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<#>

&(A x V)(/l,B(Kj)
n{ In

<f>

(9 (Sx V) ->je(S,B(K))
is commutative; 0 is evidently an 0s-algebra homomorphism.

§ 2. The flatness and privilege theorem

Notation

Let S be an analytic space, U an open set in Cn, and n : Sx U-+S the
first projection.

If SF is an ®SxU module, then for every s e S we denote by (s) the

^-module i*s where is is the injective morphism x-*(s, x) from U into
SxU.lï xeU

(s))x ~ x)lms&(*, x) ®<PS>S

Theorem 1 : Let ê be a coherent and S-flat 0S x ^-module, and K a poly-
cylinder in U.

(a) When K is privileged for S (s0)9 s0 has a neighbourhood V such that K is

S (^-privileged for each se V. In other words: the set S' {s e S | K
is ê (s)-privileged} is open in S.

(b) It is possible to define a Banach vector bundle over S' whose fibre at

any s e S' is B ÇK, S (s)).

To prove the theorem we need:

Lemma 1 : Under the conditions of the theorem, we can, for every s e S,

find a neighbourhood W of {s}xK and a free resolution of finite length

dD do di e

in W.

Proof: Let (s, x) be a point of Sx Uanda finite resolution of SP (x)
in a neighbourhood of x (there exists such one, by the theorem of syzygies).

We shall show that that there exists a resolutin if* of in a neighbourhood

of (s, x) such that if* (s) if * ; if if? define

Sex #5xv and JT? Ker d°t: if?
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We shall construct by induction (with lespect to i) dt *_i in a

neighbourhood of (s, x) such that dt (s) d% and prove that X t Ker dt

is £-flat and that X t (s)

/ Suppose that we have constructed dt and proved
1+1 1 the properties for X We can construct Ji+1 :iff+i

i -+if i in a neighbourhood of (s, x) such that the diagram
d. v
1+L ^ is commutative.i+i > ^ i

Nakayama's lemma shows that Im di+1 X t at the point (s, x), therefore

in a neighbourhood of that point.
The exact sequence

0-+Xi+1 -+ ifj+1 -+X/"~*0 *

where Jf f and ifi+1 are S-flat, shows that Jf/+1 is S-flat, and that

Xi+1 (s) X°i + 1. The first step of the induction is analogous.

Proof of the theorem : Let s0 e S and

dp dx

0 —> if p ifq —><^| IL—>0

be a free $Sxl7 resolution of ê in a neighbourhood W= VxxV2 of
{^o} xK. The sheaf S is $s-flat, so for each s eVl9 the sequence

0-+ JPp®(Ps\v^ Cs-±...-+£?1 00>s^^Cs-+ifo®(9S\VCs-*<$Cs-+0

is exact. So the sequence

dp(s) dx(s) e(s)

(A) 0->&p{s) -> ...-»if^s) -» if0 (5) ->^(s)|F2-+0

is exact when se Vv Now if t (s) ~ Gy^ (0 ^i^p) and every dt (s) induces

a continuous linear map:
B(K, ^t{s))^B{K, ifj-i (s)), which we also denote by <^(s). We can

consider dt — as an rfxr;^-matrix with entries from (9Sxu(W)•
By § 1 we have a 0s-algebra homomorphism

«Sx„(Sx»f)^(S,ß(K)).

From the matrix (dijk) we get by this homomorphism a morphism c/£ :

V^^(B(K)ri,B (£)"-*) se (B<?t (s)), <?t_ (s)).
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(Here V0 is some neighbourhood of s0) such that dt (s) dt (,s) for
each s eV0. In other words we have a sequence of Banach vector bundle

morphisms

dp d i
(B) 0->B(K,S?P)^... -+B(K,&0).

Using the fact that (9SxU (Sx (S, B(K)) is an 0s-algebra homo-

morphism, it easily follows that (B) is complex of Banach vector bundles

over S.

Now K is S Cs0)-privileged, thus

dp(s0) d^So)
0-B (£, JEp (s0)) -* -> B(K, SEo (s0))

is split exact, so by theorem III.l

dp\V dt\V
0-+B(K,&p){v ->... ->B(K9SeoV

is split exact for some neighbourhood V of s0.

Because dt (s) dt (s) and the sequence (A) is exact part (a) of the

theorem follows.

(b) B(K. SE0)\V splits as the direct sum of im d1 and a bundle Ev, such

that EVs ~ B(K,S (i1)), for each ^ e V. We must show that these bundle

structures fit together globally.
Suppose therefore that V is open in Sr and that

dp d2 d±

0 -+SEp-+...-*SE1->SEo

dp d2 d-i

o —> sep
se i —> se o \vxv2~~*®

are free resolutions of £ over VxV2.
If Vl9 V2 are open polycylinders, we can find an 0Sxü-homomorphism

(j)o : Se0^Se0 such that
£'^0-* $\VxV20

II

£

SEq S\vxv2 0
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commutes. <j>0 determines a bundle morphism 4>0: B (K, £P0)-*B (K, if0)-

B(K, JSf0) (resP- ^o)) splits as (im [Resp. (im d[)®Ev].

Let p' be the projection morphism: B (K, J£0)-*EV with kernel im du

and put cj) p' o <j>0\Ev-

The commutative diagram

ß U( I M) 4 > ß (k t Uh)

and the open mapping theorem shows that (j) (s) is an isomorphism of

Banach spaces for each s e V, so <fi : EV-^EV is a bundle isomorphism. We

also notice that </> depends only on the choice of splittings in B (K, if0) and

,5 (£, if 0)> an(i not on ^e choice of <j>0. This ends the proof of the theorem.

Remark: Consider the general situation where X and S are analytic

spaces, and n : is a morphism, an 0x-module. To study the local

dependence of ê on S, one can imbed an open set X' in X in
> b X U

theopenset CczCn. The morphism 0: X'-*U,n: X'-*SdQter-
J s mine the imbedding nX(j): X'->SxU such that the diagram

commutes, ê can be extended by zero into a sheaf £" over UxS. Obviously
this sheaf i' is jS-flat iff ^ is *S-flat.

Therefore theorem 1 makes clear also this general situation.

Corollary : If n : X->S is a morphism and ê a coherent tf^-module.
Then n | Supp ($) is an open map.

Proof: Suppose as above that X is imbedded in Sx U, and ê in extended

by zero to Sx U. Let x0 e Supp ê, and F be a neighbourhood of x0 in Sx U.

Let s0 7i (x0) and choose an ê (^-privileged polycylinder K in U, such
that {s0}xKczV, over some neighbourhood W of s0. We have the Banach
bundle B (K, *f|7r_1 (W)), whose fiber over s is B (K, S (s)). Since

x0 g Supp ê (s0) and K is a neighbourhood of x0, B (K; S (,s0)) # 0. As all
the fibers are isomorphic, then for all s e U, B(K\$(s)) # 0 and therefore
{s}xT^nSupp S AO, and sen (Supp S). This pioves that % is open.
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