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The set of " nice " fibers is dense in X, so we cannot remove the z-axis and

still get a closed subspace of C3.

§ 4. Algebraic study offlatness

In the following all rings are commutative, with 1, and all modules are

unitary.

Definition 1 : An v4-module E is flat, if for every exact sequence of
A-modules

0->Ff->F-±F,,->0,

the sequence 0-+E (g) F'-^E ® F-+E ® F"-^0 is also exact. We can also

say, because ® is right exact, that E is flat, if for every injective homomor-

phism F'^F, E ® F'-*E ® F is also injective.

Examples of modules which are not flat :

(1) if A Z, E Z2 Z/2 Z, F F' Z; then the sequence
21

0-*Z->Z (21 : x'-»2x) is exact. But now Z2 (x) Z Z2, and the
21

homomorphism Z2-»Z2 is the zero, homomorphism, which is not
injective. So Z2 is not a flat Z module.

(2) If A C {x}, E C C {x}/(x), F F' C {x}, then the sequence
xl xl

0-+F-+F' (xl : p (x)^xp (x)) is exact. But the homomorphism E-+E
is not injective.

Proposition 1 : If A is an integral domain and E a flat A-module, then E
is torsion-free.

Proof: Let a e A, a =£ 0. Because A is an integral domain, the sequence
al al

0->AA^ (al : x->ax) is exact. Since E is flat, the sequence 0-+E-+E is
also exact. In other words E has no torsion elements.

Proposition 2 : If A is a principal-ideal domain, then E is flat if and
only if E is torsionfree.

Proof: See corollary of prop. 6.

Examples offlat modules :

(1) The inductive limit of flat modules is flat, because the inductive limit
preserves exactness, and it commutes with the tensor product.
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(2) Every free module is flat. In fact, if E is free and finite type, then
E An and E ® F Fn. If F'-*F is injective, so is F'n-+Fn too.

If E is an arbitrary free module, then it is an inductive limit of free
modules of finite type, and the flatness of E follows from (1).

(3) Let S be a multiplicative system in A. Then the ring of fractions S'1 A
is a flat ^4-module. In fact the ring S'1 A can be identified with an
inductive limit of free modules, so it is flat ((1) (2)). We assume for
simplicity that S has only regular elements. We can define in the set S
a partial order in the following way:

s' ^ s <=> 3 t g A ts s' (such a t is then unique).

Let Es A for every s e S, and if sf ^ s (i.e. s' ts) then let fs's be

the homomorphism t. IA : Es-+Es>. The family (Es)seS with the homomor-
phisms (/*') is an inductive system.

Let E limEs be the inductive limit of this system, and cps the canonical

homomorphism Es-+E. We shall define an isomorphism \j/ : E-^S~1A.
We first define for every ^ a homomorphism \j/s : Es A-+S~1A;

x->x/s. Now if s' s, then

tx tx X

s ts S

Therefore there exists a homomorphism \j/ : E-+S~1A, satisfying
\j/s i/j o cps for every se S.

Because every element of S~1A has the form a/s, ij/is surjective. On the

other hand if ij/ ((j)s (x)) 0, then \j/s (x) x/s 0. Thus x 0, and \j/ is

also injective.
The above proof can be extended to the general case, not assuming that

the elements of S are regular. The extended proof involves the notion of
inductive limit of an inductive system indexed by a category instead of an
ordered set.

From (1) and (2) above, any module which is the inductive limit of free

modules, is flat. Conversely:

Theorem 1 : (Daniel, Lazard)

Any flat module is a inductive limit of free modules.

For the proof: See C.R. Acad. Sei. Paris, 258 (1964), pp. 6313-6316.
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Some elementary properties of flat modules:

(1) If E and F are flat ^4-modules, then E®F is also flat. In fact, if G'->G
A

is injective, then F®G'-+F®G is injective, and also E®(F®G') -»

-> E®(F® G) is injective. The result follows from the assosiativity of
the tensor product.

(2) Let (p : A-*B be a ring homomorphism, and E a flat ^4-module. The

module B®E is a flat T-module.
A

If F is a T-module, then F®(B®E) (.F®B)®E F®E further
B A B A A

if F' and F are ^-modules, and F'-+F an injective homomorphism of
^-modules, we can consider this homomorphism as an injective
homomorphism of ^-modules. Because E is ^4-flat,

F'®a E-+F®a E is injective.

(3) Let <j) : A-+B be a ring homomorphism, such that B is a flat ^(-module.

If Fis a flat T-module, then Tis aflat A-module. Infact:if E'-*E is injective,

then E'®B-^E®B is injective, and also (E®B)®F'-*(E®B)®FAB A B A B

is injective. But (E'®aB)b®F' E'®AF; (E® aB)®bF =» E®AF.
If an ^-module E is not flat, we want to measure how far it is from

being flat. For this purpose we introduce the functor Tor.

Definition 2 : A free resolution ofE is an exact sequence: ...->Tn->Ln_ 1

...-+L1->L0->E-*Q, where all Li are free ^4-modules.

The complex of the resolution is the sequence
(L.) ...-^Ln->L„_1->...->L1->L0->0

Every module has a free resolution. Two resolutions are algebraically
homotopy-equivalent. Forming the tensorproducts Lt®F, we get

(L.(x)T) —>Ln® F—>Ln_i®F—>... —®F—>Lq®F—>0

Definition 3 :

TorAn (T, F) «s Hn (L.®F),i/rn TT /T s~~\ T?\ Ker(L&F-ÏL^^F)
Im (Ln +1®F->Ln ®F)

if n*t 1, and Toro (T, F) Coker (L1®F->L0®F) E®F.

Basic properties of Tor :

(1) Torn (E, F) is independent of the choice of the resolution (up to a
canonical isomorphism).
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(2) If we take a free resolution of F, we get Torn (F, E) Torn (F, F)
(Symmetry of the Tor). We can also define Torn (F, F) by taking two
free resolutions, one of E and one of F.

(3) If 0-+E'-+E->E"-+0 is a short exact sequence, then we get a long exact

sequence :

Tor„ (F', F)-+Tor„ (F, F)^Tor„ (F", F)

- Torn_i (F',F)->Torn_i (F, F)->Tor„_i {E'\ F)

-> Tori (F', F)->Tort (E, F)->Torx (F", F) ->

-> E'®F-*E®F^E"®F^0.

(4) Tor is compatible with inductive limit, i.e. if E lim (Et), then

Torn (lim Eh F) — lim (Tor„ (Ff, F)).

(5) We can define Tor„ (.E, F) by taking a flat resolution of E.

Proposition 3 : Let E be an ^4-module. Then the following conditions
are equivalent:

(a) E is flat.

(b) For all ^-modules F, and for all n ^ 1, Torn (E, F) 0.

(c) For all ^4-modules F, Torx (F, F) 0.

Proof: (a) => (è). If... -^Fn->Fn_1 -» L1 -+F0-+F-+ Ois a free resolution

of F, then the sequence

...-*F®Fn-+F0Fn_1-+...->F®L1->F(x)Fo-*F(x)F-> 0

is exact, thus Tor„ (F, F) 0 for all n ^ 1.

(&) => (c) clear, (c) => (a) : If the sequence 0 -> F' -> F -> F" -> 0 is exact,

so is also (by (3) above) Tort (F, F")-+E®F'->E®F^>E®FfJ Now

Tor! (F, F") 0, thus E is flat.

Proposition 4 : If / and J are two ideals in A, then Torf (.A/I, AIJ) =*

TnJ/L J.

Proof: From the exact sequence 0-^>I-+A^>A/I-+0, we get the exact

sequence :

Tori 04, Tori (A/I, A/J)^I®A/J^A®A/J^A/I®A/J^0
But now Tov1(A, A/J) 0 (A beeing ^4-free), and I®AjJ=I/I.J;
A®A/J A!J. Therefore the sequence 0-^Tori 04//, A/J)->I/I. J-+A/J is

exact, and Torx 04//, A/J) — Ker (///. J-^AjJ) InJjl. J.
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Example : Let U be an open set in Cn, and xeU. Further let X, Ya U be

two hypersurfaces, defined by I (/) and J (g). Supposing that/and g

do not have common factors: IxnJx Ix Jx, and

IxnJx
Tor! (@x,x9 ®Y,x) Tor®u,xlJx) ~~ j ~

j ~
_

*

X J X

Heuristic remark : The formula Torx (@XiX> x) ® expresses the fact

that X and Y are " in general position If for example X and Y are two

linears subspaces in C" of dimensions p and q, we have Torx (@x,x> ®y,x) 0

if dim (Xn Y) p+q-n, and Tor (<9XiX, 0YfX) =£ 0 otherwise.

Next we shall prove an elementary flatness criterion.

Proposition 5 : Let E be an ^4-module. The following conditions are

equivalent :

(a) E is flat.

(b) For all finitely generated ideals I of A, Tov1 (E9 A/I) 0.

(c) For all monogenous ^4-modules F, Tor! (.E, F) 0.

Proof : (a) => (b), by prop. 3.

(b)=>(c): Because Tor is compatible with inductive limit, we can

suppose, that Tor1 (E, Ajl) 0 for an arbitrary ideal I of A. But every

monogenous ^[-module F can be represented by A/I.
(c) =^> (a). By prop. 3 it is sufficient to prove that Tor: (.E, F) 0 for

any A-module F.

First consider the case, where F is finitely generated. We use induction,
supposing that Tort (E9 F) 0, when F has n generators. Let F have

(n+1) generators xl9 xn, xn+1. If F' is the submodule generated by
{*!,..., xn}, then F'czFand F" F/F' is monogenous. The exact sequence
0-+F' F F" -» 0 gives the exact sequence Torx (E, F') -» Torx (E, F) ->

Tor1 (F, F"). Now Tor! (F, F') Tort (E, F") 0, thus Torx (E9 F) 0.

In the general case, F can be considered as an inductive limit of finitely
generated modules, and because Tor is compatible with inductive limits, Tor!
(E9 F) 0.

Proposition 6 : Let A be an integral domain, and F an A-module. Then F
is torsionfree if and only if Torx (E, A/(a)) 0, for any element a e A.

al
Proof: If E is ^-module, aeA9 then the exact sequence 0->A->A->

al
->A/(a)->0 gives the exact sequence O-^Torj (E, In other
words Torj (E, Aj(a)) {x e E \ ax 0}, from which the result follows.
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Corollary : Let A be a principal ideal domain. E is flat if and only if E
is torsionfree.

Proof : We have already proved that, if E is flat, then it is torsion free.

The converse follows from prop. 6 and prop. 5.

The first flatness criterion for noetherian local rings is the following:

Theorem 2: Let A be a noetherian local ring with maximal ideal m;
k A/m, and E a finitely generated ^(-module. The following conditions
are equivalent:

(a) E is free.

(ih) E is flat.

(c) Tori (F, k) 0.

Proof : We have already proved {a) => {b) => (c).

(e) => (a) : We recall first Nakayma's lemma. If A is a local ring with
maximal ideal m; k=A/m, and E is a finitely generated y4-module, such that

k®E - E/mE 0, then E 0.
A

The module E k®E E/mE is a finitely generated vector space

over k. Let {x±. xr} be a base of E (over k), and {x1? xr} E representatives

of 5ci : s. Consider the homomorphism (j) : Ar-^E, (j) (al5 ar)

Yj ai xi- Denoting by R and Q the kernel and the cokernel of <£, we get

an exact sequence:

(*) 0->R->Ar-*E->Q->0

and R, Q are finitely generated ^4-modules. From (*) we get the exact

sequence

Ar®k-+E®k->Q(g)k->0AAA
But E E®k~kr Ar®k, so Q®k 0, and by Nakayama's lemma

A A A

Q 0.

Therefore ge have an exact sequence

0->R^Ar->E-*0.

From this we get: Tort (E, k)-+k®R-*kr^>E->0 (exact). Now: E~kr,
A

Tov1 ÇE, k) 0 (by assumption). Therefore k® R 0, and once more by
A

Nakayama's lemma R 0, thus E Ar, i.e. E is free.
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Proposition 7 : Let f : A-*B be a ring homomorphism, and let B be

A-flat. If I is an ideal of A, we write A A\T, B B/IB A®B. Let F
A

be a L-module, then: Torf (Ä, F) Torf (B, F) (i ^ 0).

Proof : We choose first a L-free resolution of F

->Ln+1 ->LnLi->Lo->L->0
If L. is the respective complex of resolution, then

B®L. B/IB ® L. Ä®(B®L.) Ä®L.
B B AB A

Because every Lt is L-free, and B is A-flat, every Lt is A-flat (Property 3

after Th. 1). Thus L. is a flat A-resolution, and

Torf (Ä, F)Hi(Ä®L.) Torf
A B

We shall next state the second flatness criterion for noetherian local rings.

Theorem 3 : Let A and B be two noetherian local rings, with maximal
ideals m, n;k A/m. If 0 : A->B is a local homomorphism (i.e. f (m)czn),
and F finitely generated B module then

F is A-flato Torf (k, F) 0

The proof of this theorem is much more difficult than that of th. 20 see

for example:
Bourbaki: Algèbre commutative, Chapter III § 5, thl, (i) o (Hi), p. 98.

The conditions in Bourbaki's theorem are here fullfilled:

1° A finitely generated module Lover a noetherian local ring B is idealwise

separated for n. (Ibid., § 5. 1. Ex. 1, p. 97.)

2° If (f> : A -> B is a local homomorphism, L is also idealwise separated
for m. (Ibid., § 5, prop. 2, p. 101.)

3° Also the flatness condition is fulfilled, because k is a field.

Remark: The main interest of the theorem lies in the fact, that it is

true without any assumption of finitness on B.

Corollary : If the assumptions are the same as in the theorem 3, and if
moreover B is A-flat, then

F is A-flat <=> Torf (B, F) — o

where B ~ B/mB.
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Proof: Torf (fc, F) Torf (.B, F), by prop. 7.

§ 5. Geometric applications of the flatness criterions

A) Flatness for finite morphisms

Proposition 1 : Let n: X-+S be a finite morphism (i.e. proper with finite
fibres) of analytic spaces. Then tl% (0X) is a coherent analytic sheaf over S.

The following conditions are equivalent:

(a) 7i is flat (i.e. for every xe X, (9X^X is a flat 0Ss-module, s re (%)).

(b) For every s, (tz% 0X)S is a flat 0SjS-module.

(c) 7i% &x is a locally free sheaf.

Proof: Because ti is finite n% (0X)S ® (9X}X, thus the only point
XETt — l(s)

to prove is {b) (c).

Now if (9X)X is a flat $5s-module, then (by theorem 2) (9X>X is free, and

a coherent sheaf whose fibers are free is a locally free sheaf.

Proposition 2: Let S be a reduced analytic space and ê a coherent

^-module. Let E(s) be the finite dimensional vector space (over C)
<2S® g Q ê is a locally free 0S s-module if an only if dimc E(s) is locally

S,s

constant.

Proof : If S is locally free, then dimc E(s) is locally constant. Suppose

now that dimcF^) is locally constant in an open set UaS, and that
d

0 is exact, d is determined by apxq matrix of analytic func-
d

tions on U, so it gives a morphism C^->C^ of trivial vector bundles over U.
ds

From the exact sequence @ps-+(99s-+é>s->0, we get (by making tensor-

products with Cs) the exact sequence:

d(s)
Cp Cl->E(s}->0,

which shows that d has constant rank in U. Thus Ker d and Im d are vector
bundles, and we can write

ci^f1®g19 cs F0@G0,

[ F1-+0
d:\

{ Gi-F0
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