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Now cd takes the form

cd — dß' dzx a a'. (6.23)

We distinguish the two cases k > 1 and k 1. In the first case we get
from (6.23)

dzx a (5od 0,

which implies that da 0. Since a is a form of type q — 1 > 1, we can apply
once again Lemma 6.8 and get a da". Thus dz1 a a d(dzx a a"),
and we get cd d(ß'-{-dzl a a"). This proves that the cohomology under
consideration is trivial for k > 1.

Finally, in the case k 1, a is a meromorphic function, independent
of z2, zn. Thus by (6.23), cd dy for some y if and only if in the Laurent
expansion of a! the coefficient of z1~1 is zero. Thus the cohomology in
dimension 1 is generated by z1~1 dzx, which completes the proof of Theorem

6.4.

7. Lefschetz' theorem on hyperplane sections

The Lefschetz theorem in the slightly more general setting proved by
Andreotti and Frankel [1], is the following:

Theorem 7.1. Let F be a submanifold of Pn of complex dimension d
and let D be a hyperplane section of V (not necessarily non-singular).
Then there are natural isomorphisms

H*(V9Z)*H*(D,Z), (V2 < d—l),
and a natural injection

Hd~1 (F, Z) -» Hd~1 (D, Z).

Proof. X V — D is a Stein manifold, since it is imbedded as a closed
submanifold of Cn. Now one knows that

Hq(V,D,Z) ~ Hqc(X,Z), (7.1)

where the c indicates cohomology with compact support. On the other
hand, since X is a topological manifold of dimension 2 d, Poincaré duality
gives

Hqc(X,Z)^H2d_q(X,Z). (7.2)

Now we shall use the following theorem:
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Theorem 7.2. Let X be a Stein manifold of dimension d. Then

Hr(X, Z)=0, (y/r>d). (7.3)

Suppose this theorem is proved. Then (7.1) — (7.3) gives

Hq(V,D,Z) 0. (v<? < d). (7.4)

Now we have the exact sequence

Hq(V,D,Z) ->Hq(V,Z) ->Hq(D, Z) ^ Hq+1(V,D,Z) ->

and using (7.4) we conclude that the mapping

Hq{V,Z) -> Hq(D, Z)

is an isomorphism onto when q < d — 1 and an injection when # <7—1.

This proves Lefschetz' theorem.
The proof of Theorem 7.2 is based on Morse theory. Let X be a C00-

manifold with countable base. If/ is a real-valued C00-function on X, then
a point aelis called critical for f if df (a) 0. A critical point ö is non-
degenerate, if in local coordinates /(x) — f (a) la^ {xt — a^ (Xj — aj)
-\- o \ x — a |2), where the symmetric matrix {atj) is non-singular. It is

non-degenerate of index r if {atj) has r eigenvalues < 0. The non-degenerate
critical points for / are necessarily isolated. We now quote some facts from
Morse theory; for proofs, see [6].

Lemma 7.3. Suppose that /eC00 (X), /> 0, a < ß, and that Xß
{ x e X;f (x) < ß } is compact.

(a) If/has no critical points in { x e X: a </(x) < ß }, then Xa is a

deformation retract of Xß, and hence

Hr(Xß,Xa, Z) 0, (vr^O).
(b) If all critical points of /in {xel; a </(x) </?} are non-

degenerate of index < / then

Hr(Xß,Xa, Z) 0 (yr>d).
In particular, if all critical points of / in Xß are non-degenerate of index

< d, then

Hr (Xß, Z) 0 (v >d).
In the proof of Theorem 7.2 we shall also use the following lemma of

Morse:
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Lemma 7.4. Let X be a C^-manifold with countable base. Then every
real function geC00 (X) can be approximated in the topology of C00 (X)
by real functions /eC00 (X), whose critical points are all non-degenerate.

The topology of C00 (X) is the topology of uniform convergence of all
derivatives on compact sets. Therefore the lemma explicitly means the

following:
Let a > 0, an integer r > 0 and a compact set I c X be given, and

let K uKki where each Kj is compact and contained in an open
set Up where we have a coordinate system. Then there is a function /
of the prescribed type such that

sup sup sup I D7 f (x) — D7 g (x) \ < e

j |a| < r x e Kj

(Here D7 means a derivative of order | a [ in the coordinates on Uj.)
To prove Lemma 7.4 we shall use a Lemma of Sard (see [8, Ch. I,§3, Th. 4]):

Lemma 7.5. Let Q be an open subset of Rn and /: Q Rn a C1-mapp-
ing. Let A be the critical set of/, i.e. the set of a e Q where det (of (a)/dxj)

0. Then / (A) has Lebesgue measure 0 in Rn. In particular, / (A) is nowhere

dense in R".

Proof of Lemma 7.4. Suppose first that X is an open subset Q of R".

If g e C00 (ß) is realvalued, consider the mapping

cp: Qbx -> (dg/dxli dg/dxje R"

The critical set A of cp is the set in Q where

det {f2g\bxi cxf 0.

The lemma of Sard, applied to cp, shows that there are arbitrarily small
eu en e R such that (el5 e„) ^ cp (A). Put

f(x) g(x) - e1x1 - - snx„.

A point xeQ is a critical point of / if and only if cg/cx,- 8-,

(j=l, «).

At such points cp (x) (el5 e„) e cp (A) and hence det (<d2g/dxi dxf
5É 0. Hence all critical points of/ are non-degenerate.

Since e1? sn can be chosen arbitrarily small, the lemma is proved
in the case X Q.

The general case now follows by a category argument. From the special
case we conclude that we can cover X by denumerably many relatively
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compact open subsets U} of X, such that °U^ is dense in the space of real
C°°-functions, where denotes the set of real C00-functions, whose
critical points in Uj are all non-degenerate. It is also easy to see that every

is open in the space of real C00-functions. Since this space is a real
Fréchet space, we can therefore use Baire's theorem to conclude that the set

of all real C°°-functions, whose critical points in X are all non-degenerate,
i.e. n is dense. This proves the lemma of Morse.

Proof of Theorem 7.2. Let I be a Stein manifold of dimension d,

and let K be a compact subset of X such that

K { x gI; I f (x) I < I) / \ \K, v/holomorphic on X }

(Since X is a Stein manifold, every compact subset of X is contained
in some K of this kind.) Choose an open set U such that K a U ci ci X.
For every a e ô U we can find a holomorphic function / on X such that
I fix) I > 1 in a neighbourhood of a and ||/||jK< 1- Since dU is compact,
we can therefore choose holomorphic functions /1? ...,fk on X such that

max I fj (a) | > 1, (\/a e ô U),
and

\\fj\\K<U (VJ).

By replacing each fj by a sufficiently high power, we can also arrange
that the function

p(x) ZI2

satisfies p (v) < 1 on K and p (x) > 1 on dU. We can also assume that the

rank of (/1? ...,fk) is maximal at all points of U.

Now p g C°° (Z), p > 0, and Uß { v e U; p (x) < ß } is compact
and contains K if ß < 1 is chosen so that p (x) < ß in K. By calculating
the Levi form and using the maximality of the rank of (fu ...,/fc), we see

that p is strongly plurisubharmonic.
Because of Morse's lemma we can also assume that all critical points

ofp in Uß are non-degenerate. We shall prove that they are all of index < d.

We expand p at a critical point a e Uß in a local coordinate system:

d2 p (a)
p(x) p a)+ 2Re X -5—0; - a,) (z • - aJ)

OZi OZj
d2p(a)

p(a)+ Reg(z— a)+ +
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Here L(z-a) is the Levi form ofp at the point a. Now, since p is strongly

plurisubharmonic, we can choose the coordinates so that L(z — a)

I z-a |2. Then we see that if is an eigenvector corresponding to an

eigenvalue < 0 of the symmetric matrix of the real quadratic form Re Q (z)

+ L (z), then i £ is an eigenvector corresponding to an eigenvalue > 0.

Hence the number of negative eigenvalues is < d, since the real dimension

of X is 2d. Thus the index of the critical point a is < d.

Now using Lemma 7.3 (b), we see that

Hr(Uß, Z) 0, (Vr >d).
From this it follows that

Hr(X, Z) =0, V > d),

because the singular cycles defining the homology groups Hr (X, Z) have

compact supports, and any compact subset of X is contained in some

compact set K with a corresponding Uß zz K.

A refinement of the above argument leads to the stronger (homotopy)
statement :

Any Stein manifold of (complex) dimension d has the same homotopy

type as a CW complex of (real) dimension < d. (See [6]).

Moreover, the Lefschetz theorem has an analogue in homology and

in homotopy [6]. The latter, for example, asserts that, if V, D are as in
Th. 7.1, then the relative homotopy groups nq (V, D) 0 for q < d.

Th. 7.2 has been generalised in various directions. It has a relative
analogue (relative to a Runge domain). Further, Th. 7.2 remains true if
X is any Stein space (with singularities) of complex dimension d, but the

corresponding cohomology statement is proved only for some other
coefficient groups [5, 7]. Note that in view of the use of Poincaré duality, this
does not lead to a Lefschetz theorem for algebraic varieties with singularities.
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