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The previous lemma shows that Ç*v) £ aVÀ bx + ôrjv where

îjv e C'"1 (33) with || f/v | 33i || < K|||| and | < || ç(*} ||.

Let us put ax YavA (t/Pifand )/ Y (t/PïY- We see that
A A

rj e C/_1 (fiß1 (p2)) and ax e l(En (p2))- An easy computation gives
A A A A /\
£1 | ®i (P2) Z ax h2

I 331 (P2) + <5 *7- Il follows by definition that
_ A A A

£0 — Z ax We have now proved that bx br generate ((«qO)x)
A A

at the origin. It follows in the same way that bx br generate \p{l) ((«q(9)x)

for every t<=En(p0) because it is enough to do everything in a polydisc
around t. Now we also prove that the sheaf \l'( l) (fiq$)x) is free, i.e. there

A A
"

A
are no relations between h1 hr at any point. Say for example that ax bx +

A

+ + ar br 0 at iff(l) ((q&)x){0) where al are germs of analytic functions
~ A ~ A

at the origin in E"(p0).Hence axbx + + br 0 in H1 (Z(p), (q&)x)

for some p>0 with e I(E"(p)).It follows that flv hv <5in X (p)
A A

for some £ e Cl~x (U (p), (.q($)x). Take a point t e En (p) where some

av ^ 0. Now we see that on { t } x X0 we have a1 (t) tq + + ar (Ohr
A

d ^ \ {t} x X0e Cl~l (U, (q@)x0)' This gives a contradiction to the

fact that bi br are a base of Hl (X0,

Measure charts

Let A be a connected complex analytic manifold of dimension m.

Let F be a holomorphic vectoi bundle of rank q on X and F the sheaf of
holomorphic crossections in F. This sheaf is locally free. A regular proper
holomorphic map \j/: X En is given. Let us put X0 if/'1 (0). Now X0 is

a compact analytic manifold of dimension m — n. We now introduce

special open coverings around X0 in X.

A

Definition. A measure chart iV (W,<P, 0, p) is a quadruple satisfying
the conditions:

A A

1) W c= X is open and W W n X0 is Stein.
A

2) 0: W -> En (p) X IF is a biholomorphic map such that the following
diagram is commutative :
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A <KW-> E"x
\j/ \ / n

E"(p)

Here n is the projection map.
A A A

3) 0 : Fi W -> W X Cq is a trivialization of F on W.
' A A

If iF is a given measure chart on X we can identify the sheaf (W, F | W)

of Fx-modules with the sheaf (W X En (p), q (9) using <P and 0. If U cz If
A

is open and p' < p we put U (p') F'1 (U X En (p')). Hence if
A A A

se T (U (p')5 F) we can identify 5 with an element of F (U X En (p')5 ^ (P).

We shall simply denote this element of F (U X En (p'), q (9) by the same
A A 00

letter 5. Now we can expand s in a Taylor series: s sv (tjp')v where
1 V I 0

sYeqI(U).

A A A

Definition ofa norm. When s e F (U F) we put || s ||

sup I sv (U) |.
t'

A

Strictly speaking the norm || 5 || is taken with respect to the measure
chart IF.

It is not hard to see that for every point x e X0 there exists a measure
A

chart IF such that x g W. In particular we can cover X0 by finitely many
r*A A

measure charts iFt (Wt, 0L, pt), i.e. X0 a c u Wr We remark that it
1

l* A
follows that X(p) \l/~1(En(p)) c c= u Wl for some p > 0 with p < pl

1

because ^ is a proper map. The collection iF { iFt } ll is called an atlas
around X0. From now on iF is a fixed atlas.

Measure coverings. We shall define measure coverings with respect to
the given atlas iF above. If U c WL is open we put (U)L (p)

F'1 (U x En (p)) when p < pL. We see that (U\ (p) c IfL and (U\ (p)
is Stein if U is Stein. Let U { }Li be a Stein covering of X0 with U, cz ciWL

A
for each i. Let p > 0 with p < min pt. We put (p) — (f/L)L (p). We

tAAA A
see that Ul (p) c c and C/L (p) are Stein. It is now required that U (p)
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A A
{ UL (p) } Ll is a Stein covering of X (p). We say then that it (p) is a

measure covering of X (p).

A A
Admissible refinements of measure coverings. Let It (p) and tt* (p)

A
be two measure coverings of X (p). We say that U* (p) is an admissible

A
refinement of It (p) if the following conditions hold:

1) [/* c c Lf for each i.

2) Ift/:o...u=t/:on...nC/;wepUt(C/:o...l;i)v #v-1(t/:o..,/lx£"(p))
for each ve{t0...i,}. It is now required that (t/*0.„,tA)v <= (Vl0.--A< for
all v, y, e{ t0 ix }.

3) U:0...lA n n f * c (C/10...l;), for each P e { lo }

Existence of admissible refinements of measure coverings

Existence Theorem. For every fixed integer s we can find, for some

p > 0, a sequence Us <| ÎIs_i <1 Hi Xt0 of finer measure coverings
of X (p) each of which is an admissible refinement of the following.

Proof. We first construct a measure covering of X (p) for some

p < min pt. Let M0 { HL } ^ be a Stein covering of X0 such that i/Lc c
for i e { 1, i* } Choose a fixed p0 < min pt. Now the open sets

«vue X En (p0)) cover X0 and hence they also cover X (p) for some

sufficiently small p. Hence tt0 defines a measure covering of X (p). It is also

clear that H0 defines a measure covering of X (p') for each p' < p. Let us

now construct U1. We let H* { I/*} be a Stein covering such that
A

£/* cz c UL always holds. Now we can find p1 < p such that { 17* (px)

— (Pf1 (C7* xE"(p1))}I,i cover X(Pi). Hence it* (pt) and U (pj are
A A

measure coverings of X (pf). But we do not yet know if U* (px) ll (pf).
A A

We claim that if p2 < p1 is sufficiently small then U* (p2) <1 U (p2)- For
A A

suppose this is false. Say that 2) fails for U* (p2) and It (p2) when

0 < p2 < Pl. Hence ^"1X £"(p2)) (C/10...lA X £"(p2)) are

non empty for suitable indices while p2 0. Choose a point x, from each

of these sets. Because xte X(pl) which is relatively compact we may

assume that xt -> x0. Obviously we get x0 e U*Q — L^.. LA,
a contradic-
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