

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. [Siehe Rechtliche Hinweise.](https://www.e-periodica.ch/digbib/about3?lang=de)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. [Voir Informations légales.](https://www.e-periodica.ch/digbib/about3?lang=fr)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. [See Legal notice.](https://www.e-periodica.ch/digbib/about3?lang=en)

Download PDF: 31.01.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

3. An imbedding theorem

Lemma 3.1. If X is a compact complex manifold and S a coherent analytic sheaf over X, then $\Gamma(X, S)$ is a finite dimensional vector space (cf. remark concerning Theorem 2.2).

We will now prove an imbedding theorem (cf. [2], p. 343).

Theorem 3.2. If the complex manifold X is compact, connected, and carries a positive (negative) line bundle, then X can be imbedded biholomorphically in a complex projective space P^N .

Proof: Suppose F is a line bundle on a compact complex manifold X with the property that for every $a \in X$ there exists a section $\sigma \in \Gamma(X, F)$ with $\sigma(a) \neq 0$. Then F defines a holomorphic mapping of X into a projective space \mathbf{P}^k in the following way:

Since X is compact, $\Gamma(X, F)$ is finite-dimensional according to Lemma 3.1.

Let σ_0 , ..., σ_k be a basis of $\Gamma(X, F)$. Then the σ_i have no common zeros. Since F is locally isomorphic to the product of an open subset of X and C, the σ_i are locally given by holomorphic functions without common zeros.

We map X into \mathbf{P}^k by $x \to (\sigma_0(x), ..., \sigma_k(x))$. The point in the projective space is independent of the isomorphism we are using, for if we use another isomorphism we get a point $(g(x) \sigma_0(x), ..., g(x) \sigma_k(x))$, where $g(x) \neq 0$ (cf. (1.1)).

We are now going to show that if F is positive, then there exists an integer y such that the sections of $\Gamma(X, F^{\gamma})$ have no common zeros and such that the corresponding mapping is an imbedding.

For $a \in X$, let *I* be the sheaf of germs of holomorphic functions vanishing at a . Since I is coherent, we can apply the vanishing theorem of Kodaira. We conclude that there exists an integer k (a) such that $H^1(X, I \otimes F^{k \ge k(a)}) = 0$

Since $\mathcal{O}_a/I_a \approx C$, we have the following exact sequence

$$
0 \to I \to \mathcal{O}(X) \to \mathbf{C}_a \to 0 ,
$$

where C_a is a sheaf with stalk C at a and zero outside. From this it follows that the sequence

$$
0 \to I \otimes F^{k(a)} \to F^{k(a)} \to \mathbb{C}_a \otimes F^{k(a)} \to 0
$$

is exact. We have $C_a \otimes F^{k(a)} \approx \tilde{F}_a^{k(a)}$, where $\tilde{F}_a^{k(a)}$ has stalk $F_a^{k(a)}$ at a and

zero outside. Using the fact that $H^1(X, I \otimes F^{k(a)}) = 0$, the exact cohomology sequence associated to the above sequence of sheaves gives us an exact sequence

$$
\Gamma(X, \underline{F}^{k(a)}) \to \Gamma(X, \widetilde{F}_a^{k(a)}) \to 0.
$$

This implies that given $e \in F_a^{k(a)}$ there exists $\sigma \in \Gamma(X, F^{k(a)})$ such that σ (a) = e. Thus, for every $a \in X$ we can find an integer k (a) and a neighbourhood V_a of a such that $\Gamma(X, F^{k(a)})$ has a section not vanishing on V_a . Since X is compact, there are finitely many such neighbourhoods V_i (i=1, p (p, p) with corresponding sections of F^{ki} such that $X = \cup V_i$. Letting $i=1$

 $k = k_1 \cdot k_2 \cdot ... \cdot k_p$, we get p elements of $\Gamma \left(X, \underline{F}^k \right)$ without common zeros, for if $\sigma \in \Gamma(X, E)$ and $\sigma(x) \neq 0$, then $\sigma' = \sigma \otimes ... \otimes \sigma \in \Gamma(X, E')$ and l - iimes

 $\sigma' (x) \neq 0.$

Let $E = F^k$. Now, for $a \in X$, let $G = q_a^2$, where q_a is the ideal of germs of holomorphic functions vanishing at a. Using the above argument with E and G instead of F and I, we see that there exists an integer $s(a)$ such that the restriction mapping

$$
\Gamma\left(X,\underline{E}^{s(a)}\right)\to\{\mathcal{O}_a/q_a^2\}\otimes\underline{E}_a^{s(a)}
$$

is surjective. Since the residue classes in \mathcal{O}_a/q_a^2 are sets of germs f of morphic functions at quite fixed values of $f(a)$ and $df(a)$, this implies morphic functions at a with fixed values of $f(a)$ and $df(a)$, this implies that we can find a neighbourhood U_a of a and sections $\sigma_1, ..., \sigma_t \in \Gamma(X, E^{s(a)})$ which are nowhere zero in U_a such that the mapping given by $\sigma_1, ..., \sigma_t$ is regular and injective in U_a . We observe that for every positive integer I we can find sections $\sigma_1^{(1)}$, ..., $\sigma_t^{(1)} \in \Gamma(X,E^{ls(a)})$ which have the same properties in U_a . In fact, if σ is a section of $E^{s(a)}$ which has no zeros on a set $M \subset X$, we set

$$
\sigma' = \sigma \otimes \ldots \otimes \sigma, (l-1) \text{ times.}
$$

Then $\sigma' \otimes \sigma_1, ..., \sigma' \otimes \sigma_t$ are sections of $E^{ls(a)}$, and define the same mapping (at least on M) as σ_1 , ..., σ_t .

We can cover X by finitely many such neighbourhoods $U_1, ..., U_r$. If $s' = s_1 \cdot \ldots \cdot s_r$, then there are elements of $\Gamma(X, E^{s})$ which give a regular, injective mapping in each U_i (1 $\le i \le r$).

We are now going to show that we can separate points in X by sections r of a suitable \underline{E}^{α} . Let $U = \bigcup_{i=1} (U_i \times U_i)$. For $(a, b) \in X \times X - U$, let H $i=1$ be the sheaf of germs of holomorphic functions vanishing at a and b . It is easily seen that the sequence

$$
0 \to H \to \mathcal{O}(X) \to \mathbf{C}_a \oplus \mathbf{C}_b \to 0
$$

is exact. From this we conclude as above that there exists an integer $s(a, b)$ such that the sequence

$$
\Gamma\left(X, \underline{E}^{s(a,b)}\right) \to E_a^{s(a,b)} \oplus E_b^{s(a,b)} \to 0
$$

is exact. Therefore there exists a neighbourhood W of (a, b) in $X \times X$ such that if $(a', b') \in W$, then the sections of $\Gamma(X, E^{s(a,b)})$ separate a' and b'; that is, if σ_0 , ..., σ_k is a basis of $\Gamma(X, E^{s(a,b)})$, then $(\sigma_0(a'), ..., \sigma_k(a'))$ and $(\sigma_0(b'), ..., \sigma_k(b'))$ are different points in \mathbf{P}^k . Let *l* be a positive integer, let $(a', b') \in W$, and let σ be a section of $\Gamma(X, E^{s(a,b)})$ such that $\sigma(a') \neq 0$ and $\sigma(b') \neq 0$. Then $\sigma^{l-1} \otimes \sigma_0$, ..., $\sigma^{l-1} \otimes \sigma_k$ are sections of $\Gamma(X, E^{ls(a,b)})$ such that $((\sigma^{l-1} \otimes \sigma_0) (a'), ..., (\sigma^{l-1} \otimes \sigma_k) (a'))$ and $((\sigma^{l-1} \otimes \sigma_0)(b'), ...,$ $(\sigma^{l-1}\otimes \sigma_{\nu}) (b'))$ are different points in \mathbf{P}^{k} .

This means that for every positive integer *l* the sections of $\Gamma(X, E^{ls(a,b)})$ separate all point pairs in W. Thus, covering $X \times X - U$ by finitely many such neighbourhoods and taking s" to be the product of the corresponding $s(a, b)$, we find that the sections of $\Gamma(X, E^{s})$ separate all point pairs in $X \times X - U.$

Let $\alpha = s's''$ and let $\sigma_0, ..., \sigma_d$ be a basis of $\Gamma(X, E^{\alpha})$. We claim that the mapping f from X into P^d defined by $f(x) = (\sigma_0(x), ..., \sigma_d(x))$ is a biholo-
mapping is imbedding of X into P^d . That this mapping is regular follows from morphic imbedding of X into \mathbb{P}^d . That this mapping is regular follows from the fact that α is a multiple of s'. What remains to be proved is that the mapping is injective.

Suppose $a, b \in X$, $a \neq b$. If $(a, b) \in U$, then $a, b \in U_i$ for some i, and since α is a multiple of s', we have $f(a) \neq f(b)$. If $(a, b) \in X \times X - U$,
then $f(a) \neq f(b)$ since x is a multiple of s''. This proves the theorem then $f(a) \neq f(b)$ since α is a multiple of s''. This proves the theorem.

4. Line bundle associated to a divisor

Let X be a complex manifold and D an analytic subset of X of pure codimension 1 at every point. Such a set D is called a *divisor* of X . We shall construct a line bundle F on X , associated to D .

To do this, we observe that every point of X has a neighbourhood U in which there is a holomorphic function s such that $U \cap D = \{x \in U; s(x)\}$ $= 0$, and s generates, at every point of U, the ideal of germs of holomorphic functions vanishing on D. Thus we get a covering of X by open sets U_j and