Smoothing

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 14 (1968)
Heft 1: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
21.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

The set $G^{*} \subset G$ is open and $R^{* *}=\left\{V_{1}, \ldots, V_{t^{*}}\right\}$ an open covering of G^{*} such that $V_{\imath} \subset \subset U_{\mathrm{t}}$ for $t \in\left\{1, \ldots, \mathrm{t}^{*}\right\}$. We have:

Cartan's Theorem. There exists a constant K such that if $\xi \in Z^{l}\left(R^{*}, q \mathcal{O}\right)$ then $\xi \mid R^{* *}=\delta \eta$ where $\eta \in C^{l-1}\left(R^{* *}, q \cup\right)$ and $\|\eta\| \leqslant K\|\xi\|$ for $l \geqslant 1$.

This is a simple consequence of Theorem B and Banach's open mapping theorem.

Now we apply Cartan's theorem. We keep the notations as above. Let $\hat{G}=G \times E^{n}(\rho)$ and put $\hat{R}^{*}=\left\{U_{1} \times E^{n}(\rho)\right\}$. Now \hat{R}^{*} is a Stein covering of \hat{G}. Let $\hat{G}^{*}=G^{*} \times E^{n}(\rho)$ and $\hat{R}^{* *}=:=\left\{V_{1} \times E^{n}(\rho)\right\}$. Let $\hat{\xi} \in Z^{l}\left(\hat{R}^{*}, q \mathcal{O}\right)$ and write $\hat{\xi}=\sum \xi_{(v)}(t / \rho)^{\nu}$ with $\xi_{(v)} \in Z^{l}\left(R^{*}, q \mathcal{O}\right)$. We assume $\|\hat{\xi}\|_{\rho}=\sup \left\|\xi_{(v)}\right\|<\infty$. Now Cartan's theorem gives $\xi_{(v)} \mid R^{* *}=\delta \eta_{v}$ with ${ }^{v} \eta_{v} \in C^{l-1}\left(R^{* *}, q \mathcal{O}\right)$ and $\left\|\eta_{v}\right\| \leqslant K\left\|\xi_{(v)}\right\|<\infty$. It follows that $\hat{\eta}=\sum_{\hat{n}} \eta_{v}(t / \rho)^{v}$ is well defined in $C^{l-1}\left(\hat{R^{*} *}, q \mathcal{O}\right)$ and by definition we have $\|\hat{\eta}\|_{\rho} \leqslant K\|\hat{\xi}\|_{\rho}$.

Smoothing

We are given a sequence of admissible refinements of measure coverings in $X\left(\rho_{1}\right)$. Here $\rho_{1}<\rho_{0}=\min \rho_{\mathrm{l}}$ as usual. Let l be a fixed integer $\geqslant 1$. We are given $\mathfrak{P}^{*}<\mathfrak{V}^{\prime}=\mathfrak{B}_{3 l} \ll \mathfrak{P}_{3 l-1} \ll \ldots<\mathfrak{P}_{1}<\mathfrak{P}_{0}<\mathfrak{P}<\mathfrak{U}^{*} \ll \mathfrak{U}=\mathfrak{U}_{3 l} \ll \ldots$ $\ll \mathfrak{U}_{0} \ll \mathfrak{U}^{\prime}$. Here it is also required that $\left(\mathfrak{B}_{v+1}, \mathfrak{U}_{v+1}\right) \ll\left(\mathfrak{B}_{v}, \mathfrak{U}_{v}\right) ;\left(\mathfrak{V}^{*}, \mathfrak{U}^{*}\right) \ll$ $\ll\left(\mathfrak{B}^{\prime}, \mathfrak{U}\right)$ and $\left(\mathfrak{B}_{0}, \mathfrak{U}_{0}\right) \ll\left(\mathfrak{B}, \mathfrak{H}^{\prime}\right)$. These extra conditions mean: 1) $\hat{U}^{(v+1)} i_{i_{0}} \ldots i_{\kappa}$ $\left.\cap \hat{V}_{i_{0}}^{(v+1)} \ldots_{\iota_{l}} \subset\left(U_{i_{0}}^{(\nu)} \ldots i_{\kappa} \cap V_{i_{0}}^{(\nu)} \ldots\right)_{l}\right)_{i}$ for each $i \in\left\{i_{0}, \ldots, i_{\kappa}\right\}$ and 2) $\left(U_{i_{0}}^{(v+1)} \ldots i_{\kappa} \cap V_{i_{0}}^{(v+1)} \ldots t_{l}\right)_{j} \subset\left(U_{i_{0} \ldots i_{K}}^{(v)} \cap V_{\iota_{0} \ldots l_{l}}^{(v)}\right)_{i}$ for all $i, j \in\left\{i_{0}, \ldots i_{\kappa}, l_{0}, \ldots \iota_{l}\right\}$. Recall that all operations are done with respect to ρ_{1}. Let us put $\hat{R}_{i_{0} \ldots i_{k \backslash 0} \ldots i_{\kappa}}^{(\nu)}=$ $=\hat{U}_{i_{0} \ldots i_{k}}^{(\nu)} \cap \hat{V}_{\iota_{0} \ldots t_{K}}^{(\nu)}$. We consider elements $\xi_{i_{0} \ldots i_{k} \iota_{0} \ldots t_{\kappa}} \in \hat{\Gamma}\left(\hat{R}_{i_{0} \ldots i_{k} \iota_{0} \ldots \iota_{k}}^{(\nu)}, \mathbf{F}\right)$. Now we take a full collection $\hat{\xi}=\left\{\hat{\xi}_{i_{0} \ldots i_{k} \iota_{0} \ldots i_{k}}\right\}$ of such elements which is anticommutative in $\left\{i_{0}, \ldots i_{k}\right\}$ and $\left\{t_{0}, \ldots, t_{k}\right\}$. In this way we get a double complex $C_{v}^{k, \kappa}$. Here $\delta: C_{v}^{k, k} \rightarrow C_{v}{ }^{k+1, \kappa}$ and $\partial: C_{v}{ }^{k, k} \rightarrow C_{v}{ }^{k, \kappa+1}$ are the usual coboundary operators.

Norm In $C_{v}^{k, \kappa}$: Let $\hat{\xi} \in C_{v}^{k, \kappa}$; we put
$\|\hat{\xi}\|_{\rho}=\max _{i,\left(i_{0} \ldots i_{k}, \iota_{0}, \ldots, t_{K}\right)}\left\{\left\|\hat{\xi}_{i_{0} \ldots i_{k} \iota_{0} \cdots t_{K}} \mid\left(R_{i_{0} \ldots i_{k} \iota_{0} \ldots t_{K}}^{(v+1)}\right)_{i}(\rho)\right\|_{i}\right.$ with $i \in\left\{i_{0}, \ldots\right.$, $\left.\left.i_{k}\right\}\right\}$. Here $\rho>\rho_{1}$ and $R_{i_{0} \ldots i_{k},{ }_{0} \ldots i_{k}}^{(\nu+1)}=U_{i_{0} \ldots i_{k}}^{(v+1)} \cap V_{\iota_{0} \ldots t_{k}}^{(\nu+1)}$ and $\left\|\|_{i}\right.$ is taken with respect to the chart \mathscr{W}_{i} as usual.

Smoothing Lemma: Let $\kappa>0$. There exists a constant K such that: If $\hat{\xi} \in C_{v}^{k, k}$ with $\hat{\partial \xi}=0$ and $\|\hat{\xi}\|_{\rho}<\infty$ then we can find $\hat{\eta} \in C_{v+3}^{k, k-1}$ such that $\hat{\xi} \mid C_{v+3}^{k, \kappa}=\hat{\partial \eta}$ and $\|\hat{\eta}\|_{\rho} \leqslant K\|\hat{\xi}\|_{\rho}$. Here $\rho \leqslant \rho_{2}=\gamma \rho_{1}$ with $0<\gamma<1$ and K depends only on ρ_{2}.

Proof. Let us fix i_{0}, \ldots, i_{k} in the following discussion. Let $G=U_{i_{i} \ldots i_{k}}^{(v+1)}$ and put $\hat{G}=(G)_{i}\left(\rho_{1}\right)$ for some $i \in\left\{i_{0}, \ldots, i_{k}\right\}$ which is also fixed now. Now G is Stein in X_{0} and G is Stein in X. We put $R^{*}=G \cap \mathfrak{B}_{v+1}$ which is a Stein covering of G. Also $\hat{R}^{*}=\left\{\left(G \cap V_{l}^{(v+1)}\right)_{i}\left(\rho_{1}\right)\right\}_{\imath=1, \ldots, \iota^{*}}$ is a Stein covering of \hat{G}. Let $\hat{\xi}=\left\{\hat{\xi}_{i_{0}, \ldots i_{k}, \iota_{0} \ldots t_{K}}\right\}$. Now we look at the elements of $\left\{\hat{\xi}_{i_{0}, \ldots i_{k}, \iota_{0} \ldots i_{K}}\right\}=\hat{\xi}_{i_{0}, \ldots i_{k}} \in Z^{\kappa}\left(\hat{R^{*}}, \mathbf{F}\right)$. Here $i_{0}, \ldots i_{k}$ is fixed as above. We get a cocycle because we have assumed that $\hat{\partial \xi}=0$. More precisely we have considered the restriction of $\hat{\xi}_{i_{0}, \ldots i_{k}, \iota_{0}, \ldots i_{k}}$ to \hat{R}^{*}. We must verify that this restriction is possible.

Verification: By definition of $Z^{\kappa}\left(\hat{R}^{*}, \mathbf{F}\right)$ we have to look at sets of the following type: (these are the sets where the cross-sections are defined) $\left(G \cap V^{(v+1)}\right)_{\iota_{0}} \cap \ldots \cap\left(G \cap V_{i}^{(v+1)}\right)_{\iota_{\kappa}}=\left(G \cap V_{\iota_{0} \ldots \iota_{K}}^{(v+1)}\right)_{i}=\left(R_{i_{0} \ldots i_{k}}^{(v+1)}{ }_{i_{k}{ }^{\prime} \ldots \iota_{K}}\right)_{i}$. Now by 2) we have $\left(R_{i_{0} \ldots{ }_{k^{\prime} 0} \cdots \iota_{\iota_{K}}}^{(v+1)}\right)_{i} \subset{ }_{j}\left(R_{i_{0}}^{(v)} \cdots i_{i^{\prime} 0} \cdots \iota_{\iota_{K}}\right)_{j} \subset\left(U_{i_{0}}^{(v)}\right)_{i_{0}} \cap \ldots \cap\left(V_{\iota_{k}}^{(v)}\right)_{\iota_{\kappa}}=$ $=\hat{R}_{i_{0}}^{(\nu)} \cdots_{i_{k} \iota_{0} \cdots \iota_{\kappa}}$. Q.E.D.

Now we put $G^{*}=U_{\left(i_{0} \ldots i_{k}\right.}^{(v+2)} \subset \subset G$. We let $\hat{R}^{* *}=\left\{\left(G^{*} \cap V_{\imath}^{(v+2)}\right)_{i}\right\}_{\imath=1, \ldots, \iota^{* *}}$. The system $\hat{R}^{* *}$ is a Stein covering of $\left(G^{*}\right)_{i}$. We are in a good position now. For we are given $\hat{\xi}_{i_{0}, \ldots i_{k}} \in Z^{\kappa}\left(\hat{R}^{*}, \mathbf{F}\right)$. Here \hat{R}^{*} is a Stein covering of \hat{G} and \hat{G} is a Stein manifold. We are working in the chart \mathscr{W}_{i} where the usual identifications are used. Hence we arrive at the following situation: G is a Stein manifold with a Stein covering $R^{*}=\mathfrak{B}_{v+1} \cap G$. Also $G^{*} \subset \subset G$ and $R^{* *}=\mathfrak{B}_{v+2} \cap G^{*}$ is a Stein covering of G^{*} such that $R^{* *} \subset \subset R^{*}$. The cocycle $\hat{\xi}_{i_{0}, \ldots i_{k}}$ is now considered as an element of $Z^{k}\left(\hat{R}^{*}, q \mathcal{O}\right)$ which
we simply call $\hat{\xi}_{i_{0} \ldots i_{k}}$ again. Now we apply the result after Cartan's theorem. Hence we can find a constant K such that for every $\rho \leqslant \rho_{2}$ we get $\eta \in$ $\in C^{\kappa-1}\left(\hat{R}^{* *}, q \mathcal{O}\right)$ and $\|\eta\|_{\rho} \leqslant K\left\|\hat{\xi}_{i_{0}, \ldots i_{k}}\right\|_{\rho}$ with $\partial \eta=\hat{\xi}_{i_{0} \ldots i_{k} . \text {. But this }}$ means precisely that we can find $\hat{\eta}_{i_{0}, \ldots i_{k}} \in C^{\kappa-1}\left(\hat{R}^{* *}(\rho), \mathbf{F}\right)$ such that $\left\|\hat{\eta}_{i_{0} \ldots i_{k}}\right\|_{i, \rho} \leqslant K\left\|\hat{\xi}_{i_{0} \ldots i_{k}}\right\|_{i, \rho}$ with $\hat{\xi}_{i_{0} \ldots i_{k}}=\partial \hat{\eta}_{i_{0} \ldots i_{k}}$. We have only constructed $\hat{\eta}_{i_{0} \ldots i_{k}}$ using a fixed $i \in\left\{i_{0}, \ldots, i_{k}\right\}$. Now we must let $\left(i_{0}, \ldots, i_{k}\right)$ vary. For each $\left(i_{0}, \ldots i_{k}\right)$ we choose some i which only depends on the unordered $(k+1)$-tupel $\left(i_{0}, \ldots, i_{k}\right)$ and construct an element $\hat{\eta}_{i_{0}, \ldots i_{k}}$ as above. Now we can restrict everything to $C_{\substack{k, \kappa-1 \\ v+3}}$.

Verification: Consider a set where cross-sections over $C_{v+3}^{k, \kappa-1}$ have to be defined, i.e. a set $\hat{U}_{i_{0} \ldots i_{k}}^{(v+3)} \cap \hat{V}_{t_{0} \ldots i_{k}}^{(v+3)}$. But by 1) follows $\hat{U}_{i_{0} \ldots i_{k}}^{(v+3)} \cap \hat{V}_{i_{0} \ldots i_{k}}^{(v+3)} \subset$ $\subset\left(R_{i_{0} \ldots i_{k}{ }_{k} \iota_{0} \ldots i_{k}}^{(v+2)}\right)_{i}$ for each $i \in\left\{i_{0}, \ldots, i_{k}\right\}$. This inclusion shows that we
 $C^{k, k+3}$. We find that $\hat{\xi} \mid C_{v+3}^{k, k}=\hat{\partial \eta}$ now. The norm inequalities are not obvious, but recalling how $\hat{\eta}$ is constructed here it is seen that we can apply Theorem I to obtain the required estimate.

Smoothing Theorem. There exists a constant K such that: If $\hat{\xi} \in$ $\in Z^{l}(\hat{\mathfrak{B}}(\rho), \mathbf{F})$ with $\|\hat{\xi}\|_{\rho}<\infty$ then we can find $\hat{\xi}^{*} \in Z^{l}(\hat{\mathfrak{U}}(\rho), \mathbf{F})$ and $\hat{\eta} \in C^{l-1}\left(\hat{\mathfrak{B}}^{\prime}(\rho) . \mathbf{F}\right)$ for which $\hat{\xi}^{*}\left|\hat{\mathfrak{B}}^{\prime}(\rho)=\hat{\xi}\right| \hat{\mathfrak{B}}^{\prime}(\rho)+\hat{\delta \eta}$ and $\left\|\hat{\xi}^{*}\right\|_{\rho}$ and $\|\hat{\eta}\|_{\rho} \leqslant K\|\hat{\xi}\|_{\rho}$. Here $\rho \leqslant \rho_{2}<\rho_{1}$ and K only depends on ρ_{2}.

Proof. Before we can use the double complex $\left\{C_{v}^{k, k}\right\}$ we must introduce two " ε-maps". To define the ε_{1}-map, let $Z_{v}^{k, \kappa} \subset C_{v}^{k, \kappa}$ consist of all $\hat{\xi} \in C_{v}^{k, \kappa}$ such that $\hat{\delta \bar{\xi}}=\hat{\partial \xi}=0$. Now we shall define the ε_{1}-map $: \varepsilon_{1}$: $Z^{l}(\hat{\mathfrak{V}}, \mathbf{F}) \rightarrow Z_{0}^{0, l}$. A section belonging to an element of $C_{0}^{0, l}$ is defined on some set $\hat{U}_{i_{0}}^{(0)} \cap \hat{V}_{i_{0}}^{(0)} \cdots_{l l} \subset \hat{V}_{\iota_{0} \ldots{ }_{l}}$ where sections of elements of $Z^{l}(\hat{\mathfrak{B}}, \mathbf{F})$ are defined. Hence we get a natural restriction map ε_{1} which also maps cocycles into cocycles. It is easy to verify that $\left\|\varepsilon_{1}(\hat{\xi})\right\|_{\rho} \leqslant K\|\hat{\xi}\|_{\rho}$. Theorem I can be used because $\left(U_{i}^{(1)} \cap V_{t_{0}}^{(1)} \cdots_{L_{l}}\right)_{i} \subset\left(V_{\iota_{0}}^{(0)} \ldots \iota_{l}\right)_{l}$ for every i and every $\iota \in\left\{t_{0}, \ldots t_{l}\right\}$. Recall that the norm in $Z^{l}(\mathfrak{B}, \mathbf{F})$ is defined with respect to
$\hat{\mathfrak{B}}_{0}$ here. The " ε_{2}-map" : we shall construct a map $\varepsilon_{2}: Z_{3 l}^{l, 0} \rightarrow Z^{l}(\hat{\mathfrak{U}}, \mathbf{F})$. Let $\hat{\xi}=\left\{\hat{\xi}_{i_{0}, \ldots i_{l}, \iota_{0}}\right\} \in Z_{3 l}^{l, 0}$. Here $\hat{\xi}_{i_{0}, \ldots i_{l}, \iota_{0}}$ is defined on $\hat{R}_{i_{0} \ldots, i_{l}, \iota_{0}}^{(3 l)}$. Because $\hat{\partial \xi}=0$ we see that the elements $\hat{\xi}_{i_{0} \ldots i_{l}, r_{0}}$ are independent of i_{0}. Now ${\stackrel{l}{ }{ }^{*}}_{\cup}^{V^{(3 l)}}{ }_{l}$ covers $X\left(\rho_{1}\right)$. If we put $\varepsilon_{2}(\hat{\xi})_{i_{0} \ldots i_{l}}=\hat{\xi}_{i_{0} \ldots i_{l},{ }_{l 0}}$ in $\hat{U}_{i_{0} \ldots i_{l}}^{(3 l)} \cap \hat{V}_{l_{0}}^{(3 l)}$ ${ }_{\imath}=1$
then we see that $\varepsilon_{2}(\hat{\xi})_{i_{0} \ldots i_{l}}$ is a well defined section on $\hat{U}_{i_{0} \ldots i_{l}}^{(3 l)}$. In this way we obtain $\varepsilon_{2}(\hat{\xi}) \in Z^{l}(\hat{\mathfrak{U}}, \mathbf{F})$. Here $\varepsilon_{2}(\hat{\xi})$ is a cocycle because $\hat{\delta \xi}=0$. Now we prove that $\left\|\varepsilon_{2}(\hat{\xi})\right\|_{\rho} \leqslant K\|\hat{\xi}\|_{\rho}$.

Verification. A computation of $\left\|\varepsilon_{2}(\hat{\xi})\right\|_{\rho}$ involves the following: $\varepsilon_{2}(\hat{\xi})=\left\{\xi_{i_{0}}^{(2)} \cdots \omega_{l}\right\}$. Look at some $\xi_{i_{0} \cdots i_{l}}^{(2)}$ in the chart \mathscr{W}_{i} with $i \in\left\{i_{0}, \ldots, i_{l}\right\}$. We write $\hat{\xi}_{i_{0} \ldots i_{l}}^{(2)}=\sum a_{v}(t / \rho)^{v} \operatorname{over}\left(U_{i_{0} \cdots i_{l}}^{*}\right)_{i}$ and compute $\sup \left|a_{v}\left(U_{i_{0}}^{*} \cdots i_{l}\right)\right|$. A computation of $\|\hat{\xi}\|_{\rho}$ involves the following: Look at $\hat{\xi}_{i_{0} \ldots i_{l}}$ over $\left(U_{i_{0} \cdots i_{l}}^{*} \cap\right.$ $\left.\cap V_{\iota}^{*}\right)_{i}$ in a chart W_{i}. Here ι is fixed. We write $\hat{\xi}_{i_{0} \ldots i_{i}, t}=\sum a_{v}{ }^{\left({ }^{(}\right)}(t / \rho)^{v}$ and compute sup $\left|a_{v}{ }^{(t)}\left(U_{i_{0}}^{*}, \cdots i_{l} \cap V_{\iota}^{*}\right)\right|$. Now $\cup V_{\iota}^{*}$ covers X_{0}. Hence we would have $\sup _{v, l}\left|a_{v}{ }^{(t)}\left(U_{i_{0} \cdots i_{l}}^{*} \cap V_{l}^{*}\right)\right|=\sup _{v}\left|a_{v}{ }^{1}\left(U_{i_{0}}^{*} \cdots i_{l}\right)\right|$ if $a_{v}=a_{v}{ }^{\left({ }^{(}\right)}$in $U_{i_{0}}^{*} \cdots i_{l} \cap$ $\cap V_{l}^{*}$. But this is obvious since $\xi_{i_{0}}^{(2)} \cdots_{i_{l}}=\hat{\xi}_{i_{0} \ldots i_{l}, \iota}$ in $\left(U_{i_{0} \cdots i_{l}}^{*} \cap V_{l}^{*}\right)_{i}$. Hence we have $\left\|\varepsilon_{2}(\hat{\xi})\right\|_{\rho} \leqslant\|\hat{\xi}\|_{\rho}$.

Now we are ready to start the proof of the smoothing theorem. We let K denote a constant, which may be different at different occurences. We also introduce a double complex $\left\{\tilde{C}_{v}^{k, \kappa}\right\}$ using $(\mathfrak{B}, \mathfrak{B})$, i.e. it is defined just as the previous double complex was, using \mathfrak{B}-sets instead of \mathfrak{U}-sets. We shall inductively construct the following elements:

$$
\begin{aligned}
& \hat{\xi}_{v}=\left\{\hat{\xi}_{i_{0} \ldots i_{v},{ }_{0} \cdots l_{l-v}}\right\} \in Z_{3 v}^{v, l-v} \\
& \tilde{\xi}_{v}=\left\{\tilde{\xi}_{i_{0} \ldots i_{v}}, ⿺_{0} \cdots l_{l-v}\right. \\
& \hat{\eta}_{v}=\left\{\hat{\eta}_{i_{0} \ldots i_{v-1}}, \tilde{Z}_{3 v}^{v, l-v} ; v=0, \ldots, l\right. \\
& \tilde{\eta}_{v}=\left\{\tilde{\eta}_{i_{0} \ldots i_{v-1}},{ }_{\iota_{0} \cdots l_{l-v}}\right\} \in \mathcal{C}_{3 v}^{v-1, l-v} \\
& 3 v
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\gamma}_{v}=\left\{\tilde{\gamma}_{i_{0} \ldots i_{v-1}, \iota_{0} \ldots l_{l-v-1}}\right\} \in \tilde{C}_{3 v-3}^{v-1, l-v-1} ; \quad v=1, \ldots,(l-1) \\
& \text { and } \tilde{\gamma}_{l}=\left\{\tilde{\gamma}_{i_{0} \ldots i_{l-1}}\right\} \in C^{l-1}\left(\mathfrak{B}_{3 l}\right) .
\end{aligned}
$$

The construction: $\hat{\xi} \in Z^{l}(\hat{\mathfrak{B}}(\rho), \mathbf{F})$ is given. The whole construction is done using ρ instead of ρ_{1} and we omit ρ to simplify the notation. We put $\varepsilon_{1}(\hat{\xi})=\hat{\xi}_{0} \in Z_{0}^{0, l}$. Now we apply the Smoothing Lemma and get $\hat{\eta}_{1}$ such that $\hat{\partial \eta_{1}}=\hat{\xi}_{0}$ with $\left\|\hat{\eta}_{1}\right\|_{\rho} \leqslant K\left\|\hat{\xi}_{0}\right\|_{\rho} \leqslant K\|\hat{\xi}\|_{\rho}$. Put $\hat{\xi}_{1}=\hat{\delta \eta_{1}}$. Obviously $\left\|\hat{\xi}_{1}\right\|_{\rho} \leqslant K\left\|\hat{\eta}_{1}\right\|_{\rho}$. Inductively we find $\delta \eta_{v}=\hat{\xi}_{v-1}$ and we put $\xi_{v}=\delta \eta_{v}$ where η_{v} are found from the Smoothing Lemma. Finally we get $\hat{\xi}_{l}$ and we have $\left\|\hat{\xi}_{l}\right\|_{\rho} \leqslant K\|\hat{\xi}\|_{\rho}$. Now we define $\tilde{\xi}_{v}$ and $\tilde{\eta}_{v}$ as follows. Put $\tilde{\xi}_{0}=\hat{\xi}_{0}$ where $\tilde{\xi}_{0} \in \tilde{Z}_{0}^{0, l}$ is obtained by natural restriction of $\hat{\xi}_{0}$. Put $\tilde{\eta}_{v}=(-1)^{v}\left\{\hat{\xi}_{i_{0} \ldots i_{v-1},{ }_{0} \cdots l_{l-v}}\right\}$ which is well defined with respect to $\left(\mathfrak{B}_{3 v}, \mathfrak{B}_{3 v}\right)$ by taking natural restrictions. Put $\tilde{\xi}_{v}=\delta \tilde{\eta}_{v}$ for $v=1, \ldots, l$. A computation shows that $\tilde{\xi}_{v-1}=\partial \tilde{\eta}_{v}$ when $v=1, \ldots, l$. Notice that this is trivial when $v=1$. In the following discussion each η_{v} is restricted to $\left(\mathfrak{B}_{3 v}, \mathfrak{B}_{3 v}\right)$. We have $\partial\left(\tilde{\eta}_{1}-\hat{\eta}_{1}\right)=0$. Hence we find $\tilde{\eta}_{1}-\hat{\eta}_{1}=\partial \tilde{\gamma}_{1}$ by the Smoothing Lemma. Now we define $\tilde{\gamma}_{v}$ such that $\partial \tilde{\gamma}_{v}=\tilde{\eta}_{v}-\hat{\eta}_{v}-\tilde{\delta \gamma_{v-1}}$ inductively. This is possible because $\partial\left(\tilde{\eta}_{v}-\hat{\eta}_{v}-\tilde{\delta \gamma_{v-1}}\right)=0$, for we have $\partial\left(\tilde{\eta}_{v}-\hat{\eta}_{v}-\delta \tilde{\gamma}_{v-1}\right)=\tilde{\xi}_{v-1}-\hat{\xi}_{v-1}-\delta \partial \tilde{\gamma}_{v-1}=\delta \tilde{\eta}_{v-1}-\delta \hat{\eta}_{v-1}-$ $-\delta\left(\tilde{\eta}_{v-1}-\hat{\eta}_{v-1}\right)=0$. We get finally $\tilde{\gamma}_{l-1} \in \tilde{C}_{3 l}^{l-2,0}$ and then $\tilde{\delta \gamma}_{l-1} \in$ $\in \tilde{C}^{l}{ }_{3 l}^{-1,0}$. We have $\partial\left(\tilde{\eta}_{l}-\hat{\eta}_{l}-\tilde{\delta \gamma_{l-1}}\right)=0$. Therefore we can put $\tilde{\gamma}_{l}=$ $=\varepsilon_{2}\left(\tilde{\eta}_{l}-\hat{\eta}_{l}-\tilde{\delta \gamma_{l-1}}\right)$. It follows that $\tilde{\gamma}_{l} \in C^{l-1}\left(\mathfrak{B}_{3 l}\right)$ and $\tilde{\delta \gamma_{l}}=\varepsilon_{2}\left(\tilde{\xi}_{l}-\hat{\xi}_{l}\right)$. We have $\varepsilon_{2}\left(\tilde{\xi}_{l}\right)=-\hat{\xi} \mid \mathfrak{B}^{\prime}$ and for $\varepsilon_{2}\left(\hat{\xi}_{l}\right)=-\hat{\xi}^{*}$ and $\hat{\eta}=\tilde{\gamma}_{l}$ the required equation $\xi^{*}=\xi+\delta \eta$. The estimates follow immediately from the construction and the Smoothing Lemma.

