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ht o hfi1 can be written (x, y' (x, c)) where yr (x, c) e C. According to the

last property in (iii), for fixed Uj the mapping c -> yr (x, c) is a

C-isomorphism of C onto itself. Therefore

y' (x, c) g ij (x)-c9 where gu (x) A 0 • (1.1)

and it is easily seen that gtj is holomorphic in Ut n Uj.
The functions gtj obviously satisfy the cocycle conditions

QijQjkQki 1 on Ui n Ujn Uk> (1.2)

Qijöji 1 on ^nC/y. (1.3)

The g ij are called transition functions corresponding to the line bundle F.

Conversely, it is easy to prove (cf. [4], p. 135) that given an open covering
{ Ui} and functions gtj without zeros in Ut n Uj which satisfy the cocycle
conditions, we can construct a line bundle which has gfj- as transition
functions.

Now, let F be a line bundle over a complex manifold X, and let n be the

corresponding projection. We denote 7i_1 (a) by Fa. Let F*a be the C-dual
of Fa. Then

T* u Fa
aeX

is in a natural way a holomorphic line bundle over X, which is called the
dual bundle of F. If Thas transition functions { }, then F* has transition
functions { g^'1 }.

Definition 1.6. Let F be a holomorphic line bundle over a compact
complex manifold. Then F is negative if the zero cross section o of F can be
blown down to a point. F is positive if the dual bundle is negative.

In the sequel we let F denote the sheaf of germs of analytic sections of
a line bundle F.

2. The vanishing theorem of Kodaira

This is the following theorem, which is our first main result:

Theorem 2.1. Let X be a compact connected complex manifold and F
a positive line bundle on X and S a coherent analytic sheaf on X. Then there
exists an integer k ÇS, F) such that for k > k (S, F) we have Hq (X, S 0 Fk)

O(V0>1).
The proof uses the following finiteness theorem:
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Theorem 2.2. Let F be a complex manifold, S a coherent analytic
sheaf on V, and D a c V a strictly pseudoconvex subdomain of V. Then
the cohomology groups Hq (D, S) are finite-dimensional C-vector spaces
if q > 1.

For a proof of Theorem 2.2 see Section 4.4 of the lectures by Malgrange
in these notes.

Proof of Theorem 2.1.

Let E be the dual bundle of F. By hypothesis, E is negative. Thus, by
Lemma 1.4, the zero cross section of E has a strictly pseudoconvex
neighbourhood D.

By definition, we have a projection n: E -» X. We will now use n to
" lift " S to a coherent analytic sheaf S on E. To do this, we first consider
the sheaf of abelian groups n_1 (S) which to any point a of E assigns the
stalk Sn (a). Since SK (a) and the ring (9a (E) of germs of analytic functions at
a both are modules over the ring (9

n (a) (X), we can form the tensor
product $a==Sa(g)(9a(E) over 0Ä(a)(X). Then ^is a module over 0a{E\ and this
defines S. Since S is coherent, S is also coherent (cf [3], p. 401).

From Theorem 2.2 it now follows that Hq (D, s) are finite-dimensional
C-vector spaces for q > 1. We complete the proof of Theorem 2.1 by
constructing for every N a natural injection

N

X Hq(X,S®Fk)^H«(D,
k= 0

N

where the sum is the direct sum as vector spaces. In fact, since dim Y Hq
k=0

N

Y, existence of such injections would imply the existence
k— 0

of the desired integer k (S, F).
Let a be a point of the zero cross section o in the negative bundle E,

and let U be a neighbourhood of a such that Ev « U x C. Identifying
a g o c= E with the point % (a) e X, we denote by (9a (.E) and (9a (X) the rings
of germs of analytic functions on E at a and on X at a, respectively.

00

To a germ /e (9a (.E) corresponds a Taylor series Y /vW converg-
v= 0

ing in some neighbourhood U' X Dn where U' c= U and Dr — {z;
|z I < r }

For xe U, let e' (x) e Ex correspond to (x, 1) under the isomorphism
Ex « U X C, and let e (x) e -F^be defined by < e (x), e' (x) > 1. Then
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e (x) is a holomorphic section of F over U9 and every germ p e F* is

represented by p (x) e (x) 0 e (x) ® 0 e (x), (k factors e (x)), where p (x)
is holomorphic in a neighbourhood of a. But p (x) e (x) 0 e (x) 0
0 e (x) e Fkx can be identified with the multilinear functional

(z1,...,zJk)->p(x)z1-...-zfc

and therefore also with the polynomial p (x) zk.

Hence, for every N we obtain an injection

iN'îla-Oa(E)
/c= 0

N N

by mapping (p0, pl9..., pN) e £ F* onto the germ at # of £ A(v) zfe, where
0 fc=0

fk (x) is holomorphic in a neighbourhood of a and fk (x) zk corresponds to
00

pk e Fka in the way described above. Further the map qN: ^/v(x)zv->fk{x)zk
o

gives rise to a homomorphism (F) ->• such that o zN id.
It is obvious that this mapping iN is injective.

From iN we also obtain a homomorphism
N

jx : S0 E® &(x) ® (E) S,
o

and the corresponding homomorphism
N

o

Further, the map qN defined above gives rise to a homomorphism

s^s®emYlk,
0

and hence a map
N

tjN: H* (&, S) -> H'' (X, S X P)
0

such that pN ojx id. Hence j^ is injective.
This mapping can be factored as follows

NN a ß

H«(&,S®Y,Zk) *LH«(S®p)^H«(D
0 0

and as ß oocisan injection, a also is an injection, which proves the theorem.
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