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Proposition 10. Let / : X^Y, f[ : X^ Yv, g : Y^Z be meromorphic
m

'
m m

mappings, assume that gAf exists. Then we have:

1) If/is proper, [/,/i] is proper,

2) If/ and g are proper, gAf is proper,

3) If gAf is proper, / is proper,

4) If gA/ is proper and / surjective, g is proper.

4. Extension of meromorphic mappings

We start with some classical results. Let D be a domain in Cn and D
an irreducible analytic set in D. Let (p : D — A^C be a holomorphic
mapping and/ : D — A^F1 a meromorphic mapping. Then we have (see [2],

m

[8], [14] and the references given there):

1) If codim A>1, then (p and / have extensions over A.

2) Assume codim A — 1. Then

a) cp has an extension over A if for some z0 e A there is a

neighborhood U of z0 such that cp is bounded in U—(AnU),

b) f has an extension over A if for some z0 e A f has an extension
into a neighborhood of z0}

We shall see that these statements can be generalized in some respects.2

Throughout this section, X and Y are irreducible complex spaces,

A^X is an irreducible analytic set in X, f : X—A^Y a meromorphic
m

mapping. We shall study conditions under which/has an extension over A,
which means that there exists a meromorphic mapping g : X-> Y such that

m

g I X—A =/.
The meromorphic mapping / can always be extended topologically to

a correspondence / : X-* Y by setting Gf G} where the closure is with

respect to Xx Y. On the other hand, if/: X^ Y is an extension off then

1) The generalization 2a) of Riemann's classical theorem on removable singularities is due to Kistler and
Hartogs. 2b) is due to Hartogs and E. E. Levi. 1) follows easily from 2); the statement 1) for holomorphic
functions <P is sometimes called " the second Riemann theorem on removable singularities " (2. Riemannscher
Hebbarkeitssatz) -

2) The extension problem for holomorphic maps is also treated in [1] and [6].
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f f. We are thus led to study the properties of /. Of essential use is the

following extension theorem for analytic sets.

Theorem 1. Let Z be a complex space and M an irreducible.analytic
set in Z. Let further N be a pure dimensional (all irreducible components
have the same dimension) analytic set in Z—M such that dim N dim M.
Then the closure N of N with respect to Z is an analytic set in Z if it is

analytic in at least one point of M.
This theorem was proved by Thullen [21] in the case where Z is a domain

in C" and where dim M dim N n — 1. In [13] the theorem is stated

without restriction on the dimension of M but likewise for a domain Z
in Cn (the special case treated by Thullen is used here in the proof). From
this one can obtain the theorem in the form above by using imbeddings of
open sets of Z into domains of number space.

Corollary 1. If dim TV> dim M, then N is analytic in Z.
This can be deduced from Theorem 1 by imbedding arguments in an

obvious manner. A direct proof is contained in [8].

Corollary 2. Let Z and M be as in the theorem and { } a set of
mutually different irreducible analytic sets in Z—M for which dim TVf>
dim M, and uA) is analytic in Z—M. If every neighborhood of a point
z0 e M intersects an infinite number of sets Nb then every point of M
has this property.

This is a simple consequence of Theorem 1 and Corollary 1.

Proposition 11. Let D be a domain in Cn, M an irreducible analytic set
in D, A a pure dimensional analytic set in D — M such that dim A dim M.
Suppose there exists an analytic plane E0 through a point z0e M such that
the following conditions hold:

1) E0 is in general position with respect to M, i.e., dim (E0 nM)
dim Z0+dim M—dim D,

2) There exists a neighborhood U of zQ such that for every analytic
plane E with dim E dim E0 which is parallel to E0 and which intersects
U9 A nE is analytic in D (N is the closure of N with respect to D).

Then N is analytic in z0 and hence in D by Theorem 1.

As to the proof we refer to [13], p. 301.1

p The statement actually proved in [13] is a little more special than Proposition 11, but by suitable
supplementary arguments one can obtain the proposition in the form above.
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We turn now to the study of two problems:

1) When is / weakly holomorph!c

2) When is / continuous

If/is weakly holomorphic, then/is irreducible, because the irreducibility
of Gf implies that of Gj. Hence/is a meromorphic mapping if it is weakly
holomorphic and continuous.

Moreover, if / is weakly holomorphic, then the closure /~1(37)of f~1(y)
with respect to X is analytic in X for every y e Y:f ~ *(y) is analytic in X — A
and f~1{y) is analytic inX; sinee/-1(y) c= f~1(y) and/-1(y) n (X — A)

f~1(y) n (X —X) /_1(y), it follows that /_1(y) is analytic in X.
We assume now, in the rest of this section, that dim X—dim Y > dim A.

We set Z Xx X, M Ax Y, N G/. Then dim M - dimX+dim Y,

dim N dim Gf dim X and, by our assumption, dim N > dim M. If
dim X—dim X>dim A, i.e., if dim JV>dim M, Corollary 1 of Theorem 1

implies that / is weakly holomorphic. Furthermore, we have

Proposition 12. Assume dim X—dim Y — dim A. Then the
correspondence / is weakly holomorphic if there exists a non-empty open set

Fc Y such that the closure/-1 (v) off1 (v) with respect to Xis analytic
in X for all v e V.

Proof. The condition dim X—dim Y dim A implies that dim N
dim M. Hence, by Theorem 1, N Gj is analytic in Z Xx Y, i.e.,

/ is weakly holomorphic, if there is a point of M Ax Y in which N is

analytic. We show that this is the case for points of AxV. Choose a

point (a0, v0) e A x V such that A is irreducible in a0 and such that is

an ordinary point of Y. There are open neighborhoods UlaX of a0 and

ZJ2c:F of Vq with the following properties: A' A nUt is an irreducible
analytic set in Ux ; Ux can be mapped biholomorphically onto an analytic
set X' in a domain Dx of a number space C"1 ; U2 can be mapped biholomorphically

onto a domain D2 of a number space C"2 (n2 dim Y). It is enough
to show that the closure N' of N' — Gfn(U1x U2) with respect to U1 x U2

is analytic in U1X U2. Set D — Dx x D2, M' A'xD2 and, for weD2,
Ew C"1 X { w }. Then we have dim (Ew nM') dim (A' X { w })
dim A' dim A, on the other hand dim Ew + dim M' — dim D /y +
(dim A! + nf) — (/?1 + n2) dim A. The hypothesis on the analyticity of

f~x(v) for all v e Vimplies that W7 nEw is analytic in D for every w e I)2.
Hence, by Proposition 11, N1 is analytic in D; then N' is, in particular,
analytic in X,xD2 — Uxx U2.
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Concerning the continuity of/ we have

Proposition 13. The correspondence/is continuous if it is continuous

at one point a0e A.

Proof. We assume first that the topology of Y has a countable base.

Then / is continuous at a e A if and only if the following condition holds :

If (xv) and (yv), v 1,2, are sequences of points such that .vv g X—A,

xv^a, yv ef(xv), then the sequence (yv) has a point of accumulation in Y.

Suppose that/is continuous at a point a0 e A and let (xv), (vv) be sequences

as above. Then the fibres/"1 (yv) are non-empty analytic sets in X-A,
and the condition dim X— dim T> dim A implies dim Fv(/z)> dim A for

every irreducible component Ffß) of f~1(yv). Suppose that L ^f~l(}\)
is not analytic in X—A. Then there exists a subsequence (yv.) such that one

can find points xief~1(yv.) which converge to a point x0eX-A. By

continuity at x0 it follows that (yv.)has a point of accumulation on/(.v0).
Let now L be analytic in X—A. Assume first:

(a) There are infinitely many fibres f~1 (yv.) which have a common
irreducible component N.

In this case we take a point of N and use similarly the continuity off
at this point. Suppose now that (a) is not satisfied. Then we apply Corollary

2 of Theorem 1 to the set of irreducible components Ffß) of the fibres

f~1(yv)- Since every neighborhood of a intersects infinitely many
components Ffß) (this implies, in particular, that the closure Lof L with respect
to Xis not analytic in a), the same holds with respect to a0. The yv have then

a point of accumulation on / (a0) because / is continuous at a0.

Now we drop the assumption that Y has countable topology. We
remark first: To show that / is continuous at a g A we may replace X by

any irreducible open subspace which contains the points a and aQ. Therefore

we may assume that X has countable topology. Secondly : All points
of Y used in the proof above belong to the topological subspace/ (X—A) u
/ (a0)cz Y which has countable topology since Xhas. If we now restrict Y
to an irreducible open subspace with countable topology containing

f (X—A)\jf (a0), the proof given above applies.

Corollary. If dim X— dim F>dim A, then/is always continuous.
In this case the hypothesis on the continuity of / at a point a0e A is

not needed in the proof of Proposition 13: We have now dim Ffß)> dim A.
If L is analytic in X—A, Corollary 1 of Theorem 1 implies that L is analytic
in every point of A, and the condition (a) is necessarily satisfied.
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Combining the preceding statements we have the following result.

Theorem 2. Let/ : X—A-+Ybe a meromorphic mapping and dim X—
m

dim 7>dim A. Then / is a meromorphic mapping if and only if
1) there exists a non-empty open set Va Y such that /_1 (v) is analytic

in X for all v eV, and

2) / is continuous at a point a0e A.

If dim X— dim 7>dim A, then / is always a meromorphic mapping.

Corollary. Assume there is an open subset UaX and a compact set

Ka Y different from Y such that Ur\A A 0 and f(U—(UnA))aK. Then /
is a meromorphic mapping.

To conclude this from Theorem 2 we remark first that the set V Y—K
satisfies the above condition 1): If v e V, then/-1 (v) does not intersect U,

hence / ~1 (v) is analytic in every point of U nA and therefore, by Theorem

1, analytic in X. On the other hand, / is continuous at every point
a0e UnA. For /(a0) is compact since it is a closed subset of K. Moreover,
let V0 be a neighborhood of / (a0); we assert that there is a neighborhood
U0 of a0 such that f(U0)czV0. If this were false, then there would exist

points xinU—(U nA) arbitrarily near a0 such that/(x) n(K— (Kn V)) A 0.
But then it follows that/(a0) n[K—{KnV0)) # 0, which is a contradiction.

As to the extension of holomorphic maps we state:

Theorem 3. Let X be, in addition to the earlier assumptions, a complex
manifold and / : X— A-+Y a holomorphic map. Then

1) If dim X— dim 7>dim 0+1, f is a holomorphic map,

2) If dim X— dim Y dim 0+1, then / is either a holomorphic map
or f is a meromorphic mapping and /(a) Y for all a e A.

Proof. Assume dim X— dim 7> dim 0+1. Then, by Theorem 2, / is

a meromorphic mapping; if S S(f) — 0, f is even a holomorphic map.
V

Suppose ^A0, set 7 =/-1 (S) and let T0 be an irreducible component of T.
y_

Set S0 / (70). By Remmert's mapping theorem S0 is an irreducible

analytic set in X. We have

V
dim T0 dim 50+ inf dim z(g_1 (z)) where g |

zeDo

furthermore dim S0 <dim 5"<dim Abecause SczS0czA. Every fibre
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g~1 (g (z)),z6 T0,ismapped injectively into Y by f, hence dim 1 <
dim T. Thus we obtain the inequalities

(*) dim T0<dim A+dim 7<dimlr—1

Now we shall see that dim T0 dim X— 1. Therefore we have equality
in (*), hence dim X— dim Y dim AX I. We obtain also dim S0

dim S dim A, hence S0 S A, since A is irreducible; moreover,
A

dim (g-1 (a)) dim Y for every aeA, consequently /(a) =f(g~1(a))=- Y.

In order to show that dim T0 dim X—l, we use the following
theorem due to Grauert and Remmert [5] a proof was also given by
Kerner [7]):

Let X be a complex manifold, Z a normal complex space, K an analytic
set in Z with codim 2, t : Z^Ia holomorphic map such that t | Z—K
is locally biholomorphic. Then t is locally biholomorphic.

Now assume first that Gy is a normal complex subspace of Jx 7. The
V

holomorphic map /: Gy^-X is locally biholomorphic in a point £ e Gj if
V

and only if £eT /_1 (S). Hence, by the theorem of Grauert and Remmert,

T is puredimensional and dim T dim X—l. If Gj is not normal,
~ V ~

we take a normalization (G, v) of Gj and look at f o v : G-+X and
~ V _ ~
T (/ o v)"1 (G) instead of/ and T. We see then that Tis puredimensional

with dim T =-- dim X—l, but then it follows that v (T) T has the same

properties.

Remark. If Y is not compact, then / is always a holomorphic map
under the hypothesis of Theorem 3 since / (a) is compact for aeA. If the
assumption that X be a complex manifold is dropped, then both assertions
of Theorem 3 become false as can be shown by examples.

5. Maximal meromorphic mappings

All complex spaces in this section are irreducible. Before we state the
problem we give the necessary definitions.

Let/ : X-+Y be weakly holomorphic and not empty. The rank rk/of/
A

is by definition the global rank of the holomorphic mapping / : Gf-> Y, i.e.,

rk/ sup codimz f'1(f(z)).zeGf
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