gAf g of). Note
that the meromorphic product of bimeromorphic mappings always exists.
The associative law hA (gAf) (hAg)A/holdsif both sides exist.

As an example we consider the " meromorphic restriction " which is
defined as follows. Let A be an irreducible analytic subset of X. Then
the correspondence f\ A: Aj Y need not be irreducible. But if A <^S(f),
we can form the meromorphic product /a/* where /£ : is the inclusion

map. We set f\ A/a/* : A-* Yand call f\ A the meromorphic
m m

m

restriction off to A.

Proposition 9. Let/: X- Yand g: Y^Z be bimeromorphic. Then
m m

1) f~1Af=lx,
2) gAf is bimeromorphic and (gAf 'f1 =/-1 Ag-1.
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Proposition 10. Let / : X^Y, f[ : X^ Yv, g : Y^Z be meromorphic
m

'
m m

mappings, assume that gAf exists. Then we have:

1) If/is proper, [/,/i] is proper,

2) If/ and g are proper, gAf is proper,

3) If gAf is proper, / is proper,

4) If gA/ is proper and / surjective, g is proper.

4. Extension of meromorphic mappings

We start with some classical results. Let D be a domain in Cn and D
an irreducible analytic set in D. Let (p : D — A^C be a holomorphic
mapping and/ : D — A^F1 a meromorphic mapping. Then we have (see [2],

m

[8], [14] and the references given there):

1) If codim A>1, then (p and / have extensions over A.

2) Assume codim A — 1. Then

a) cp has an extension over A if for some z0 e A there is a

neighborhood U of z0 such that cp is bounded in U—(AnU),

b) f has an extension over A if for some z0 e A f has an extension
into a neighborhood of z0}

We shall see that these statements can be generalized in some respects.2

Throughout this section, X and Y are irreducible complex spaces,

A^X is an irreducible analytic set in X, f : X—A^Y a meromorphic
m

mapping. We shall study conditions under which/has an extension over A,
which means that there exists a meromorphic mapping g : X-> Y such that

m

g I X—A =/.
The meromorphic mapping / can always be extended topologically to

a correspondence / : X-* Y by setting Gf G} where the closure is with

respect to Xx Y. On the other hand, if/: X^ Y is an extension off then

1) The generalization 2a) of Riemann's classical theorem on removable singularities is due to Kistler and
Hartogs. 2b) is due to Hartogs and E. E. Levi. 1) follows easily from 2); the statement 1) for holomorphic
functions <P is sometimes called " the second Riemann theorem on removable singularities " (2. Riemannscher
Hebbarkeitssatz) -

2) The extension problem for holomorphic maps is also treated in [1] and [6].
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f f. We are thus led to study the properties of /. Of essential use is the

following extension theorem for analytic sets.

Theorem 1. Let Z be a complex space and M an irreducible.analytic
set in Z. Let further N be a pure dimensional (all irreducible components
have the same dimension) analytic set in Z—M such that dim N dim M.
Then the closure N of N with respect to Z is an analytic set in Z if it is

analytic in at least one point of M.
This theorem was proved by Thullen [21] in the case where Z is a domain

in C" and where dim M dim N n — 1. In [13] the theorem is stated

without restriction on the dimension of M but likewise for a domain Z
in Cn (the special case treated by Thullen is used here in the proof). From
this one can obtain the theorem in the form above by using imbeddings of
open sets of Z into domains of number space.

Corollary 1. If dim TV> dim M, then N is analytic in Z.
This can be deduced from Theorem 1 by imbedding arguments in an

obvious manner. A direct proof is contained in [8].

Corollary 2. Let Z and M be as in the theorem and { } a set of
mutually different irreducible analytic sets in Z—M for which dim TVf>
dim M, and uA) is analytic in Z—M. If every neighborhood of a point
z0 e M intersects an infinite number of sets Nb then every point of M
has this property.

This is a simple consequence of Theorem 1 and Corollary 1.

Proposition 11. Let D be a domain in Cn, M an irreducible analytic set
in D, A a pure dimensional analytic set in D — M such that dim A dim M.
Suppose there exists an analytic plane E0 through a point z0e M such that
the following conditions hold:

1) E0 is in general position with respect to M, i.e., dim (E0 nM)
dim Z0+dim M—dim D,

2) There exists a neighborhood U of zQ such that for every analytic
plane E with dim E dim E0 which is parallel to E0 and which intersects
U9 A nE is analytic in D (N is the closure of N with respect to D).

Then N is analytic in z0 and hence in D by Theorem 1.

As to the proof we refer to [13], p. 301.1

p The statement actually proved in [13] is a little more special than Proposition 11, but by suitable
supplementary arguments one can obtain the proposition in the form above.
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We turn now to the study of two problems:

1) When is / weakly holomorph!c

2) When is / continuous

If/is weakly holomorphic, then/is irreducible, because the irreducibility
of Gf implies that of Gj. Hence/is a meromorphic mapping if it is weakly
holomorphic and continuous.

Moreover, if / is weakly holomorphic, then the closure /~1(37)of f~1(y)
with respect to X is analytic in X for every y e Y:f ~ *(y) is analytic in X — A
and f~1{y) is analytic inX; sinee/-1(y) c= f~1(y) and/-1(y) n (X — A)

f~1(y) n (X —X) /_1(y), it follows that /_1(y) is analytic in X.
We assume now, in the rest of this section, that dim X—dim Y > dim A.

We set Z Xx X, M Ax Y, N G/. Then dim M - dimX+dim Y,

dim N dim Gf dim X and, by our assumption, dim N > dim M. If
dim X—dim X>dim A, i.e., if dim JV>dim M, Corollary 1 of Theorem 1

implies that / is weakly holomorphic. Furthermore, we have

Proposition 12. Assume dim X—dim Y — dim A. Then the
correspondence / is weakly holomorphic if there exists a non-empty open set

Fc Y such that the closure/-1 (v) off1 (v) with respect to Xis analytic
in X for all v e V.

Proof. The condition dim X—dim Y dim A implies that dim N
dim M. Hence, by Theorem 1, N Gj is analytic in Z Xx Y, i.e.,

/ is weakly holomorphic, if there is a point of M Ax Y in which N is

analytic. We show that this is the case for points of AxV. Choose a

point (a0, v0) e A x V such that A is irreducible in a0 and such that is

an ordinary point of Y. There are open neighborhoods UlaX of a0 and

ZJ2c:F of Vq with the following properties: A' A nUt is an irreducible
analytic set in Ux ; Ux can be mapped biholomorphically onto an analytic
set X' in a domain Dx of a number space C"1 ; U2 can be mapped biholomorphically

onto a domain D2 of a number space C"2 (n2 dim Y). It is enough
to show that the closure N' of N' — Gfn(U1x U2) with respect to U1 x U2

is analytic in U1X U2. Set D — Dx x D2, M' A'xD2 and, for weD2,
Ew C"1 X { w }. Then we have dim (Ew nM') dim (A' X { w })
dim A' dim A, on the other hand dim Ew + dim M' — dim D /y +
(dim A! + nf) — (/?1 + n2) dim A. The hypothesis on the analyticity of

f~x(v) for all v e Vimplies that W7 nEw is analytic in D for every w e I)2.
Hence, by Proposition 11, N1 is analytic in D; then N' is, in particular,
analytic in X,xD2 — Uxx U2.
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Concerning the continuity of/ we have

Proposition 13. The correspondence/is continuous if it is continuous

at one point a0e A.

Proof. We assume first that the topology of Y has a countable base.

Then / is continuous at a e A if and only if the following condition holds :

If (xv) and (yv), v 1,2, are sequences of points such that .vv g X—A,

xv^a, yv ef(xv), then the sequence (yv) has a point of accumulation in Y.

Suppose that/is continuous at a point a0 e A and let (xv), (vv) be sequences

as above. Then the fibres/"1 (yv) are non-empty analytic sets in X-A,
and the condition dim X— dim T> dim A implies dim Fv(/z)> dim A for

every irreducible component Ffß) of f~1(yv). Suppose that L ^f~l(}\)
is not analytic in X—A. Then there exists a subsequence (yv.) such that one

can find points xief~1(yv.) which converge to a point x0eX-A. By

continuity at x0 it follows that (yv.)has a point of accumulation on/(.v0).
Let now L be analytic in X—A. Assume first:

(a) There are infinitely many fibres f~1 (yv.) which have a common
irreducible component N.

In this case we take a point of N and use similarly the continuity off
at this point. Suppose now that (a) is not satisfied. Then we apply Corollary

2 of Theorem 1 to the set of irreducible components Ffß) of the fibres

f~1(yv)- Since every neighborhood of a intersects infinitely many
components Ffß) (this implies, in particular, that the closure Lof L with respect
to Xis not analytic in a), the same holds with respect to a0. The yv have then

a point of accumulation on / (a0) because / is continuous at a0.

Now we drop the assumption that Y has countable topology. We
remark first: To show that / is continuous at a g A we may replace X by

any irreducible open subspace which contains the points a and aQ. Therefore

we may assume that X has countable topology. Secondly : All points
of Y used in the proof above belong to the topological subspace/ (X—A) u
/ (a0)cz Y which has countable topology since Xhas. If we now restrict Y
to an irreducible open subspace with countable topology containing

f (X—A)\jf (a0), the proof given above applies.

Corollary. If dim X— dim F>dim A, then/is always continuous.
In this case the hypothesis on the continuity of / at a point a0e A is

not needed in the proof of Proposition 13: We have now dim Ffß)> dim A.
If L is analytic in X—A, Corollary 1 of Theorem 1 implies that L is analytic
in every point of A, and the condition (a) is necessarily satisfied.
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Combining the preceding statements we have the following result.

Theorem 2. Let/ : X—A-+Ybe a meromorphic mapping and dim X—
m

dim 7>dim A. Then / is a meromorphic mapping if and only if
1) there exists a non-empty open set Va Y such that /_1 (v) is analytic

in X for all v eV, and

2) / is continuous at a point a0e A.

If dim X— dim 7>dim A, then / is always a meromorphic mapping.

Corollary. Assume there is an open subset UaX and a compact set

Ka Y different from Y such that Ur\A A 0 and f(U—(UnA))aK. Then /
is a meromorphic mapping.

To conclude this from Theorem 2 we remark first that the set V Y—K
satisfies the above condition 1): If v e V, then/-1 (v) does not intersect U,

hence / ~1 (v) is analytic in every point of U nA and therefore, by Theorem

1, analytic in X. On the other hand, / is continuous at every point
a0e UnA. For /(a0) is compact since it is a closed subset of K. Moreover,
let V0 be a neighborhood of / (a0); we assert that there is a neighborhood
U0 of a0 such that f(U0)czV0. If this were false, then there would exist

points xinU—(U nA) arbitrarily near a0 such that/(x) n(K— (Kn V)) A 0.
But then it follows that/(a0) n[K—{KnV0)) # 0, which is a contradiction.

As to the extension of holomorphic maps we state:

Theorem 3. Let X be, in addition to the earlier assumptions, a complex
manifold and / : X— A-+Y a holomorphic map. Then

1) If dim X— dim 7>dim 0+1, f is a holomorphic map,

2) If dim X— dim Y dim 0+1, then / is either a holomorphic map
or f is a meromorphic mapping and /(a) Y for all a e A.

Proof. Assume dim X— dim 7> dim 0+1. Then, by Theorem 2, / is

a meromorphic mapping; if S S(f) — 0, f is even a holomorphic map.
V

Suppose ^A0, set 7 =/-1 (S) and let T0 be an irreducible component of T.
y_

Set S0 / (70). By Remmert's mapping theorem S0 is an irreducible

analytic set in X. We have

V
dim T0 dim 50+ inf dim z(g_1 (z)) where g |

zeDo

furthermore dim S0 <dim 5"<dim Abecause SczS0czA. Every fibre
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g~1 (g (z)),z6 T0,ismapped injectively into Y by f, hence dim 1 <
dim T. Thus we obtain the inequalities

(*) dim T0<dim A+dim 7<dimlr—1

Now we shall see that dim T0 dim X— 1. Therefore we have equality
in (*), hence dim X— dim Y dim AX I. We obtain also dim S0

dim S dim A, hence S0 S A, since A is irreducible; moreover,
A

dim (g-1 (a)) dim Y for every aeA, consequently /(a) =f(g~1(a))=- Y.

In order to show that dim T0 dim X—l, we use the following
theorem due to Grauert and Remmert [5] a proof was also given by
Kerner [7]):

Let X be a complex manifold, Z a normal complex space, K an analytic
set in Z with codim 2, t : Z^Ia holomorphic map such that t | Z—K
is locally biholomorphic. Then t is locally biholomorphic.

Now assume first that Gy is a normal complex subspace of Jx 7. The
V

holomorphic map /: Gy^-X is locally biholomorphic in a point £ e Gj if
V

and only if £eT /_1 (S). Hence, by the theorem of Grauert and Remmert,

T is puredimensional and dim T dim X—l. If Gj is not normal,
~ V ~

we take a normalization (G, v) of Gj and look at f o v : G-+X and
~ V _ ~
T (/ o v)"1 (G) instead of/ and T. We see then that Tis puredimensional

with dim T =-- dim X—l, but then it follows that v (T) T has the same

properties.

Remark. If Y is not compact, then / is always a holomorphic map
under the hypothesis of Theorem 3 since / (a) is compact for aeA. If the
assumption that X be a complex manifold is dropped, then both assertions
of Theorem 3 become false as can be shown by examples.

5. Maximal meromorphic mappings

All complex spaces in this section are irreducible. Before we state the
problem we give the necessary definitions.

Let/ : X-+Y be weakly holomorphic and not empty. The rank rk/of/
A

is by definition the global rank of the holomorphic mapping / : Gf-> Y, i.e.,

rk/ sup codimz f'1(f(z)).zeGf
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For two meromorphic mappings / : X-> Y and f0 : X-> Y0 we always
m m

have rk [//0]>max { rk /, rk/0 }. We say that f0 depends on f if rk/ —

rk [fj0l Iff0 depends on/and/depends on/0, we say that f0 is related

to /. Then clearly rk/ rk/0.
Let/ : X^ 7 and f0 : X-^ 70 be given. Suppose that there exists a mero-

m m

morphic mapping a: 7-^70 such that the meromorphic product a A/is
m

defined and /0 a a/. Then we say that / majorizes f0. If this is the case,

/o depends on/([15]).
Iff : X-> 7 is surjective and iffmajorizes every meromorphic mapping g

m

dependent on f f is called meromorphically maximal or m — maximal.
Let us now consider the following problem:
Given f0 : X-> 70, is it possible to find a meromorphic mapping

m

fs : X-> 7S such that/ is related to /0 and/ is m-maximal If possible, the
m

pair (/, 7S) is called a meromorphic base or an m — base with respect to f0.

Proposition 14. If f0 : X-> 70 is proper, then an m-base with respect
m

to f0 exists.

We give a sketch of the proof (compare [15]).
Since f0 is proper, f0 (X) 70 is an irreducible rk /0 — dimensional

analytic set in 70; there is a surjective meromorphic mapping f0:X —> 70
m

such that /0 — I o f0 | I 0 is the inclusion map 70-> 70 /0 is pro-
V Y0 J

per by Proposition 10, moreover it is surjective and related to f0. Now, a

complex ra-base with respect to / 0 is also a complex m-base with respect

to f0. Therefore we can suppose that /0 is surjective.
We consider the class g of those surjective meromorphic mappings of

X which are dependent on f0 and majorize f0. If (/ : X^ 7) e 2r, there exists
m

a unique surjective meromorphic mapping af : 7-> 70 such that/0 ay a/.

This implies that /is related to /0 and, by Proposition 10, that / and af are

proper. We have rk/ dim 7, rk a7 dim 70 rk/0, rk /= rk/0,
hence dim 7= dim 70 rk Thus (7, a/5 70) is a "meromorphic
covering" of 70 with a well defined number n(f) of sheets. The n (/),
/eg, have a finite upper bound : If not, one can show that there exists a

point y0 e 70 such that fö1(y0) has infinitely many connected components,
but this is impossible since f0 is proper.



— 43 —

Let (A : X-> Ys) eg be such that n (A) is maximal. We claim that
m

(fs> Ys) is an 7^-base with respect to/0. Suppose that/j : X-j 7i depends

on X, we have to show that /s majorizes /j. The meromorphic junction

[A,A1 : T- Ys X Ti is proper (Proposition 10) and rk [/„./j] rk/s
m

rk/o, therefore [A,/d W Yj is a rk /0 - dimensional analytic subset

of 7sxf,. There is a meromorphic mapping ./' x : X-* Yt such that

[A, A] ' o fi where i: 7,> Tsx A ; is surjective, proper and related

Y*Y<

to/0. Let 7is and 71! be the projections from Ysx Yl onto Ys and Yu set

ßs ^ its o z, ß± nx o z, respectively. We have fs ßs o fu hence/j' majorizes

/s. The holomorphic mapping nso i ßs is surjective and, by Proposition

10, proper. The meromorphic product afsAßs is defined since /?s is

surjective; we have f0 (ccfs Aßs) Af'u hence /j majorizes /0 and,
consequently, /i e gf. Then zz (/i) ^ zz (/s) since f[ majorizes fs9 thus Z7 (/j) ~
n (/s) since zz (/s) is maximal. It follows that the number of sheets of the

covering Yußs, Ys) equals 1, and this implies that ßs is a bimeromorphic map-
ping. Now/1=^1o/j' ßMß'^Afs)(ß^ß'1) Afs. Hence/s majorizes A.



— 44 —

We give, without proof (see [15]) a more general result in this direction.

Theorem 4. Let f0 : X-> Y0 be a meromorphic mapping and A an
m

irreducible analytic set in X such that the holomorphic correspondence

ao=/o \A:ArY01 k

has at least one irreducible component a0: A->Y0 which is proper and

satisfies rk a0 rk/0. Then there exists fs : XYs such that (fs, Ys) is an
m

777-base with respect to f0.
By definition, for / : X~> Y a point x0 e X is a point of indeterminacy

m

of degree k, if dim f(x0) k, and a point of indeterminacy of maximal
degree, if dim / (x0) rk /.

Let now the set A in Theorem 4 consist of one point x0. Then

ao fo I { xo { xo Y0 is a proper holomorphic correspondence and

rk f0 I { x0 } rk û0 dim/(x0)<rk f0. The hypothesis of the theorem

means, in this case, that dim f0 (x0) — rk f0 ; this implies ([15]) that
fo Oo) — fo (x)- obtain the following specialization of Theorem 4:

Let f0 : X-^Y0 be a meromorphic mapping with a point of indeter-
m

minacy of maximal degree. Then there exists an m-base with respect to /c.
Finally we give applications ofProposition 14 and Theorem 4. We consider

meromorphic functions defined on the complex space X. These are
meromorphic mappings cp\ X-^~P1 such that (p (X) does not reduce to the

m

point oo of Pi. The set of all meromorphic functions on X form a field
9Tl(X). Let cpu cpk be elements of 91Ï (X). We say that (pl9 cpk is a

system of independent meromorphic functions if for the meromorphic mapping
$ [<Pu •••> (Pk\ : -T->Pi X... xPi Pj" we have rk <P k. There are

m

always maximal systems of independent meromorphic functions on X; the

length k of such a system is uniquely determined with k < dim X.
Let now Xbe a compact complex space. As a first application we obtain

the theorem of Chow-Thimm [4], [20] (see also [10]):
The field SDL (X) of meromorphic functions on an irreducible compact

complex space X is isomorphic to a finite algebraic extension of a field of
rational functions.

Proof Choose a maximal system cpu cpk of independent
meromorphic functions on X and let $ be defined as above. $ is proper since X
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is compact, thus we can apply Proposition 14. Hence there exists an /?2-base

(<PS, Ys) with respect to 0 and there is a meromorphic mapping as: ^^1
such that 0 as A0S. If e 93! (X), v/e have rk 0 rk [$, <p] since the

system q>l9 (pk is maximal, therefore 9
depends on 0. So majorizes every
meromorphic function cp on X9 i.e., there is

a meromorphic function : Xs^Pi such

Ys

TP.

that cp oty A0S. It is easily seen that
the assignment cp\->oc^ gives an isomorphism

from 93! (X) onto 9J! Ys). Now YS9

^ jr -j- fOK a^' ^1)?s a meromorphic covering of Pf ;

' 4 if n is its number of sheets, then every

meromorphic function a on Ys satisfies

an equation

^ + (b, Aas) a"-1 + + (b„ Aa,) - 0

where bv e 301 (P*) (v 1, n). This
implies that 931 Ys) is isomorphic to a finite
algebraic extension of 93!(P£). But 3TÎ(Pf)

is isomorphic to the field C (zl9 zk) of
he rational functions of k complex variables. Hence we obtain an

isomorphism of 93! (X) with the desired properties.
As another application we sketch a proof of the following statement:

Let 0 : X->Y be a meromorphic mapping with a point of indeterminacy x0
m

of maximal degree. Then the field 931$ (X) of meromorphic functions on X
depending on 0 is isomorphic to a finite algebraic extension of a field of
rational functions.

By the special case of Theorem 4 there exists an m-base (0S9 Ys) with
respect to 0. The meromorphic mapping 0S : XYs majorizes every

771

cp e 93!0 (X); if cp ct(pA0s, then the assignment (p'-+oc9 gives again an
isomorphism 93!0 (X) ^ 93! Ys). The point x0 is also a point of indeterminacy

of maximal degree for 0S since 0S depends on 0O (see [15]), hence

Oo) W Ys is compact. Now we can apply the theorem of
Chow-Thimm, and we obtain the assertion.

Remark. In the case where Y P£ and 0 is the junction of k
meromorphic functions on X, the statement is a known theorem of Thimm [18],
[19]. A proof of this theorem was also given by Remmert [12].



— 46 —

REFERENCES

[1] Andreotti, A. and W. Stoll: Extension of holomorphic maps. Ann. of Math.,
72 (1960), 312-349.

[2] Behnke, H. and P. Thullen : Theorie der Funktionen mehrerer komplexer Veränder ¬

lichen. Ergebn. der Math., 3, 3 (1934).
[3] Bourbaki, N. : Topologie générale, chap. I-II, 3e ed., Paris, 1961.

[4] Chow, W. L. and K. Kodaira: On analytic surfaces with two independent mero-
morphic functions. Proc. of the Nat. Acad, of Sciences, 38 (1952), 319-325.

[5] Grauert, H. and R. Remmert: Konvexität in der komplexen Analysis. Nicht¬
holomorph-konvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie.

Comm. Math. Helv., 31 (1956), 152-183.
[6] Kerner, H.: Über die Fortsetzung holomorpher Abbildungen. Arch. d. Math.,

11 (1960), 44-49.
[7 ] Bemerkung zu einem Satz von H. Grauert und R. Remmert. Math. Ann.,

157 (1964), 206-209.
[8] Narasimhan, R. : Introduction to the Theory of Analytic Spaces. Lecture Notes in

Mathematics 25, Berlin-Heidelberg-New York, 1966.

[9] Remmert, R. : Über stetige und eigentliche Modifikationen komplexer Räume.
Coli, de Topologie de Strasbourg, déc. 1964, 1-17.

[10] Meromorphe Funktionen in kompakten komplexen Räumen. Math. Ann.,
132 (1956), 277-288.

[11] Holomorphe und meromorphe Abbildungen komplexer Räume. Math. Ann.,
133 (1957), 328-370.

[12] Analytic and algebraic dependence of meromorphic functions. Amer. Journ. of
Math., 82 (1960), 891-899.

[13] and K. Stein: Über die wesentlichen Singularitäten analytischer Mengen.
Math. Ann., 126 (1953), 263-306.

[14] Rothstein, W. : Einführung in die Funktionentheorie mehrerer komplexer Veränder¬

lichen I, II. Münster, 1965.

[15] Stein, K. : Maximale holomorphe und meromorphe Abbildungen, II. Amer. Journ.

of Math., 86 (1964), 823-868.

[16] Stoll, W. : Über meromorphe Modifikationen I-III. Math. Zeitschr., 61 (1954),
204-234, 467-488 and 62 (1955), 189-210.

[17] Über meromorphe Abbildungen komplexer Räume I, II. Math. Ann., 136

(1958), 201-239, 272-316.

[18] Thimm, W. : Über ausgeartete meromorphe Abbildungen II. Math. Ann., 125 (1952),
264-283.

[19] Untersuchungen über ausgeartete meromorphe Abbildungen. Math. Ann.,
127 (1954), 150-161.

[20] Meromorphe Abbildungen von Riemannschen Bereichen. Math. Zeitschr.,
60 (1954), 435-457.

[21] Thullen, P.: Über die wesentlichen Singularitäten analytischer Funktionen und
Flächen im Räume von n komplexen Veränderlichen. Math. Ann., 111 (1935),
137-157.

[22] Wolffhardt, K. : Existenzbedingungen für maximale holomorphe und meromorphe
Abbildungen. Dissertation, München 1963.


	MEROMORPHIC MAPPINGS
	Introduction
	1. Correspondences
	2. HOLOMORPHIC CORRESPONDENCES
	3. Meromorphic mappings
	4. Extension of meromorphic mappings
	5. Maximal meromorphic mappings
	...


